
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

An Introduction to XACML

GIAC Security Essentials
Practical Assignment

Version 1.4b (August 2002)

Michael W Armstrong

June 29, 2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

An Introduction to XACML

Abstract

The security policies of most large organizations have many elements as well as
many points of enforcement. Multiple departments within the organization may
manage the elements of policy. Policies may be enforced by many systems
within the organization, to include extranets, mail systems, WANs and/or remote-
access systems. Currently, most organizations manage the configuration of each
point of enforcement independently for each system. Attempting to change such
policies is expensive and can produce inconsistent results. Additionally, it is
difficult to obtain a complete view of all the policies in effect, much less test these
policies for consistency across all systems. In order to manage all of these
policies consistently, it is necessary to have a common language in which to
express these policies.1

The eXtensible Access Control Markup Language (XACML) is an XML-based
standard that provides a policy language and an access control decision /
response language for managing access to resources.2 It is designed to provide
a universal language for authorization policy to enable interoperability with a wide
range of administrative and authorization tools. By doing so, it allows for security
policies to be applied consistently across different environments and across
different vendor products.3

XML

XML (eXtensible Markup Language) is a tag-based metalanguage used to define
document markup. It provides a generic syntax for marking up data with simple,
human-readable tags. Data is included in XML documents as strings of text
surrounded by text markup that describes the data. XML does not have a fixed
set of tags; developers create their own tags as needed to define the data. XML
is flexible in how it allows the tags to be defined to describe the data within the
document. However, XML is strict in defining how the tags are structured within
the document. The grammar defined by the XML standard is what allows XML
documents to be easily read and understood by various programming languages
across multiple platforms.4 Even though XML is composed of text that is human-
readable, it is meant to be read and generated by computer programs.

1 XACML ratified as OASIS Open Standard. http://www.webservices.org/index.php/article/articleview/909/1/3/

2 Sun Microsystems, Inc. http://sunxacml.sourceforge.net/guide.html

3 XACML Access Control Markup Language. http://www.webdesk.com/xacml/

4 Harold & Means, XML in a Nutshell: A Desktop Quick Reference

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

XML allows the developer to formally describe the syntax of the data being
presented. This allows data to be shared between applications as well as
between computer programming languages, making XML an effective choice for
exchanging data in a platform-independent and language-independent manner.5

The tags used to delimit XML data also can be used to describe the data.
Additionally, attributes can be used within the tags to further describe the data.
For example:

<person id="111000" type="employee">
 <name>
 <last_name>Smith</last_name>
 <first_name>John</first_name>
 </name>
</person>

The tags used in this example (the text enclosed in <>) provide enough
information to tell the reader what (or who) is being described. The attributes (id
and type attributes on the person tag) provide the reader with additional
information that further describes the role this person plays in an organization.

OASIS

The Organization for the Advancement of Structured Information Standards
(OASIS) is a non-profit organization responsible for developing worldwide
standards for e-business.6 These include standards for security, Web Services,
XML conformance, business transactions, electronic publishing, topic maps, and
interoperability within and between marketplaces.7 OASIS’s mission is to drive
the development, convergence, and adoption of structured information standards
in order to allow products from different vendors to interoperate.8 This will allow
end-user customers greater flexibility in implementing a common security
language across multiple vendor platforms.

Overview

XACML defines a standard set of XML elements with which to define an access
control policy language and a request/response language for two-way
communications.9 This policy language is used to depict general access control

5 McLaughlin, Java and XML

6 OASIS. http://www.oasis-open.org/who/

7 Organization for the Advancement of Structured Information Standards (OASIS). http://www.service-architecture.com/web-

services/articles/organization_for_the_advancement_of_structured_information_standards_oasis.html

8 OASIS. http://www.oasis-open.org/who/
9 McCarthy, Vance. XACML -- A No-Nonsense Developer's Guide. http://www.oetrends.com/cgi-bin/page_display.cgi?180

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

requirements.10 It also provides standard extension points for combining
individual rules and policies into policy sets and for defining new data types and
flexible definitions of the procedures by which rules and policies are combined.
By combining the rules and policies that apply to a request, the security
application is able to render an authorization decision.

A typical scenario for using XACML would be for an application to check to see if
a user (an actor) has access to a particular function within a certain module. For
example, suppose a bank employee wanted to access a customer’s account for
inquiry only. In order to do so, the employee would log on to the bank’s account
system, enter the account number, and retrieve the account information. Behind
the scenes, the account application would make a request to the service that
protects the account inquiry function. This service (the Policy Enforcement Point,
or PEP) would then create a request based on the employee’s identity and
attributes, the module and function (account/inquiry) requested, and any other
information needed. The PEP then sends its request to the Policy Decision Point
(PDP), which evaluates the request and applies the applicable policies to the
request. The PDP then returns a response indicating whether the user has
access.11

The employee from the previous scenario is referred to as a Subject in XACML.
A Subject is an actor in the system with attributes that may be referenced by a
predicate. The module to be accessed (account system) is called the Resource
and the function to be performed (inquiry) is referred to as an Action. Attributes
refer to the characteristics of the Subject, Resource, or Action and a Predicate is
a statement about attributes, which can be evaluated as either true or false.12
Some request may have more than one Subject. For example, if a customer
comes into the bank to cash a check and the account on which the check is
drawn indicates that two signatures are required, the authorization request could
potentially contain four subjects: the customer trying to cash the check, both
signatories to the check, and the teller performing the transaction.

Once the PDP receives a request, it must search through its information and find
the particular policy or set of policies that apply to the request. Once a policy has
been found to apply to the request, its rules are evaluated. A policy can have
multiple rules, made up of multiple conditions. conditions evaluate to True,
False, or Indeterminate. If it evaluates to Indeterminate, it means that there was
an error in processing the Rules, such as there was not enough information in
the request to make a decision. Once all of the Conditions have been evaluated,
the Rule returns an Effect of Permit, Deny, or Indeterminate.13

10 Sun Microsystems, Inc. http://sunxacml.sourceforge.net/guide.html

11 Sun Microsystems, Inc. http://sunxacml.sourceforge.net/guide.html

12 Godik & Moses, ed., OASIS eXtensible Access Control Markup Language (XACML) Version 1.0
13 Godik & Moses, ed., OASIS eXtensible Access Control Markup Language (XACML) Version 1.0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

XACML defines four layers to access policy control:14

1. The Policy Administration Point (PAP) creates security policies and stores
these policies in the appropriate repository.

2. The Policy Enforcement Point (PEP) performs access control by making

decision requests and enforcing authorization decisions.

3. Policy Information Point (PIP) serves as the source of attribute values, or

the data required for policy evaluation.

4. The Policy Decision Point (PDP) evaluates the applicable policy and

renders an authorization decision.

As defined in, and quoted from, the OASIS standard15, data flows through an
XACML model by the following steps:

1. PAPs write policies and policy sets and make them available to the PDP.
These policies or policy sets represent the complete policy for a specified
target.

2. The access requester sends a request for access to the PEP.

3. The PEP sends the request for access to the context handler in its native

request format, optionally including attributes of the subjects, resource and
action. The context handler constructs an XACML request context in
accordance with steps 4, 5, 6 and 7.

4. Subject, resource and environment attributes may be requested from a

PIP.

5. The PIP obtains the requested attributes.

6. The PIP returns the requested attributes to the context handler.

7. Optionally, the context handler includes the resource in the context.

8. The context handler sends a decision request, including the target, to the

PDP. The PDP identifies the applicable policy and retrieves the required
attributes and (optionally) the resource from the context handler. The PDP
evaluates the policy.

14 Godik & Moses, ed., OASIS eXtensible Access Control Markup Language (XACML) Version 1.0

15 Godik & Moses, ed., OASIS eXtensible Access Control Markup Language (XACML) Version 1.0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

9. The PDP returns the response context (including the authorization

decision) to the context handler.

10. The context handler translates the response context to the native

response format of the PEP. The context handler returns the response to
the PEP.

11. The PEP fulfills the obligations.

12. If access is permitted, then the PEP permits access to the resource;

otherwise, it denies access.

Policy

An XACML policy document has as its root element either a Policy or a
PolicySet.16 A Policy is the set of the rules and obligations that apply to a
request. XACML also provides a PolicySet, which provides a container that can
hold other Policies, PolicySets, and optionally Obligations. A Policy consists of a
Target, one or more Rules, and an optional set of Obligations. Target specifies
which conditions must be met in order for the Policy to apply to a Subject,
Resource, and Action. A Target uses boolean evaluations to determine if the
values in a request meet the conditions of the Target. If all of the conditions are
met, the Target’s associated Policy, PolicySet, or Rule applies to the request.17

Each Policy defines a rule-combining algorithm that is used to combine its
contained rules and obligations in order to render a decision. A PolicySet defines
a policy-combining algorithm to do the same with its included Policies. XACML
defines seven common Combining Algorithms and implementers can define
additional ones as well. These Combining Algorithms can be nested to provide
increasingly complex Policies. Examples of Combining Algorithms are:18

1. Deny-overrides – this algorithm states that of any evaluation returns Deny,
then the result must be Deny. If all rules evaluate to Permit, then the
result is Permit.

2. Permit-overrides - In the entire set of rules in the policy, if any rule

evaluates to Permit, then the result of is Permit. If any rule evaluates to
Deny and all other rules evaluate to NotApplicable, then the result is Deny.
If all rules are found to be NotApplicable, then the result is NotApplicable.

16 Sun Microsystems, Inc. http://sunxacml.sourceforge.net/guide.html

17 Godik & Moses, ed., OASIS eXtensible Access Control Markup Language (XACML) Version 1.0

18 Godik & Moses, ed., OASIS eXtensible Access Control Markup Language (XACML) Version 1.0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

3. First applicable - each rule is evaluated in the order in which it is listed in

the policy. For each rule, if the target matches and the condition
evaluates to True, then the result of that rule will be the evaluation of the
policy (either Permit, Deny, or Indeterminate). Otherwise, the algorithm
goes to the next rule. If no rule applies, then the result is NotApplicable.

4. Only-one-applicable – For all of policies in the policy set, if no policy

applies, then the result is NotApplicable. If more than one policy applies,
then the result is Indeterminate. If only one policy applies, then the result
is the result of evaluating that policy.

A Policy or PolicySet can define Obligations, which will be passed back in the
response from the PDP. An Obligation is operation that should be performed in
conjunction with the enforcement of an authorization decision. An example of an
Obligation would be to provide notification to a customer after a wire-transfer
operation has been performed by the bank. Only Policy’s which are evaluated
and have returned a response of Permit or Deny will return Obligations and, of
the Obligations returned from the PDP, only the Policy’s which have returned the
same result as the PDP’s result will have their corresponding Obligations
returned to the PEP. The PEP is responsible for fulfilling the Obligations it
receives.19

Rules

XACML defines rules as targets, effects and conditions. Targets (discussed
above under Policy) include resources, subjects, and actions. A Condition is a
function that evaluates to either True, False or Indeterminate, with Indeterminate
indicating that there was not enough information to determine an exact answer.20

A Rule’s Target set identifies the resources, subjects, and/or actions to which the
rule applies. Conditions can be placed on these Targets to further refine the
definition of to what the rule applies. If a rule applies to all entities of a particular
data type, then an empty XML element named <AnySubject/>, <AnyResource/>
or <AnyAction/> is used to denote that. If the Rule has no Target element, then
the Policy Target element applies to the Rule.21

The Effect of the Rule is the result the Rule returns if the Rule evaluates to True.
Two values can be returned: Permit or Deny.22

19 Godik & Moses, ed., OASIS eXtensible Access Control Markup Language (XACML) Version 1.0

20 Godik & Moses, ed., OASIS eXtensible Access Control Markup Language (XACML) Version 1.0

21 Godik & Moses, ed., OASIS eXtensible Access Control Markup Language (XACML) Version 1.0

22 Godik & Moses, ed., OASIS eXtensible Access Control Markup Language (XACML) Version 1.0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Attributes

The primary pieces of data with which Rules work are attributes, or the
characteristics of a subject, resource, action or environment. Examples are a
user’s name, login ID, or department, or the time of day or the account number to
be accessed. Requests sent from the PEP to the PDP are composed almost
entirely of attributes. These attributes are what are used to make the security
decision.23

Attributes describe. For example, an employee at a bank may have the attribute
of being a teller, a loan officer, an operations specialist, or many other job roles.
Based on this attribute, that employee would be able to perform different
functions within the bank. A teller can enter transactions on accounts into a
queue for processing, but cannot approve a loan. A loan officer can approve
loans, but may only be able to read account values and not change them. The
operations specialist may actually process the account transactions.

As stated earlier, attributes apply not only to the Subject requesting access.
Attributes can apply to the object being accessed, the action being taken, and the
environment in which the system is running. For example, a particular function
may be dependent on the time of day. In our banking example, transferring
funds may be limited to the hours of 9:00 AM to 2:00 PM. The current time would
be an attribute of the system rather than of the requestor. And if a transfer
request is entered, the account’s attributes would have to show that there is
enough money available to effect the transfer. In this case, multiple attributes
may have to be summed in order to arrive at an account balance.

On any request made, the PDP may find that there are multiple values for a
given attribute. When retrieving attributes, the PDP receives what is referred to
as a Bag of attributes. This Bag may contain none, one, or many values for a
particular attribute.24 The Bag is an unordered collection and it also may contain
duplicate values for a particular attribute.25 The function that acts on the Bag
may accept these duplicate values or it may recognize duplicate values as an
error depending on the implementation. XACML provides the functionality to limit
the number of values returned to one. These [type]-one-and-only functions will
return a Bag containing one attribute value if only one exists, or an error if there
or no values or multiple values.26

XACML defines certain standard value types of attributes. These include string,
boolean, integer, double, time, and date values. Along with these types, XACML
defines operations to be performed on the different types. Examples include

23 Sun Microsystems, Inc. http://sunxacml.sourceforge.net/guide.html

24 Godik & Moses, ed., OASIS eXtensible Access Control Markup Language (XACML) Version 1.0

25 Sun Microsystems, Inc. http://sunxacml.sourceforge.net/guide.html

26 Sun Microsystems, Inc. http://sunxacml.sourceforge.net/guide.html

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

equality and comparison operations; string manipulation; numerical and set
functions; and date, time, and duration operations. XACML allows implementers
to define other attribute types within their applications and schemas.
Implementers also can define custom functions to work on the pre-defined types
or on custom types. Functions may be nested in order to build more complex
functions.27

Attributes are identified by their corresponding SubjectAttributeDesignator,
ResourceAttributeDesignator, ActionAttributeDesignator, and
EnvironmentAttributeDesignator elements. All use an AttributeValue element,
which is used to define the values of a particular attribute. Alternatively, an
AttributeSelector element can be used to define where the values for a particular
entity reside. This allows an external source to provide the attributes for one of
the data type elements.28 For example, an AttributeSelector could
programmatically point to a database in which a user’s roles are stored. By
passing the user ID, the application could then look up the roles rather than
having to pass the roles with each request. This allows the PEP to make request
for a particular Subject with no need to define who or what the subject is.

Context

A Context is the canonical representation of a decision request and an
authorization decision. Canonical XML refers to XML that is in canonical form; in
other words, the XML is formatted by a particular standard. Canonical XML is a
syntax designed to interpret the logical structure of XML documents in order to
determine if the XML documents are equivalent.29 Representing the request in
canonical form allows applications to more easily parse the data and provides
methods for more easily locating specific items of data within the document. If an
application makes a request of the PDP that is not in canonical form, then a
Context Handler can be defined to convert the requests in its native format to the
XACML canonical form and to convert the authorization decisions in the XACML
canonical form to the native format.30

Summary

Though XACML is a relatively new standard, adoption by corporate users could
potentially simplify security administration across the enterprise. Security
administrators can use one language to define access control for a variety of
applications and systems. Additionally, once tools are available for building and
administering XACML-compliant applications, developers will be able to more

27 Godik & Moses, ed., OASIS eXtensible Access Control Markup Language (XACML) Version 1.0

28 Godik & Moses, ed., OASIS eXtensible Access Control Markup Language (XACML) Version 1.0

29 Wilde's WWW Online Glossary. http://wildesweb.com/glossary/canonicalxml

30 Godik & Moses, ed., OASIS eXtensible Access Control Markup Language (XACML) Version 1.0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

easily add authentication-level security to their applications and corporations can
reduce the costs of implementing security by using a standard access control
mechanism across multiple platforms and multiple applications. Having a
standard also will allow developers to build products that can rely on a variety of
vendors’ tools. With a common access control policy mechanism, companies are
more likely to be able to develop systems that can interoperate; increasing users’
confidence and satisfaction with the system and also making users more
productive.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

References

1. Anderson, Birbeck, et al., Professional XML, Wrox Press, 2000
2. Godik, Simon and Moses, Tim, ed., OASIS eXtensible Access Control

Markup Language (XACML) Version 1.0 3 OASIS Standard, 18 February
2003

3. Harold, Elliote Rusty and Means, W. Scott, XML in a Nutshell: A Desktop
Quick Reference, O’Reilly and Associates, Inc January 2001

4. McCarthy, Vance. XACML -- A No-Nonsense Developer's Guide. Open
Enterprise Trends. March 3, 2003. http://www.oetrends.com/cgi-
bin/page_display.cgi?180

5. McLaughlin, Brett, Java and XML, O’Reilly and Associates, June 2000
6. OASIS – Who We Are – Mission. OASIS. June 2003. http://www.oasis-

open.org/who/
7. Organization for the Advancement of Structured Information Standards

(OASIS). Web Services and Service-Oriented Architectures. June 2003.
http://www.service-architecture.com/web-
services/articles/organization_for_the_advancement_of_structured_inform
ation_standards_oasis.html

8. Wilde's WWW Online Glossary. June 2003. XACML Access Control
Markup Language. Web News and Product Reviews. June 2003.
http://www.webdesk.com/xacml/

9. XACML ratified as OASIS Open Standard. WebServices.org.
http://www.webservices.org/index.php/article/articleview/909/1/3/

10. http://wildesweb.com/glossary/canonicalxml
11. XACML Implementation Programmer’s guide. Sun Microsystems, Inc.

June 2003. http://sunxacml.sourceforge.net/guide.html

