GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

© SANS Institute 2003,

Implementing a Patch Management Process

GIAC Security Essentials Certification Practical Assignment
Version 1.4b, Option 2

By: Scott C. Hull
May 31, 2003

As part of GIAC practical repository.

Author retains full rights.

Introduction

The SQL Slammer worm was propagated via the Internet on January 25, 2003.
In the first 5 days it caused an approximate $ 1.2 billion in lost productivity,
making it the 9™ most costly malicious code®. In addition to the tangible costs
(money, labor, time) realized by organizations exploited by the worm, intangible
costs will most certainly be accrued through the loss of public and investor trust
in the ability of an organization to secure their systems from attacks. The exploit
occurred in spite of the fact that the vulnerability was already known to exist and
that Microsoft had released the patch addressing this in July of 2002. That the
patch had not been applied should not be a surprise because, according to an
article in Network World, Gartner estimates that, “90% of security exploits are
carried out through vulnerabilities for which there is a known patch” (Fontana,
www.nwfusion.com/news/2003/0505ecora.html). A full 6 months had elapsed before SQL
Slammer hit the Internet, and Systems Administrators, to include some of
Microsoft's own, had not applied the patch allowing the vulnerability to be
exploited. The lack of a patch management plan can be a costly mistake!

The Federal Information Security Management Act, signed into law in 2002,2
requires Federal Agencies to have patch management processes in place
(amongst many other requirements in protecting the Government’s computing
resources). While it is not the only reason to ensure patching is done, this law
does tie an agency’s funding to performance and adherence to this law and
requires the agency to report on compliance. This case study will describe the
approach used in creating and maintaining a patch system for our distributed
server environment. This will include the methodology used to prepare the
environment, what the environment looked like and actions taken before, during
and after implementation, concluding with procedures put in place for ensuring
an active patch maintenance plan. It must be noted that this process is not a
“one size fits all” but shows our approach in addressing the timely patching of our
systems.

System Vulnerabilities

Today’s software consists of millions of lines of code and even with extensive
testing is released with 5-20 bugs (or flaws) per 1000 lines of code®. Windows
2000 was released with roughly 35 million lines of code and based on that,
contained an estimated 175,000 to 700,000 bugs! Compare this to the 2001
release of Redhat 7.1 with an estimated 30 million lines of code and a potential
150,000 to 600,000 bugs. Each of these bugs is a possible vector for
exploitation.

Keeping up with patching of systems to fix these bugs even in a small
environment can be a challenge (Gartner reports that, “IT managers are
spending up to 2 hours per day managing patches for their systems” (Fontana,
www.nwfusion.com/news/2003/0505ecora.html)). This makes it imperative that a well

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

thought out and documented plan be created to facilitate the patching process
and the proper tools needed to help automate this process are chosen. Without
this, the ability to maintain the confidentiality, integrity and availability of your
computing resources will become near impossible.

Before the process begins, it is important to understand what vulnerabilities are
and what is out there to take advantage of them. The definition of systems
vulnerability is the absence of some control or countermeasure that help to
mitigate the risks to the systems you are protecting. The SQL Slammer worm
was not the first worm to take advantage of a known vulnerability where the
control (the patch released 6 months earlier by Microsoft) was not put in place by
Systems Administrators. In 2001, the Code Red and NIMDA worms wreaked
their havoc by taking advantage of multiple vulnerabilities for which patches had
been released for®.

Exploiting the Vulnerabilities

The Internet provides a medium for sharing information and experiences at
lightning speed from anywhere in the world. Unfortunately, the same medium is
used to share information on how to take advantage of system vulnerabilities.
You don’t have to be a world-class programmer in order to exploit a system, you
just have to know where to look and find out how to do it.

The cycle goes somewhat like this; a system is exploited through some method
like a buffer overflow in the operating system software instruction, causing
vendors to respond with a patch that nullifies the exploit. The patch is posted on
websites along with information on the exploit (how it works, etc) to inform
legitimate users that a vulnerability exists and how to eliminate (or mitigate) it.
This is where the process breaks down and the point of this case study; the
process relies on systems managers to download and apply the patch. The
scripts and tools used to exploit the vulnerability are most likely available for
download somewhere on the Internet, so when the immediate threat has passed,
they are there to be used against the systems of which their respective Systems
Administrators failed (or simply ignored) to apply the fix for.

Implementing the Defense

Because of a variety of excuses (too many requirements against too little
resources, etc), the patching of internal servers was done with a sort of catch as
you can approach; if you had time, go through and patch servers. If not, do it
later. This approach meant servers were patched all the way, some of the way
or not at all and there was no way to determine for each server which of the three
applied. There lacked a systematic approach to ensuring our mission critical
resources had the latest patch. The re-occurring theme through this case study
is the timely application of patches. To address this issue as well as meet the
requirements set forth by the Federal Information Security Management Act

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

(nttp://csre.nist.gov/policies/FISMA-final .pdf) , a step by step process was plotted that
would leverage the tools we had on hand to bring our servers to the required
patching level. In addition, this was made a part of our routine systems
administration duties.

Before Implementation

To set the stage of the environment that this process was applied to, the
organization has locations all over the Continental United States, Hawaii and
Puerto Rico. We have a good number (more than 200) of servers running a
variety of Network Operating Systems with the majority being on the Microsoft
NT and 2000 platforms.

The organization has gone through various transitions in the area of systems
management. Systems were first managed centrally then, as individual business
units wanted faster deployment of applications, went to being managed by the
business units themselves. The process then reversed itself and the agency’s
distributed environment went back to being managed by a single team. To add to
the mix, we also have a large application development environment, which is
done by various groups throughout the organization. We have suffered in the
past from a lack of a formal software development life cycle (SDLC) process for
distributed applications. This resulted in developers (and even some end users),
who had access to a wide variety of software, setting up “servers” and putting out
applications. This was done without first ensuring the security of the system and
applications were addressed. Even though the application solved a business unit
need, the lack of standards in building, deploying and maintaining these systems
resulted in an increased risk to system vulnerabilities being exploited.

Because no method existed before going into this, over 200 servers had to be
patched to the current level, an extensive number of fixes required installing in
order to bring the enterprise up to a current state.

During Implementation

The approach to server management had been to ensure that the servers we
managed were available to the users that needed them. As with a lot of IT
shops, resources are stretched thin and a growing list of day to day operational
requirements stretches them even further. Before implementing the process we
now have in place, patching our servers was done in an ad hoc fashion and
almost as an after thought. Exacerbating this indifferent approach to patching
was the thought that because our network has firewalls, this alleviates us of the
need to constantly patch our servers. While this helps mitigate risk of being
compromised, this does not provide airtight security. A common statistic used
that should concern any systems administrator is that 80-90% of network security
incidents come from users inside the network?. These users have an advantage
over users outside the network as the amount of foot printing, scanning and

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

enumerating is greatly reduced because they already know which systems are
available for targeting®. Additionally, firewalls should not provide for a lazy
approach to patching because external traffic will still be allowed on purpose for
business reasons (e.g. access by external customers to the marketing web site).
The problem presented then is the lack of a consistent process in ensuring our
servers had the latest patches available. Without this, our network had a high
level of vulnerability from both internal and external threats.

Before the actual addressing of the patch process itself, a lot of work had gone
into creating a more secure foundation in server management. A large part of
securing an environment is knowing what is on the network. Because there was
no comprehensive listing of the server environment (in part due to the
centralized-decentralized-centralized cycle), A database was created that
identified every server, the server location, the purpose of the server, the server
category and the group the server was used by. This database was then used
as part of the standard server build process which had been created to ensure
servers were built consistently and addressed all the points of deploying a server
(RAID configuration, page file sizing, renaming the admin account, etc).

In starting the creation of a formal patch process, | formed a group of team
members that could assist in laying out the objective of our patch program,
identify the tools available in carrying out the program and the best way to
implement the program. This team became the Patch Vulnerability Group as
outlined in FIPS Special Publication 800-40°%. A catalyst to getting a formal
process up and running was the Federal Information Security Management Act
requirement that could potentially impact our IT funding if not met’. The team
included myself as lead, the designated security officer for the network and
members of the Network Administration team. We also involved members of
Customer Support (helpdesk) as they would be our “ambassadors” and ensure
the end users were informed of outage times during this process. Our objective
was determined to be the creation of a disciplined approach to patch
management that was a part of the life cycle of systems management. The
process would be implemented in a multi-tiered approach to address our
operating environment.

There are a variety of tools available to assist in automating the patching
process. This case study is an emphasis on creating a methodical patch
management approach, not an endorsement of one tool over the other. We
found during the implementation that a combination of tools were best for our
environment. | consider the creation of a sound process to be the most important
part of creating a patch management system as it lays the foundation that your
chosen tools will fit into. The toolkit should include a system scan tool that
reliably highlights the systems vulnerabilities before the patching process and
whether or not those vulnerabilities exist after the patching process. A tool to do
the actual patching is also needed. Because we have a large distributed
environment, we required a tool that could centrally download and push the

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

patches to the managed servers. Tools such as windows update
(www.windowsupdate.com) and hfnetchk are good for individual or small environments
and should be included in the server build process but provide no single view to
your environment. The automatic pushing of updates to servers is available with
some tools but due to the nature of our environment we felt that this would cause
more problems than fix, so we ruled against using this feature. Documentation is
considered key to any process and we made this a cornerstone of ours.
Documentation ensures that the steps are followed, information is disseminated
and outcomes are recorded. Documentation is also used later for such things as
formal audits, knowledge bases and creating reports required to management.

In creating the patch methodology we would use, server categories were created
to break the management of the servers up into groups that team members
would be responsible for. This helped form how the servers themselves would
be patched, as each category of server requires a somewhat different approach
to how it was patched. The categories used were Core (Domain Controllers,
DNS, WINS, DHCP), File and Print, Mail Servers, Application, Database and
Web Servers. It was determined that the Core, Mail File and Print Servers were
single use types of servers and the method to patch them would differ from the
process in patching the application, database and web servers. The latter group
required a good deal of attention to testing the patch and its’ impact on the
application’s availability. The goal was to increase our system security but not at
the expense of shutting down our business. | address this fact in flowchart two
below by the performance of the risk assessment. We felt that because of the
single use purpose of the first group of servers, testing each patch was not
required. The impact of a system failure due to a patch application was, in our
view, mitigated by redundancies we had built in (e.g. more than one DNS server).
Again, this fit our needs but should be evaluated against the environment this
methodology would be applied to. The category breakdown also facilitated in
increasing our security posture by allowing us to concentrate on smaller groups
of servers at a time to bring them up to the current patch level in a short period of
time to meet the FISMA reporting requirement timelines.

| took the input from the team and created two process flowcharts. Flowchart
one addressed the Core, Security, File/Print and Mail Servers. Flowchart two
addressed the Application, Database and Web Servers. In creating the
flowcharts, | created a before, during and after flow and identified the group
responsible for each step. The following sections are a walk through of the
processes.

Flowchart One: Patch Process of Core, Security, File/Print and Mail Servers, the
before process begins with ensuring the target system has a recent backup and
that the backup is available for restore. The backup administrator ensures the
tape is readable and signals the go ahead to the group. The tool we used as the
cornerstone of our documentation efforts is our help desk management system,
Remedy. A ticket is created which lists the servers to be patched, the patches to

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

be applied and the backups are available. This starts the document trail in this
process. For tracking purposes, the ticket number is annotated in the server
database for referral, which includes a table for scheduling the server patching,
and serves as a quick glance on progress indicators. The next step is to notify
our customer support branch. This is important for us in that this branch interacts
with the end users on a daily basis. Keeping them informed is critical in ensuring
a smooth operating environment and can shorten the time it takes to resolve a
problem. The customer support branch is used to also inform the affected
population that a server outage will take place and why. If there are issues that
impact the scheduled patching, they will arise here. Involving the end user is
key. If you involve the user, they get to know why this process is necessary and
will help facilitate it by telling you when it can be done. It also gives the end user
a feeling of ownership into the process and lends transparency to what we do,
“behind the glass wall.” Once the schedule has been cleared, the team proceeds
with preparing for the patching. A scan is done of the servers that will be
patched and the resulting reports stored. The patch process is activated
manually and monitored throughout the process to ensure completion. Once the
patching is completed, the systems are again scanned with the same tool using
the same parameters used in the pre-scan and the results stored. If any
vulnerability still exists, the patching process is repeated and re-scanned.
Throughout this process, the ticket is continually updated.

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Patch Process of Core,
Security, File/Print and
Mail Servers

Scan Group Ensure Backup
» available
PVG (Net Admin)

A

Open Remedy

Ticket for affected Notify CSB/NAT
servers | and provide listing
(PVG) of servers

L (PVG)

Y

Notification sent to
user population
(csB)

Retina ¥

Document Pre
Scan Results and Scan using
save in docstore scanning tool(s)

Schedule Push via
|«—| Update Expert
(PVG)

Listing of Patches
sentto PVG

Document Post -
Scan Results and

save in docstore ﬁ\

Verification using Systems patched
< scanningtool |- and rebooted
(PVG) (PVG/Net Admin)

Update Remedy,
Database and
close Ticket
(PVG)

4
Retina

Document
problems in ticket

Network Admin Team
CSB=Customer Support Branch
PVG= Patch Vuln erability Group

The second group of servers, the Application, Database and Web Server
environment, we needed to involve the application owner a lot more. Since a
good deal of the applications involved custom coding which could be impacted by
patching, it was imperative that we get buy in as part of our patching process.
Towards that end, the process includes a section that notifies the application
owner of what patches that will be applied. The owner then has the opportunity
to review whether or not any of the changes will adversely affect the application
itself. The process allows for the owner to not give the go ahead on patching the
system. This will initiate the process of documenting why in as much detail as
possible. A risk assessment is then required to be done to assign value to the
data on the server, the frequency of the threat and what would happen if the
threat were realized. Based on the cost to benefit analysis, the decision is made
to whether or not to accept the risk. This latter part requires management sign
off as part of ensuring executive level support and that there are no surprises
later on. From this part, it should be made clear to the reader that it is important
that all parties work together in creating a working, secure environment and not
treat each as mutually exclusive requirements. Through the risk assessment, we
can work with the owner in bringing the system to an acceptable level of risk and
increase the overall security posture, all while maintaining the availability of the
application. The owner giving the go ahead to patch does not lift the requirement

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

to test the patch’s affects on a server. Through the continued improvement of
our application development environment, we have the ability to apply patches to
a mirror test environment. For those who cannot afford a separate environment
for testing patches, there are software tools that allow the creation of virtual
machines. Through this software, you can build multiple “virtual” servers on a
single physical server that match the basic configuration of your production
environment. The virtual machine is created, software loaded to match the
production system and the patch is applied. The application owner then
performs a user acceptance test to confirm that the functionality of the application
has not been adversely impacted. This is documented and included in the ticket
opened next. The remaining steps are the same as in process one.

Patch Process of
Application, Database and
Web Servers

Document Pre
Scan using Scan Results and
scanning tool(s) save in docstore

Scan Group Ensure Backup
(scheduled) | available —
PVG (Net Admin)

4

Open Remedy
Ticket for affected

servers .
(PVG)

Notify CSB/INAT
and provide listing
of servers

(PVG)
Yes
Y
Y
o Provide Patch
Notify Application | Listing Notification sent to
Owner/Custodian user population
_/\ (CsB)

y

Management Sign
off Schedule Push via
Update Expert

\/\ (PVG)
e

y

Document Why

Document and re-
do

User Acceptance Create Virtual perform Risk Accept Risk?
Testing (Data | Machine Assessment - Document L
Owner/Custodian) For Test Mitigation Factors Listing of Patches

sent to PVG

| i |

Results

Document Post
Scan Results and

0 save in docstore
Update Remedy,
Database and Verification using Systems patched
close Ticket -4——— scanning tool -t and rebooted
(PVG) (PVG) (PVG/Net Admin)
Retina

Document
problems in ticket

Network Admin Team
CSB=Customer Support Branch
PVG= Patch Vulnerability Group

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Following these processes, a schedule was developed for each server to be
patched. Because the servers had not been consistently patched, the number of
vulnerabilities to be addressed was large. Putting in place a methodical,
disciplined approach to patching our servers got us moving in the right direction
to addressing these vulnerabilities.

Ongoing maintenance

Our first efforts in putting patch management in place addressed filling the gaping
hole in our network security. To ensure that this critical part of systems
administration would continue to be addressed, a patch operations and
maintenance plan was created. The third party patching tool we are using
automatically polls for updates and downloads them to our central distribution
server. The policy put in place is for every server to be patched at least once
every 90 days. The schedule is checked daily by members of the Patch
Vulnerability Group and patching executed each night. In addition, a team
member monitors security web sites for activities that might require an
emergency application of patches to the whole or subset of servers we manage.
We also receive automatic notifications of events from the Federal Computer
Incident Response Center, (www.FedCirc.gov) which may also require immediate
attention outside of our normal maintenance process.

After implementation

After a 4-month period of following this patching methodology, we were able to
successfully patch each system or put in place countermeasures that significantly
mitigated the potential risks to the system. Patching is also now part of normal
operations and not treated as something we will get to. Our system
vulnerabilities are being addressed in a routine, methodical manner that has
raised the overall security posture of our network.

Conclusion

The process listed above was not an overnight fix. It took a lot of resources and
team work in making the process work for our environment and is still an ongoing
process to ensure we are hitting our targets. Whether or not you have a large
environment or a small one, the following points should be addressed.

Create a formalized plan. The plan should include a standard method to build
and deploy servers, documentation procedures and the patch management plan.
Make the plan a required part of systems administration and stick to it. The lack
of a good foundation creates the ad hoc approach to server administration and
increases the likelihood of an exploit from occurring on your servers.

Get management buy-in. Too many times it becomes an inconvenience to go
through the patch process, especially if needed files and applications are

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

inaccessible at critical times. By showing that you are involving the end user,
you can help mitigate this perceived inconvenience and maintain the security
level of your network.

Detail what you have. You will need to know what Operating Systems are out
there on your network, where they are located at, what applications run on them
and when the last time it was patched. This will augment your ability to react to
patching requirements.

Identify, acquire and maintain your toolkit. As pointed out earlier, there are free
tools available as well as third party tools that facilitate the process.

Keep in touch with what's out there. There are many sites that maintain current
threat alerts. Among them are the Computer Emergency Response Team
(www.cert.org) maintained by the Software Engineering Institute at Carnegie Mellon
University, and The National Infrastructure Protection Center (www.nipc.gov)
maintained by the Federal Bureau of Investigations. Federal agencies can take
advantage of the Federal Computer Incident Response Center (www.fedcirc.gov)
which is now part of the Department of Homeland Security. FedCIRC also
maintains the Patch Authentication and Dissemination Capability (PADC). The
PADC allows agency administrators to utilize a database to input their systems
into (meeting the know what you have requirement) and provides alerting and
reporting services among other things.

Educate the developers and end users. The more they know why patching is
important, the more cooperation you will have in carrying out your program.

Maintaining the security of a network environment is a fluid landscape. Start
providing some solidity to it by arming yourself with a sound plan.

References
1. Robert Lemos. “Counting the cost of Slammer.” CNET News.Com, January 31,

2003.
http://news.com.com/2100-1001-982955.html

2. “Electronic Government”
URL: http://irm.cit.nih.gov/policy/egov.htm

3. Peter Mell, Miles C. Tracy. “Procedures for Handling Security Patches,
Recommendations of the National Institute of Standards and Technology”. NIST
Special Publication 800-40, August 2002.

URL.: http://csrc.nist.gov/publications/ni stpubs/800-40/sp800-40. paf

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

4. Citadel Security Software. “Network Vulnerability Assessment & Remediation”
URL.: http://www.citadel.com/Downl oads/whitepaperhercul esfinal .pdf

5. Stuart McClure, Joel Scambray, George Kurtz. Hacking Exposed: Network
Security Secrets & Solutions. Osborne, 1999. 3 — 85.

6. John Fontana. “Ecora boosts patch-management pack”. Network World, 5 May
2003.
URL: www.nwfusion.com/news/2003/0505ecora.html

7. Will Ozier. “Risk Analysis and Assessment”
Harold F. Tipton, Micki Krause. Information Security Handbook, 4™ Edition
CRC Press, 2000. 247 — 285.

8. Microsoft. “Microsoft Solution for Securing Windows 2000 Server”. Microsoft, 5
Feb 2003

URL:

http://www.microsoft.com/technet/treeview/default.asp?url =/technet/security/prodtech/windows/secwin2k/
default.asp

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

