
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Cross-Site Tracing – Protecting Businesses from a Simple Attack
GIAC Security Essentials (GSEC)
Practical Assignment, Version 1.4b, Option 1
June 1, 2003
Cheryl Stephens

Abstract

Businesses and corporations are beginning to use web-based applications for
their core business functions. By using these applications, organizations
become more vulnerable to malicious attacks from customers, partners, internal
staff members or any other outside individual interested in gaining access to their
data. As organizations begin to use these applications, they also need to
understand and recognize the application is not the only threat to their business
but also the web server and that this needs to be taken into consideration when
purchasing a web-based application. One of the newest published cross-site
scripting attacks (XSS), cross-site tracing (XST) bypasses any security
mechanism put into place by a developer and enables an attacker to gain access
to an individual's cookies and authentication credential information via a simple
client-side script. In this paper, I will discuss how easy cross-site tracing could
effect an organization and how an organization can protect itself from this type of
attack.

Introduction

Every day organizations are inundated with offers to purchase business
applications to help cut costs, to make communication between customers,
suppliers and partners easier, and to provide employees access to company
tools and databases. The ability to access a business twenty-four hours a day
seven days a week is a popular feature of most business enterprise applications.
However, in order to provide many of these services, organizations are generally
required to use some sort of web-based solution. Although web-based solutions
give organizations the flexibility to perform, daily business transactions from
anywhere at anytime, they also pose a serious threat to the business's overall
reputation and infrastructure. As organizations begin utilizing and relying on
web-based applications to carry out their day to day activities, many will learn
and have learned that securing the web server is as important as securing the
application.

Most web-based business applications require the use of a common web
browser, a way to authenticate and a method to keep a session open while
making some type of transaction. Web applications generally utilize the HTTP
protocol, which is a stateless connection between the client and the server. The
client makes the connection, gets the data it needs and disconnects. If someone
wanted to perform a transaction that needed to be opened longer, like banking,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

shopping, or any other e-commerce type transaction, the application would need
to be able to maintain "state". To maintain state, application developers
generally use cookies and/or session ids. A cookie is a simple text file that is
written to the user's computer and often contains some information about the
user to make their browsing experience more enjoyable. With a cookie, the client
and server are able to maintain a connection, generally called a session,
between each other.

Since cookies are simple text files with information about the user, like user id,
password and sometimes even credit card information, accessing this
information used to be somewhat easy for a hacker at any level. However, to
access this information required some ingenuity and a script created by the
hacker. The hacker needed some way to get an unsuspecting user to execute a
script either by clicking a link, mousing over an image, or opening an e-mail. The
script would send the data to a potential hacker and they would use this data to
do their thing like hijack a session or impersonate the victim. It has become
harder and harder for hackers to access cookies with the adoption of security
and privacy policies and average user's knowledge of browser settings changing,
but attacks still happen and will continue to happen.

By design most web applications require users to have scripting enabled in their
browsers and to accept the cookies in order to complete a transaction. Because
of this type of requirement and the way applications are developed, hackers have
the ability to exploit known bugs in applications to get cookies and session
information. So how does an organization protect the privacy of employees,
customers and themselves while at the same time making their content readily
available to anyone and still maintain “state” using cookies? Microsoft came up
with a solution and implemented it in IE 6.0 SP1, the httpOnly cookie attribute.

HTTP-only cookies, are cookies that have the httpOnly attribute inserted into the
cookie. This cookie eliminates the ability of any client-side script from accessing
a user’s cookies. The following is an example of the httpOnly cookie format as
presented by Microsoft.

 Set-Cookie: USER=123; expires=Wednesday, 09-Nov-99 23:12:40 GMT; HttpOnly (Microsoft)

The httpOnly cookie was implemented to help prevent hackers from capturing
cookie data through cross-site scripting. Before the httpOnly cookie an attacker
would generally write a script to call the "document.cookie" object in order to
obtain the cookie data. With the httponly cookie the data returned to a potential
hacker and to the web browser itself is blank. Like any other mitigation tool or
technique someone found a clever way to bypass the httpOnly cookie using
cross-site tracing.

Cross-site tracing bypasses the web application all together and takes advantage
of the web server’s HTTP TRACE method. By using the HTTP 1.1 TRACE
method, the http functions of the browser (XMLHTTP for IE) and (XMLDOM for

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Mozilla) an attacker can write a basic script to access a user's cookies and a
user’s basic authentication information. Before the news of cross-site tracing,
capturing a user’s basic authentication credentials was generally done through
packet sniffers. To better understand how cross-site tracing works, one must first
understand both TRACE and cross-site scripting.

What is TRACE?

TRACE isn't a new concept or function of a web server that was just discovered.
TRACE has been around as long as the protocol Http 1.1 has been around.
HTTP TRACE is a function of the http 1.1 protocol. It is used to echo back to the
client the exact response header information sent to the web-server from the
client. TRACE was originally implemented as a debugging and analysis tool for
developers and administrators. Any web server that supports the Http 1.1
protocol as defined by (RFC 2616, section 9.8) is vulnerable to a trace attack.

The following taken from Cert Vulnerability Note VU#867593

 9.8 TRACE

The TRACE method is used to invoke a remote, application-layer
loopback of the request message. The final recipient of the
request SHOULD reflect the message received back to the client
as the entity-body of a 200 (OK) response.
…
If the request is valid, the response SHOULD contain the entire
request message in the entity-body, with a Content-Type of
“message/http”. Responses to this method MUST NOT be
cached. (Cert Coordination Center)

Web servers such as Apache, IIS and iPlanet do support http 1.1 and TRACE. If
you are not sure check with your vendor or run the script in example-1. Since
TRACE is a method like GET and POST it is by default part of the web server’s
configuration and usually never disabled by most administrators. Most IT
professionals, who work with web servers have not seen any need to disable this
feature, many probably never knew about the existence and others never knew
of the undesirable impact this could have on potential applications and their
users. However, by utilizing the features of current web browser http support, a
client-side scripting language, such as javascript, vbscript, flash, etc and TRACE
a potential hacker can read the headers of a third party request. By accessing
the header information, a hacker can access all cookies; session ids and basic
authentication information for a user set by a domain. TRACE bypasses the new
httpOnly cookie option implemented by Microsoft to prevent cookie stealing and it
bypasses SSL support, a hacker can still access secure cookie data and
authentication information. The data communication between server and client is
encrypted, but the basic authentication information is encoded and not encrypted
thus making it easier for the password to be cracked. So, even setting a cookie

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

to secure, does not prevent TRACE from showing the cookie information and
using basic password protection with a secure server does not ensure security.

TRACE is limited by browser security restrictions, allowing only connections to
the domain hosting the script. However, since cross-site tracing or XST is a
client-side threat and limited to these restrictions, a hacker can access any
domain using the script from their desktops or the desktops of their victims. This
immediately becomes a problem for businesses because a malicious attacker
could perform a cross-site scripting attack against anyone, making everyone
vulnerable. There have been several advanced scripts written to bypass the
domain restriction issue. Because cross-site tracing is a client-based issue with
domain based restrictions, the potential for an internal cross-site scripting attack
increases, thus making internal web applications more vulnerable to attacks by
disgruntled employees, customers or partners.

The following example is a simple script by Jeremiah Grossman written to show
how easily one can gain access to the cookie data of a potential victim. Using
this script and modifying the URL, I was able to gain access to my authentication
information on our corporate extranet.

function sendTrace() {
 var xmlHttp = new ActiveXObject("Microsoft.XMLHTTP");
 xmlHttp.open("TRACE", "https://www.foobar.com/extranet/",false);
 xmlHttp.send();
 xmlDoc=xmlHttp.responseText;
 alert(xmlDoc);
}

<input type=button OnClick="sendTrace();" value="Send Trace Request">

Example: 1

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Figure 1 - Results of TRACE response from the /extranet server

By using the above script or a similar script written in another scripting language,
a hacker can bypass the httpOnly cookie attribute and access both the cookie
data and any basic authentication information of the user. In figure 1 notice the
Authorization: Basic field, TRACE was able to capture this data using a secure
connection. Because TRACE is a function of the HTTP protocol, it disregards
the security of the web server echoing back the content of the headers. If a
hacker can bypass the web application altogether using TRACE then cross-site
tracing can be considered the next big cross-site scripting exploit and every
measure should be taken to prevent this type of attack.

What is Cross-Site Scripting?

Cross-site tracing is another variation of cross-site scripting. Cross-Site Scripting
or XSS is an event that occurs when a web application receives bad code or
malicious data that has not been validated either through client-side validation or
server side validation. The most popular ways of gathering bad data or code are
through html forms on a web site, through hyperlinks sent by e-mail or on a web
page by mousing over images and web forums. The attacker uses the data
captured often times to create a hyperlink with a script inserted into the URL, for
example sports.domain.com/login.asp?<script>badscript</script>. The attacker
will generally encode the script and will send the link to a potential victim. The
user clicks on the link and goes to a familiar page and at the same time sends
back to the attacker the victim’s personal information. A cross-site scripting
attack like this enables a hacker to gather sensitive information from a potential
victim. By using the information captured from a cross-site tracing attack a
potential hacker could write another script and perform different types of cross-
site scripting attacks to:

• hijack the victim’s session
• change the victim’s browser settings
• capture a victims cookie

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

• poison a victims cookies

Putting It All Together

Figure 2 - Joe's web page

The following scenario illustrates how easy it is to perform a cross-site trace.
Although the victim in this scenario is the CEO of a manufacturing company, it
could be similar to many organizations.

Every organization has an average Joe who dabbles with computing and the
Internet as a hobby. Joe is one of the IT departments support people. He has
created a simple web page (Figure 2) to test this script (Figure 1) he found on the
Internet. According to the information on the Internet he could access cookie
information and most importantly authentication information from any site as long
as he changed the URL. He made the modifications and was able to access his
own information, now he wanted to access others information.

The other day the administrative assistant had been talking to Joe about her job
and during the conversation casually mentioned the name of the CEO’s bank.
Joe listened and noted what she had told him. With this information, he edited
his web page and added the URL of the CEO's bank to his new script. He’d like
to not only see if he could access the CEO’s financial information with his script
but also log into the company’s customer database with the CEO's account.
He'd love to be able to read the comments from the CEO in regards to several
customers and maybe even make some notes of his own or edit notes the CEO
had written. Joe isn’t strong in the coding department so in order to run his
script, he needs a reason to gain access to the CEO's computer. Luckily, the
CEO needs help with his e-mail program. Joe, goes to the CEO’s office to work

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

on his computer, he has not only fixed the mail problem, he also notices the CEO
has left several web browsers open and one of those happens to be the CEO's
bank and the company's customer database. Joe decides to run his script to
capture all of the CEO’s cookie data and authentication information. The CEO
never noticed the pen drive dangling from Joe's key ring. Joe inserts the pen
drive into the USB port, captures the data and heads back to his desk. He is now
able to look at this information and create an automated script to let him know
when the CEO has logged into his bank or the customer service database. As
soon as the CEO logs in, Joe could hijack his session and take on the CEO's
identity. Today, Joe was just satisfied that he was able to retrieve the data. He
had no intentions to actually log into either account. However, he did want to log
into the customer database using some of his fellow co-workers usernames.
Now that he knew how easy it was to access the information he set off to write a
script that he could send through e-mail and have the data posted back to a file
on the company web server.

How does this affect your Business?

Most businesses have a regular Joe who trouble-shoots, repairs and updates the
company’s personal computers. The scenario of stealing the boss’s cookies may
seem a little far-fetched but without appropriate security policies and
knowledgeable staff, this type of attack could happen to anyone. For the CEO it
could have been a loss of money in his bank account, if it had been the company
it could have been a loss of credibility with customers and a major loss of
revenue. Although this was a simplistic cross-site tracing attack, it could have
compromised the reputation and credibility of the organization by the loss of
confidentiality, the loss of integrity and the loss of availability, which are the
"three basic goals of network security." (Cole, p60)

Using the data captured, or data like it Joe would be able to access a customer's
account, this would be an example of a loss of confidentiality. With access to a
customer's account, Joe could modify any record within the account and these
modifications would appear as if the customer had made them, this would be a
loss of integrity. While in the customer's account Joe could change the user's
password or lock the account, this would be a loss of availability. In a short
period, Joe would have compromised the "three basic goals of security,
confidentiality, integrity and availability." (Cole, p60) Although, there are other
ways to access a person's data, this is an example of how a cross-site tracing
attack could impact an organization and compromise the integrity and reputation
of the organization. It is important to understand how and why an organization
should protect them selves from this type of simple attack. Even a regular Joe
can perform this attack by copying the script and making a few minor changes.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Result of Cross-Site Tracing

Loss of Confidentiality
• Unauthorized access
• Identity theft
• Impersonation

Loss of Integrity

• Data Corruption
• Misinformation
• Unauthorized modifications

to data or files

Loss of Availability • Denial of Service
• No Access to account

 (Microsoft 2002, p12)

"Pound of Prevention worth a $$$"

It is NOT OK for the security community to be aware of vulnerabilities such as
XST and brush it off like it is yesterday’s news. Organizations are becoming
more Internet savvy and anything that will effect a company’s reputation or
contributes to a loss of revenue, should be considered harmful. To protect an
organization and their users from a cross-site tracing attack, an organization can
perform the following:

• Disable TRACE on all production web servers
• Update all employee browsers to the latest version and apply any new

patches on a regular basis.
• Maintain consistent browser settings for each employee.
• Educate both staff and customers on how to use the application safely.
• Teach staff to ask questions of anyone using their computers or making

changes.
• Identify a staff member who has the authority to send mass e-mails to

customers, employees and partners.
• The company security policy should include the appropriate way to represent

the company so that any malicious e-mail sent out could be easily identifiable.
• Keep abreast on Internet technology, web-browsers, web servers and how to

secure them.
• When purchasing new applications or upgrades for your business, identify a

staff member to help with identifying security requirements. Most importantly
someone to help with asking the right questions.

• Learn to ask the right questions!
• Educate, Educate, Educate

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

How to disable TRACE on common Web Servers

All of the methods for disabling web servers have been copied. I have not
tested the code or configurations. Whichever method you choose to use you
should always contact the vendor first. At this point they may have already
documented a solution or written a patch to address this particular issue.

Apache Web Server
Use the Apache mod_rewrite module to disable the HTTP TRACE requests.

RewriteEngine on
RewriteCond %{REQUEST_METHOD} ^TRACE
RewriteRule .* - [F]

(Cert Coordination Center)

iPlanet Web Server
The iPlanet web server seems to be much harder to disable TRACE. Several
people have offered solutions. I have not tested any of these solutions and
cannot guarantee if they work or do not work. All of the code has been copied
directly from their original sources. I copied the first bit of code from Jeremiah
Grossman; however,I did edit one line of his original code, I changed the [emacs
libnc-httpd40.so to [emacs libns-httpd40.so] .

cd ${IPLANET_ROOT}
mkdir secure_lib
cp bin/https/lib/libns-httpd40.so secure_lib
cd secure_lib
emacs libns-httpd40.so

• Iplanets supported methods will look like

this:HEAD^@GET^@POST^@DELETE^@^TRACE^@OPTIONS^@MOVE^
@INDEX^@MKDIR^@RMDIR

• In this file there are multiple lists find all the instances of this list and edit each
like so: change the method TRACE or any other method to 'GET ' add
spaces to match the length of the word, this example added two spaces.

• Edit the start script for the web server to protect and prepend the secure_lib
at the front of the LD_LIBRARY_PATH. For example
LD_LIBRARY_PATH=${IPLANET_ROOT}/secure_lib:<The rest of the line>.

• Restart the web server.
(Grossman)

Peter Watkins posted the following code on bugtraq. Although he was unable to
disable TRACE he said “I wrote this code to prevent TRACE from echoing certain
headers.”

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

--BEGIN CODE--
#include "nsapi.h" /* NSAPI definitions */

/*
 PW-strip-trace.so
 NSAPI SAF to prevent the TRACE method from echoing Authorization
 or Cookie headers back to the HTTP client to prevent possible
 session hijacking or other XST information theft; see
 http://www.cgisecurity.com/whitehat-mirror/WH-WhitePaper_XST_ebook.pdf

 Usage:
 At the beginning of obj.conf:
 Init fn=load-modules shlib=PW_strip_trace.so funcs=PW-strip-trace
 Inside an object in obj.conf (before other NameTrans calls, preferably
 at the top of the Default object stanza)
 NameTrans fn=PW-strip-trace
 */

NSAPI_PUBLIC int PW_strip_trace(pblock *pb, Session *sn, Request *rq)
{
 /* working variables */
 char *requestMethod = pblock_findval("method", rq->reqpb);

 /* bail out if we've got nothing to work with */
 if (!requestMethod) {
 return REQ_NOACTION;
 }

 if (strcmp(requestMethod,"TRACE") == 0) {
 /* remove the cookie & authorization headers so we don't echo them */
 param_free(pblock_remove("cookie", rq->headers));
 param_free(pblock_remove("authorization", rq->headers));
 }

 /* all done */
 return REQ_NOACTION;
}
--- END CODE--

Microsoft IIS Webserver

To disable TRACE for IIS you will need to use the URLScan tool, which is
available through Microsoft. You can configure URLScan tool to filter the TRACE
method or any other type of http requests.

Microsoft Knowledge Base articles specifically for installing and configuring the
URLScan tool.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

307608 Info: Using URLScan on IIS
326444 HOW TO: Configure the URLScan Tool
309394 HOW TO: Use URLScan with FrontPage 2000
318290 HOW TO: Use URLScan with FrontPage 2002
313131 HOW TO: Use URLScan with Exchange Outlook Web Access in
Exchange Server 5.5
815155 HOW TO: Configure URLScan to Protect ASP.NET Web Applications

Conclusion

Although the method and the ability to perform a cross-site tracing attack has
been around for a while, the knowledge to access a user's credentials using
TRACE and a client-side script to bypass SSL had not been identified. There is
a lot of debate on the discussion boards about whether TRACE should be
disabled or if cross-site tracing is truly something to worry about when securing
applications. Because organizations are beginning to rely on web-based
transactions for their core business operations, it should be the responsibility of
the security community to ensure that ALL organizations and businesses
understand the need to not only ensure applications are secure but also verify
the security of the web server. As consumers and employees of businesses that
offer these services we should all have a vested interest in ensuring that the
applications hosted in our environments and used on a daily basis are secure,
whether the security measures to secure them seem to be trivial or not. In the
end it is the reputation of the company that is at stake. To disable or not disable
TRACE is simply up to the organization.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

References

admin@cgisecurity.com, "The Cross Site Scripting FAQ" (July 2002) URL:
http://www.cgisecurity.com/articles/xss-faq.txt

Cert/CC, Vulnerability Note VU#867593, "Multiple vendor's web servers enable HTTP
TRACE method by default" (January 2003) URL: http://www.kb.cert.org/vuls/id/867593

Cole, Eric. Hackers Beware. Indianapolis: New Riders, 2002.

Endler, David, "The Evolution of Cross-Site Scripting Attacks." idefense (May 2002)
URL: http://www.idefense.com/papers.html

Grossman, Jeremiah, "Cross-Site Tracing (XST): The New Techniques and Emerging
Threats to Bypass Current Web Security Measures Using Trace and XSS." (January
2003) URL: http://www.cgisecurity.com/whitehat-mirror/WH-WhitePaper_XST_ebook.pdf

Microsoft, "Mitigating Cross-site Scripting With HTTP-Only Cookies" URL:
http://msdn.microsoft.com/workshop/author/dhtml/httponly_cookies.asp?frame=true

Microsoft. Security Operations for Microsoft Windows 2000 Server. Microsoft
Corporation, 2002.

Spi Dynamics, "Cross-Site Scripting: Are your web applications vulnerable?", (2003)
URL: http://www.idefense.com/papers.html

Watkins, Peter, peterw@usa.net,
URL: http://cert.uni-stuttgart.de/archive/bugtraq/2003/01/msg00238.html, (January 2003).

Worthington, David "Web Vulnerability Puts Internet Users, Sites At Risk" ExtremeTech,
(January 2003) URL: http://www.extremetech.com/print_article/0,3998,a=35995,00.asp

