
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Rishona Phillips
GIAC Security Essentials Certification (GSEC) Practical Assignment
Version 1.4b – Option 1

The Bugs are Biting

Abstract:

Currently there are thousands and thousands of software programs running on
millions of computers across the world. Yet there are also bugs crawling around
the code of these programs that are biting holes into the security of the machines
they run on. Unless this issue is seriously addressed in the near future, one can
expect to see an increase in the severity and quantity of security breaches. This
paper will give a general overview of the problems and challenges of software
mistakes and how they affect security.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Introduction

How often would you buy a $300 product and keep it after you found out it was
defective? Many of you may be thinking well that’s kind of a silly question, of
course I would bring it back! While this may be a cut and dry situation for the
majority of consumers, this does not hold true in the computer software industry.
Software Bugs have become synonymous with many of the major commercial
and open source applications available today. It is not uncommon for the public
to actually expect to have bugs in operating systems, databases, games, mail
programs, and the list goes on.

History

The first computer bug, a moth, was found in a Mark II computer back in 1945.
Even though this bug (of the insect variety) was not an actual software mistake, it
seems that the term stuck and is now widely used today to describe things that
do not work in software. A Bug is an “unwanted and unintended property of a
program or piece of hardware, especially one that causes it to
malfunction”(techditionary).

This term is used all too often, and it seems that many people have overlooked
what the term computer bug really means. It is often forgotten that a “bug” is the
result of a programming error and not another feature of their program.

 According to CERT there were six security incidents/vulnerabilities reported in
1988; ten years later in 1998 there were 3,784, and in 2002 there were 82,094.
Unfortunately the amount of reported “bugs” is growing by leaps and bounds,
while the amount of confidential and supposedly “secret” information is also
being kept in a web accessible computer.

Common Coding Mistakes

According to David Wong’s article Secure Code; buffer overflows, format string
vulnerabilities, authentication, authorization and cryptography make up 90% of
the current security vulnerabilities. While this may not be new information, the
fact that the percentage is this high should be a cause for concern, considering
these errors are usually human in nature.

Following are a few of the main programming errors that cause most of the
security vulnerabilities in software programs. Once exploited these coding
mistakes can cause serious damage to a compromised system. Unfortunately
these are also errors that could have been mitigated earlier on in the
development process.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Buffer Overflows
A well-known and frequently exploited problem in code is the “buffer overflow” or
“buffer overrun” which allows an attacker to gain root or administrator access to a
machine. A buffer overflow is simply an overflow of information that runs out of
the buffer and into RAM, and is then dumped into the program code and
executed. As a simple example, let’s say that a certain section of a webpage
requires a user to enter in ten characters of information, but instead the person
enters fourteen characters. If this is an exploitable buffer overflow, these extra
bytes end up being dumped into stack memory. This becomes a problem when
malicious code overwrites the return address in memory and then runs from the
memory of a program, which gives an attacker full control of a system or network.

Due to the fact that buffer overflows run rampantly through many software
programs finding an exploit of this is not a difficult task. One of the most well
known exploits of a buffer overflow was the Morris Worm that spread across the
Internet on November 2, 1988. Although Robert Morris Jr. did not have malicious
intent, his unintended clogging of the Net did wreak serious damages.

Yet Morris’ worm also served as a wake up call to security professionals
everywhere. The worm caused “perhaps 10 percent of the computers on the
Internet to be infected” all because of a coding mistake (Sullivan). Surprisingly
Morris did know about his buffer overflow mistake and released the worm to the
Internet to exploit it. In any case the worm definitely caught the attention of those
using the Net especially those in the security industry.

.
Format String vulnerabilities
A format string vulnerability is a programming error that has “lingered around
software code for years” although “the risk had not been evident until mid-2000”
(McClure, Scambray, and Kurtz 324). Basically format strings occur because a
programmer has chosen to use incorrect functions that do not properly handle
strings.

Window’s New Techonlogy 4.0 and Windows 2000 had a very serious problem
with format string vulnerabilities and the drivers. The functions within the
Windows device drivers handled formatting string characters incorrectly. This
vulnerability was harmful because “this bug can lead to the possible patch of the
kernel memory”. In other words, someone can install a backdoor on this system
and now have control over any files, folders or installs on this machine.

Heap Overflows
Heap overflows are also in the same class as buffer overflows except for one
small difference. The buffer overflow attack overwrites the stack memory where
any program can store its information, whereas heap overflows overwrite the
memory addresses that are specifically allocated to that program. In the end an

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

attacker can do the same thing as in a buffer overflow, just in a slightly different
manner.

Just recently (January 25,2003) the Slammer/Sapphire worm hit the Internet with
amazing speed because it “doubled in size every 8.5 seconds” and “infected
more than 90 percent of vulnerable hosts within 10 minutes” (Moore, David et
al.). Slammer affected Window’s 2000 SQL Server Resolution Service SRS,
which in a normal environment “listens on port 1434 and returns the IP address
and port number of the SQL server instance that provides access to the
requested database” (Vulnerability Note VU#399260).

Yet because there was a heap overflow vulnerability in SRS an attacker had the
ability to send a bogus request to port 1434 and have their code run inside the
SQL server as a legitimate account. Even though there was not a malicious
payload in the Slammer/Sapphire worm, the damages it caused for unpatched
SQL Servers and the clogging of the Internet took days to completely clear up.

Even though many System Administrators did not take the time to patch a known
vulnerability, this is another example of a software mistake that caused serious
damages.

Issues with Programming Languages

It is no secret that the programming languages of today are getting more
powerful and more capable of creating complex programs. Yet as these
languages advance, the need for security also increases. Unfortunately many of
the most popular coding languages are often where poor security measures are
first implemented. As security is not always a major priority at this stage the
potential for mistakes and poorly coded programs is coupled with programming
languages that were not all written with security concerns in mind.

Most programming languages were first created long before computers and the
Internet became as popular as they are today. Their creators did not anticipate
the amount of e-commerce, email, online banking, and e-business utilized by
millions of people and business’ around the world.

C
With the invention of the C programming language came many new possibilities
and many overlooked security concerns. Dennis Ritchie created the C
programming language at Bell Labs in 1972. C was created as a successor to
the B programming language. Ritchie and his team (Thompson and Kernigham)
then used the newly created C compiler to rewrite the UNIX operating system.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The C programming language is a very old but still powerful and widely used tool.
It is used to build a variety of applications ranging from games to operating
systems. It is still the basis for some of the most popular programming languages
of today such as C++ and Java. Although C is still very popular it contains many
pitfalls. The problem with C is that it has no safeguards. As long as the code is
syntactically correct, the code will still be compiled regardless of its purpose.

This is how certain applications have become vulnerable to buffer overflows. For
instance, by declaring an array in a C program there is a possibility to create a
loop that tries to write beyond the array’s declaration. The program will then
compile without any warnings or errors because there is nothing wrong with the
syntax. Once the program is run the code with the loop will start overwriting
memory that it should not. This has been the cause of many buggy programs
ranging from minor nuisances to major security breaches. Many malicious
programmers take advantage of C’s power and purposely write malicious code to
exploit a program.

C++
C++ is one of the most popular object oriented languages in use today. It was
created by a man named Bjarne Stroustrup in 1985 at Bell Labs to be the
successor to C. C++ still maintains many details of the C language and will allow
everything that C does and more. Yet, C++ is basically object oriented C,
therefore it inherited many of C’s problems.

Java
Java is an object-oriented language that became popular because of Sun
Microsystems push to prove that their technology was the best. Java was
supposed to provide a very stable object oriented programming language with
security as a main priority. Java programs were supposed to run inside a
protected environment, which would keep hackers from exploiting badly written
software. Although this sounds nice Java still encountered many problems, as
there were holes in the Java programming language itself. This became apparent
during the very popular era of programs called hostile Java apps.

The Java security model contains the details of the security features within the
language itself. Before a Java program is loaded and run, it takes its trip through
the verifier. The verifier checks for common security problems within the
program. It checks to see if the file is in the correct format, whether the file
contains any stack overflows and if there are any illegal type casts. A type cast is
the conversion of one type to another, for instance the conversion of a decimal
number to a string. The verifier does a four-pass system check. It checks for any
of these security flaws in four passes on the file. After the file is verified, it is then
sent through the classloader. The classloader's job is to load the class after it has
been verified.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Once loaded, the next job is for the security manger to prevent a Java program
from accessing system resources. If a Java program tries to access a local file or
network resource, it goes through the security manager. The security manager
either allows or denies the operation. The actual decision-maker is the access
controller. It is a very complicated piece and in conjunction with it there exists a
policy object that stores user’s settings for permissions granted to classes. All of
these act as the sandbox model that Java is supposed to represent. The
sandbox is a container within the system where the Java program is contained
and the program cannot access anything outside of the sandbox. Although Java
has received some skepticism, this method seems to be working.

Perl
Perl (Practical Extraction and Report Language) began in 1987 as a cool tool that
produced reports in a hierarchy for a bug-reporting system. Even though it had a
very simple beginning, it became a powerful and efficient language that many
programmers started using for other programs that it wasn’t initially designed for.
As the years passed Perl did things that nobody had ever envisioned.

Although Perl is one of the most popular programming languages especially for
writing CGI scripts, it still has some security implications. To deal with all security
threats that are a threat by the Internet, Perl uses taint mode. Taint mode will
treat all data as bad unless otherwise told that it is not. If bad data was entered
onto a form and the CGI script tried to pass the form data to a system call the
taint mode would not allow it. Taint mode protects from this and other security
issues.

Visual Basic
Visual Basic was the successor of the BASIC programming language. Microsoft
has marketed this technology many times. Visual Basic is a very easy to use and
a simple language to build computer programs. A lot of intricate details are
hidden from the programmer but this does not change the fact that there are still
possibilities for security implications with using Visual Basic. Visual Basic and
any other Windows applications are as vulnerable as a program written in C. The
Cult of the Dead Cow brought this to light with their article called “Tao of the
Windows Buffer Overflow.”

In the world of programming languages programmers should respect the public
documents that go into explicit detail on what not to do in a programming
language. Too often these warnings go unheeded, hence many of the security
issues found in programs today.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Open Source vs. Closed Source

The endless debate of whether closed or open source software is more secure
continues to be a source of disagreement depending on which camp one resides
in. Both sides have legitimate arguments for why their open/closed program or
application is better, although the open source world does have a more
compelling argument. The often used quote “security through obscurity” receives
its fair share of criticism from open source advocates because they feel that
making code a secret limits the security of the application or program. The closed
source programmer’s argue that allowing the public to see the code, will also
allow malicious attackers an easier way to exploit the system.

Michael Warfield’s article has offered some interesting insight into why open
source causes programmer’s to code more securely. One of the most convincing
aspects of his position is that the open source programmer knows that what he is
releasing to the community will be reviewed by his peers. Warfield says “ the
open source programmer, puts his reputation on the line with every line of code
he writes” (Warfield). This knowledge that other people in the industry will be
aware of mistakes, ups the ante a bit for people contributing to open source
projects.

Warfield also talks about the fact that closed source programmer’s are often out
of the loop when it comes to secure programming and best practices.
Unfortunately too many closed source programmers work on projects that are a
“company secret” and cannot be discussed with others.

A very successful and secure Open Source project was started by a man named
Theo de Raadt is OpenBSD, which he began after leaving the development of
the NetBSD project. The team he assembled took the UNIX operating system
and did a line-by-line audit of the operating systems source code. This audit was
started in 1996 and de Raadt and his team found many bugs. After finding more
bugs in the source code they finally decided to modify the code.

Another successful open source software project is the Samba project. Samba
implements the SMB protocol on a Linux or Unix machine. Samba acquired it’s
name by taking the letters of the acronym SMB (Server Message Block) and
placing “A’s” within the sequence to allow for better pronunciation. Although
Samba has had some security flaws they have been fixed quickly and efficiently
due to its status as an open source project.

Who’s to Blame?

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The number of flaws in software code is a disappointing yet undeniable fact
today. Unfortunately too few people get angry with the companies who develop
these faulty and “mistake” ridden programs to the public. There are many
instances of poorly written code being exploited by a malicious hacker, yet one
has to wonder if the software companies should also be held accountable for a
product rife with errors.

Even though major security vulnerabilities in popular software programs receive
a lot of media attention, the average person does not know that most of the
problems with software are the company’s fault. Many non computer savvy users
first hear about a new exploit because of the attention the media gives to the
crackers(s) or hacker(s) who compromised the system or network. While there is
no argument that a hacker or cracker should be prosecuted for breaching system
or network security one may wonder why there are no consequences for the
software companies.

If there were stricter guidelines and rules for the product released to the public,
the potential for security vulnerabilities would drop. Yet, while it is virtually
impossible to release software that is mistake free it is not impossible to get
better at debugging and testing during the development process. These are
some of the most important steps in programming, and are oftentimes the most
poorly initiated.

Aside from the all too familiar complaints that follow the release of a major
software vulnerability; software companies do not receive any other
repercussions. Considering that most of the popular corporations monopolize the
market today there will not be any changes in the software until the companies
are required to adhere to standards in the software they release.

Microsoft
Although Microsoft is the most widely used operating system worldwide, it also
receives the most criticism regarding its software vulnerabilities. Considering that
a Window’s OS has over a million lines of code, debugging and error detection is
not a picnic. Yet and still, the amount of critical software mistakes in their code
that have allowed malicious code to exploit their vulnerabilities can not be
ignored.

Microsoft’s president and CEO Bill Gates has made a new commitment to
securing his OS, which he calls a “war on hostile code” (Lemos). Over the next
nine years (the first one has already passed) Microsoft’s goal is to win back its
customers trust and respect with the “Trusted Computing” campaign. At this point
in time it is too early to tell if they will successfully accomplish this feat.

Unfortunately they are still being hit with software mistakes, even though they
“halted product development” to train their developers on coding more securely

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

last year (One year on is Microsoft ‘trustworthy’). As a result they threw out most
of the “Windows code” and lost about $100 million.

Oracle
In light of CERT’s release of 37 “separate security holes of varying seriousness”
last spring, Larry Ellision might not want to declare an “unbreakable” database
any longer (Gardener). With most of the 37 “bugs” stemming from code mistakes,
Oracle is looking very breakable from a security standpoint.

Judging from Oracle’s clientele ranging from General Dynamics, to Visa and the
Ministry of Defense, it would be safe to guess that these customers rely on
Oracle to provide them with superior security. Judging from the type of work
these organizations/companies produce, it is a simple deduction that a security
breach could be a potentially harmful situation.

Linux
Even though there are many positive benefits in open source software, it is not
immune to bugs. According to Fred Langa Linux’s growing popularity as a
mainstream product will cause “more problems” to “come to light” and the bug
reports to increase (Langa, 1).

 His reasoning behind this is fairly simple and is due to the fact that Linux started
out as an operating system for advanced computer users. Currently Langa says
that mostly anyone can get their hands on a Linux machine, but unfortunately
most ordinary people really don’t know enough about Linux to run it securely.
This along with the rising bug reports coming from popular flavors like Red Hat
are making Linux a playing field for security breaches.

Conclusion

Software mistakes will never disappear from software, but they can be reduced
at an earlier time in the process so there are fewer critical security problems.
There are many programming tutorials and books that specifically deal with
coding best practices, yet too often best practices are overlooked for time
constraints or “the easy way out”. On the other hand there are many good
development teams and programmers who do care about the quality of their
code and that may one day be the deciding factor for which companies make
money off software programs. Eventually consumers will realize that they are
being short-changed and demand a product that does not need five critical
security patches a week.

Works Cited

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

CERT. “Vulnerability Note VU#399260”. URL:
http://www.kb.cert.org/vuls/id/399260 (22 Apr. 2003).

“CERT/CC Statistics 1988-2003”. URL: http://www.cert.org/stats/cert_stats.html
(20 Apr. 2003).

DilDog. “The Tao of Windows Buffer Overflow”. 1 Mar. 1998. URL:
http://www.cultdeadcow.com/cDc_files/cDc-351/ (19 Jun. 2003).

Gardener, Joey. “Oracle named and shamed for security problems” 15 Mar.
2002. URL: http://www.silicon.com/news/500013/1/1032058.html (20 Apr. 2003)

Kolishak, Andrey. “NT Drivers Potentially Vulnerable to Format String Bug (FSA
Bug)”. 24 Apr. 2002.
URL:http://www.securiteam.com/windowsntfocus/5LP0N1F41O.html (22 Apr.
2003).

Kerer, Clemens. “How the Java Security Model Works”. 22 Sep. 1999. URL:
http://www.infosys.tuwien.ac.at/Teaching/Finished/MastersTheses/JSEF/node27.
html (14 Apr. 2003).

Langa, Frank. “Langa Letter: Linux Has Bugs: Get Over It”. 27 Jan. 2003. URL:
http://www.informationweek.com/story/showArticle.jhtml?articleID=6512225&pgn
o=1 (19 Jun. 2003).

LeClaire, Jennifer.”Microsoft and the New Science of Security Flaws”. 26 Sep.
2002. URL: http://www.ecommerctimes.com/perl/story/19514.html (17 Apr.
2003).

Lemos, Robert. “Microsoft declares a “war on hostile code”. 10 Apr. 2001.
URL: http://news.com.com/2100-1001-255638.html?legacy=cnet (20 Apr. 2003).

---. “One year on, is Microsoft ‘trustworthy’?”. 16 Jan. 2003.
URL: http://news.com.com/2100-001-981015.html?tag=nl (20 Apr. 2003).

McClure, Stuart and Joel Scambray, George Kurtz. Hacking Exposed: Network
Security Secrets and Solutions, Third Edition. Berkely, California, Osborne,
McGraw-Hill, 2001. 324.

Moore, David et al. “The Spread of the Sapphire/Slammer Worm”. URL:
http://www.cs.berkeley.edu/~nweaver/sapphire/ (22 Apr. 2003).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Olavsrud, Thor. “Multiple Security Flaws Found in Oracle Servers”. 15 Mar. 2002.
URL: http://www.internetnews.com/dev-news/article.php/10_992381 (17 Apr.
2003).
Perl mongers. “Perl History”. 12 Aug. 1999. URL:
http://www.perl.org/press/history.html (19 Jun. 2003).

Schwartz, Randal L and Tom Christiansen. Learning Perl, 2nd Edition. O’Reilly,
Jul. 1997.

Stackhouse, Jim. “The C Programming Language”. 1996. URL:
http://www.csc.vill.edu/~lab/C/#HISTORY (20 Apr. 2003).

Sullivan, Bob. “Remembering the net crash of ‘88”. 2 Nov. 1998.
URL: http://www.msnbc.com/news/209745.asp (20 Apr. 2003).

TechDictionary. URL:http://techdictionary.com/Action.Lasso (14 Apr. 2003).

Warfield, Michael H. “Musings on open source security models”. URL:
http://www.linuxworld.com/linuxworld/lw-1998-11/lw-11-ramparts.html (20 Apr.
2003).

Wong, David. “Secure Coding”. 20 Jun. 2002. URL:
http://www.securityfocus.com/infocus/1596 (14 Apr. 2003).

