
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Michael Meister Sans GSEC Certification Page 1 of 15
1.4b Option 1

Steganography

Where the information is hidden
and

how it´s done

by Michael Meister
03.06.2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Michael Meister Sans GSEC Certification Page 2 of 15
1.4b Option 1

Abstract

As information hiding has become more and more popular, many programs
have emerged on the internet dealing with steganography. This document
describes the structure of the hostfiles and the placement of the data that the
user wants to hide.
The necessary tools and how to use them will be covered in this document.
Countermeasures removing the hidden information from the hostfile will be
briefly explained. The description of spreading and encrypting, before hiding
the message within the file is beyond the scope of this document, but is done
by most of the tools anyway.

History

The word steganography is derived from greek and means "coverted writing",
from stegein, which means to cover. It has the same root as in stegosaur, a
quadrupedal, herbivorous ornithiscian dinosaur of jurassic films and early
cretaceous times, well known for being quite 'covered' through an armor of
triangular bony plates on its back spine.
Steganography is the art (and science) of communicating by hiding the
existence of communication; this is in contrast to cryptography. Ideally, your
enemies, or the one you are fighting against, or even your friends, should not
even imagine that there is a message concealed somewhere.
This very characteristic makes steganography the ideal science for hiding
messages on the web, which is flooded by non-significant data. All your
passwords and everything you need can be hidden inside three or four 'fake'
pages you have uploaded somewhere, within images or pictures such as “my
sister Christine and her lovely kids” or whatever.
You download fake images from the web, you modify them (the greatest risk
for steganography is the confrontation between 'original' image without the
concealed message and steganogated image with the message, of course),
and only after these modifications you will hide your concealed message
inside the images with one of the many programs that are available.
Basically, using steganography, you can smuggle any file(s) over any
communication-line (BBS, network, modem, etc.) in a format which leaves the
smuggled data untraceable and unreadable.
But there is not only a military or privacy benefit of information-hiding. Many
companies use steganography for copyright-issues.

How things work

To understand, how stego-tools alter the host-file it is necessary to know how
the data is stored in the original file. For uncompressed files, things are
straight forward. We will discuss steganography on the most commonly used
file formats.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Michael Meister Sans GSEC Certification Page 3 of 15
1.4b Option 1

uncompressed audio

Sound samples are quantized, inaccurate estimates of the analog value of the
sound wave at a given moment in time. Windows WAV files can have different
samplingresolutions: 8bit, 16bit and Steinberg Research [23] offers
sounddrivers (ASIO-drivers), that can have resolutions of 20bit, 24bit and
32bit float. For the more commonly used 8 bit samples this means that the
values can range between 0 and 255. 16 bit samples range between 0 and
65535.
[2] Let´s take a WAV file with a samplingrate of 44.1kHz sampled in mono and
having a resolution of 16 bits. In these files, the data is stored sequentially
byte by byte.
When we take a look on the properties, and bearing in mind that we want to
alter the file in a way that we can´t notice the difference, there are two basic
factors that influence the quality of the hostfile.

• The samplingrate – The higher the sampling rate, the more data is needed

for the same samplingtime. This means, that there is a greater number of
samples to hide the information in, making the hidden data more difficult to
track.

• The other parameter is the samplingresolution. In our example file, we
have a resolution of 16 bits. That makes 65536 different samplevalues.

If we change the samplevalue by one, you can´t really hear the differrence.
However, if the sampleresolution is 4 bits, doing the same change on this
sample would have a much greater effect and therefore increase the level of
disturbing samplenoise.
It is easy to see, that it is much simpler to hide information in a huge hostfile.
To make things easier suppose that a 16bit sound sample had the following
eight bytes of information in it somewhere:

132 134 137 141 121 101 74 38

The binary numbers are shown in the table below. Only the second byte is
represented, because of the less space. The second line shows only the LSB
of the corresponding byte.

10000100 10000110 10001001 10001101 01111001 01100101 01001010 00100110

0 0 1 1 1 1 0 0

Suppose that we want to hide the binary byte 11010101 (213) inside this
sequence. We simply replace the LSB (Least Significant bit) of each sample
byte with the corresponding bit from the byte we are trying to hide. So the
above sequence will change to:

10000101 10000111 10001000 10001101 01111000 01100101 01001010 00100111

1 1 0 1 0 1 0 1

This leads to the following sequence:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Michael Meister Sans GSEC Certification Page 4 of 15
1.4b Option 1

133 135 136 141 120 101 74 39

As you can clearly see, the values of the sound samples have changed by, at
most, one value either way. This will be almost inaudible to the human ear, yet
we have concealed 8 bits of information within the sample.

uncompressed v ideo

[2] Another hostfile-format is the BMP file. All computer based pictures are
composed of an array of dots, called pixels, that make up a very fine grid.
Each one of these pixels has its own colour, represented internally as
separate quantities of red, green and blue. Each of these colour levels may
range between 0 (none of the colour) and 255 (a full amount of the colour). A
pixel with an RGB value of 0 0 0 is black, and one with a value of 255 255 255
is white. This leads to 16777216 different colours in total.

sample image grid of pixels

As covered with the WAV files, it is easier to hide information within a huge
hostfile. The more pixels you have in your file is one factor to achieve this.
The other is the resolution per pixel. For a 24 bit image, information-hiding is
simple because 24 bit images are stored internally as RGB triples, and all we
need to do is spread our bits out and save the new file. The drawback to this
is that uncompressed 24 bit images are uncommon, and would therefore
attract the attention of those whose attention you are trying to avoid attracting!
They are also very large as they contain 3 bytes for every pixel (for a 640x480
image this is 640x480x3=921.6 kbytes). It is considerably more difficult to hide
anything within a 256 colour gif-image. This is because the image may
already have over 200 colours which by changing, will carry way over the
absolute maximum of 256.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Michael Meister Sans GSEC Certification Page 5 of 15
1.4b Option 1

Looking at a little theory it is easy to see that an image with 32 or less colours
will never exceed 256 colours, no matter how much we tamper with it. To see
this, visualise the 3 LSB's of an RGB triple as a 3-bit number. As we pass
through it in our hiding process, we can change it to any one of 8 possible
values, the binary digits from 000 to 111, one of which is the original pattern. If
one colour can “expand” up to 8 colours, how many distinct colours can we
have before we are in danger of exceeding the limit of 256? Simple, 256/8=32
colours. However, there is no guarantee that 32 colours is the upper limit, for
every file that you want to hide. If you're lucky the file will not change a colour
to all of its 8 possible combinations and then we are able to keep one more of
the original colours. In practice, however, you will often find pictures being
reduced to the minimum of 32 colours.
Typical tools are StegoDos, S-Tools, Mandelsteg, EzStego, Hide and Seek
(versions 4.1 through 1.0 for Windows 95), Hide4PGP, Jpeg-Jsteg, White
Noise Storm and Steganos. The image formats typically used in such
steganography methods are lossless and the data can be directly manipulated
and recovered.

compressed audio

[11] In 1987, the Fraunhofer IIS started to work on perceptual audio coding in
the framework of the EUREKA project EU147, Digital Audio Broadcasting
(DAB). In cooperation with the University of Erlangen, the Fraunhofer IIS
finally devised a very powerful algorithm that was standardized as ISO-MPEG
Audio Layer-3. By using MPEG audio coding, you may shrink down the
original sound data from a CD by a factor of 12, without noticably losing sound
quality. Basically, this is realized by perceptual coding techniques addressing
the perception of sound waves by the human ear.
The perceptual model mainly determines the quality of a given encoder
implementation. It uses either a separate filter bank or combines the
calculation of energy values (for the masking calculations) and the main filter
bank. The output of the perceptual model consists of values for the masking
threshold or the allowed noise for each coder partition. If the quantization
noise can be kept below the masking threshold, then the compression results
should be indistinguishable from the original signal.
A system of two nested iteration loops is the common solution for quantization
and coding in a Layer-3 encoder.
Quantization is undertaken via a power-law quantizer. In this way, larger
values are automatically coded with less accuracy and some noise shaping is
already built into the quantization process. The quantized values are coded by
Huffman coding. As a specific method for entropy coding, Huffman coding is
lossless. This is called noiseless coding because no noise is added to the
audio signal.
The process to find the optimum gain and scalefactors for a given block, bit-
rate and output from the perceptual model is usually done by two nested
iteration loops in an analysis-by-synthesis way.

• The inner iteration loop (rate loop):

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Michael Meister Sans GSEC Certification Page 6 of 15
1.4b Option 1

The Huffman code tables assign shorter code words to (more frequent)
smaller quantized values. If the number of bits resulting from the coding
operation exceeds the number of bits available to code a given block of
data, this can be corrected by adjusting the global gain, which results in a
larger quantization step size, and leads to smaller quantized values. This
operation is repeated with different quantization step sizes until the
resulting bit demand for Huffman coding is small enough. The loop is
called rate loop because it modifies the overall coder rate until it is small
enough.

• The outer iteration loop (noise control/distortion loop):

To shape the quantization noise according to the masking threshold,
scalefactors are applied to each scalefactor band. The system starts with a
default factor of 1.0 for each band. If the quantization noise in a given
band is found to exceed the masking threshold (allowed noise) as supplied
by the perceptual model, the scalefactor for this band is adjusted to reduce
the quantization noise. Since achieving a smaller quantization noise
requires a larger number of quantization steps and thus a higher bitrate,
the rate adjustment loop has to be repeated every time that new
scalefactors are used. In other words, the rate loop is nested within the
noise control loop. The outer (noise control) loop is executed until the
actual noise (computed from the difference of the original spectral values
minus the quantized spectral values) is below the masking threshold for
every scalefactor band (i.e. critical band).

The hiding process takes place at the heart of the layer III encoding process,
namely in the inner rate loop. The bits are encoded as its parity by changing
the end loop condition of the inner loop.

As we can see, it is not possible to modify the mp3-file itself to hide the
information. We have to decompress the file first. Most of the stego-audio-
tools available use a wave-file as source.

compressed v ideo

[12] JPEG (created by Joint Photography Experts Group) image is a file-
format that uses lossy compression. This image format saves space but may
not maintain the original message integrity, so users need to keep in mind that
by using this type of compression on an image, some information is lost.

Below is the outline of the baseline compression algorithm:

1. Transform the image into a suitable colour space. This is a no-op for

grayscale, but for colour images you generally want to transform RGB into
aluminance/chrominance colour space (YCbCr, YUV, etc). The luminance
component is grayscale and the other two axes are colour information. The
reason for doing this is that you can afford to lose a lot more information in
the chrominance components than you can in the luminance component:
the human eye is not as sensitive to high-frequency chroma info as it is to
high-frequency luminance. You don't have to change the colour space if

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Michael Meister Sans GSEC Certification Page 7 of 15
1.4b Option 1

you don't want to, since the remainder of the algorithm works on each
colour component independently, and doesn't care what the data is.
However, compression will be less since you will have to code all the
components at luminance quality. Note that colourspace transformation is
slightly lossy due to roundoff error, but the amount of error is much smaller
than what we can see later on.

2. (Optional) Downsample each component by averaging together groups of
pixels. The luminance component is left at full resolution, while the chroma
components are often reduced 2:1 horizontally and either 2:1 or 1:1 (no
change) vertically. In JPEG-speak these alternatives are usually called
2h2v and 2h1v sampling, but you may also see the terms "411" and "422"
sampling. This step immediately reduces the data volume by one-half or
one-third. In numerical terms it is highly lossy, but for most images it has
almost no impact on perceived quality, because of the eye's poorer
resolution for chroma info. Note that downsampling is not applicable to
grayscale data; this is one reason colour images are more compressible
than grayscale.

3. Group the pixel values for each component into 8x8 blocks. Transform
each 8x8 block through a discrete cosine transform (DCT). The DCT is a
relative of the Fourier transform and likewise gives a frequency map, with
8x8 components. Thus you now have numbers representing the average
value in each block and successively higher-frequency changes within the
block. The motivation for doing this is that you can now throw away high-
frequency information without affecting low-frequency information.

4. In each block, divide each of the 64 frequency components by a separate
"quantization coefficient", and round the results to integers. This is the
fundamental information-losing step.

5. Encode the reduced coefficients using either Huffman or arithmetic coding.
Notice that this step is lossless, so it doesn't affect image quality. The
arithmetic coding option uses Q-coding; it is identical to the coder used.

6. Tack on appropriate headers, etc, and output the result. In a normal
"interchange" JPEG file, all of the compression parameters are included in
the headers so that the decompressor can reverse the process.

7. The decompressor multiplies the reduced coefficients by the quantization
table entries to produce approximate DCT coefficients. Since these are
only approximate, the reconstructed pixel values are also approximate, but
if the design has done what it's supposed to do, the errors won't be highly
visible.

A high-quality decompressor will typically add some smoothing steps to
reduce pixel-to-pixel discontinuities. The JPEG standard does not specify the
exact behavior of compressors and decompressors, so there's some room for
creative implementation. In particular, implementations can trade off speed
against image quality by choosing more accurate or faster-but-less-accurate
approximations to the DCT. Similar tradeoffs exist for the downsampling/
upsampling and colourspace conversion steps.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Michael Meister Sans GSEC Certification Page 8 of 15
1.4b Option 1

Tools, like JPG-JSTEG, circumvent the lossy part of the compression
algorythm. The compression is done in two steps. After the first and lossy
DCT, the image is converted to its frequency components.

The LSBs of all nonzero frequency components (c1 ... c64) are replaced by
the bits of the message that is to be hidden. The second step is the lossless
part of the compression anyway. This operation modifies the frequency
coefficients, so a secret message is not easy to find within the jpg-file. Since
Jsteg is easy to detect by a statistical attack, further generations of the
program have made the hidden message much more difficult to detect. The
latest version, F5, uses matrix encoding and permutative straddling. The
details on this are beyond the scope of this document, but can be found here:

http://os.inf.tu-dresden.de/~westfeld/publikationen/f5.pdf

Now that we have learned how the files are structured and where the
modification takes place, we are able to understand what the tools are doing.
Most of the tools are doing an encryption on the information before it is hidden
within the hostfile.

Destructive countermeasures

When a suspicious image is found, one must decide whether (potentially)
hidden information has to be erased or not.
As we have learned, the lossy compressed image-files carry the information
within the DCT-coefficients, so simply decompressing and recompressing with
the same properties, should remove the information while preserving almost
the same filesize.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Michael Meister Sans GSEC Certification Page 9 of 15
1.4b Option 1

More effort is necessary to remove the hidden message from an
uncompressed or lossless compressed file. The following filters can be
applied to an image to erase hidden information:

• rotation
• smoothing
• bluring effects
• sharpen
• noise reduction
• resampling
• ...

In other words filters have to be applied, that modify the pixelproperties.
The same countermeasures have to be applied to sound-files. Like the image-
files a lossy compressed audio-file can be recompressed to remove the
potentially hidden message. Lossless wav files have to be modified with filters
such as one of the following:

• equalisation
• compression
• slight reverb
• low amplified delays
• stereo enhancements
• resampling
• ...

Not every filter applied to a file removes a hidden message, so cropping an
image or soundfile is not always a good choice. Even amplification of colours
or wavesamples may not erase the message, because the information might
be the position of zerocrossings, which is not changed by this type of
modification. On .gif-files all colours in the colourtable are modified the same
way, so the number of different colours remains the same.

Using simple tools

Hiding information within another file is no real problem these days. The tools
that you need, can easily be found on the internet. The following tools modify
the files mentioned above.

F5

F5 is a commandline-tool, which is used to hide information within bmp- or
jpg-files. To hide information just use the following command:

jwiew Embed -e text.txt -p password image.bmp outimage.jpg

To get the imformation back, the recipient must know the “password”. He/she
then types:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Michael Meister Sans GSEC Certification Page 10 of 15
1.4b Option 1

jview Extract image.jpeg -p password

The embeded text can be found in the file output.txt in the F5 directory.

MP3Stego

[3] Another easy to use program is MP3Stego. As mentioned before, it is
necessary to have an original wave-file from which an mp3-file is then
generated. MP3Stego consists of two programs: encode and decode. The
usage is very simple:

encode -E hidden_text.txt -P pass source.wav stego.mp3

This compresses source.wav (mono, 44.1 kHz, 16bit encoded) and hides
hidden_text.txt. The hidden text is encrypted using “pass” as a password. It
then produces the output called “stego.mp3”.

decode -X -P pass stego.mp3

uncompresses svega_stego.mp3 into svega_stego.mp3.pcm and attempts to
extract hidden information. The hidden message is decrypted, uncompressed
and saved into svega_stego.mp3.txt.

There is also another interesting project called “stego-lame” hosted at source-
forge [14]. This is an alpha-version program in Windows C source code which
hides data in various audio streams (MP3, Ogg Vorbis, MPEG 2/4 AAC,
G.72x). But there are no precompiled binaries yet.

Invisible Secrets 4

[19] A really great program suite is “Invisible Secrets 4”. Like steganos it
covers most of the topics that digital steganography deals with. Invisible
Secrets 4 not only encrypts the data and files for safe keeping or for secure
transfer across the net, it also hides them in places that on the surface appear

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Michael Meister Sans GSEC Certification Page 11 of 15
1.4b Option 1

totally innocent. With Invisible Secrets 4 you may encrypt and hide files
directly from Windows Explorer, and then automatically transfer them by e-
mail or ftp.
The program features strong encryption algorithms (including AES - Rijndael),
a shredder that helps you destroy files beyond recovery, a password
management solution that stores all your passwords securely and helps you
create secure passwords, folders and internet traces, a locker that allows you
to password protect certain applications, the ability to create self-decrypting
packages and mail them to your friends or business partners, a tool that
allows you to transfer a password securely over the internet, and a cryptboard
to help you use the program from Windows Explorer.
Invisible Secrets 4 offers a wizard that guides you through all the necessary.
After starting up the application you´ll see the following screen:

This screen offers all the programoptions. As you can see, this is a GUI-based
“all in one” program. The hiding features can be found behind the first menu
item. Clicking on this item brings a file selector box on top of the screen.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Michael Meister Sans GSEC Certification Page 12 of 15
1.4b Option 1

Here you can choose the files you want to hide. When all files of interest are
selected, the encryption settings can be made on the next dialog. After setting
up the encryption, the user can choose the way he wants to send the file.
Either by mail or by ftp.

Where to get the software

There are, of course, some commercial tools, but there are also a huge
number of free tools on the internet. A good starting point is [1], [4], [6] and
[12]. As many of the tools available are command line oriented they are very
usefull in scripts. On some of the mentioned nntp servers you can find good
ideas for writing scripts, that hide your information in an email automatically.

The systemrequirements

As there are many tools available that can run under almost any operating
system (including the old MS-DOS), the requirements of the system are
extremely low. Even on a smartphone, like the Nokia Communicator 9210, it is
quite simple to download a file from the internet and steganogate it within an
XTM emulator window, that is able to run DOS, Windows 3.1 and even LINUX
[25].

Pros and cons

Imagine a journey to a foreign country where the customs service is very tight.
But the only media they can see is an audio CD. Nobody would even think of
you having stored critical data on it. Apart from the problem, that jitter
correction may destroy the data during the extraction process, this is another
good way of hiding data from the eyes of those you do not want to see it.
Steganography has endured bad publicity recently, with unsubstantiated
rumors of missives from Osama bin Laden, hidden in images on websites.
The negative aspect for the “normal” user is the fact that little information has
to be hidden within huge hostfiles. For the ones with a dial in connection this
seems to be a very expensive solution, since the files need a long time to be
transferred.
With a little perl-script, on the other hand, one can easily have a substitute for
the UNIX “mail” command, that prepares a jpg-file before it is then transferred
using the standard mail handler.
A part of the script might look like the one I am using on my windows-PC:

print 'Whats the email-address [me@home.com]: ';
chop ($eingabe = <STDIN>);
if (! $eingabe) {
 $eingabe = 'me@home.com';
}
$address = $eingabe;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Michael Meister Sans GSEC Certification Page 13 of 15
1.4b Option 1

print 'Where is the message [e:\outmessage]: ';
chop ($eingabe = <STDIN>);
if (! $eingabe) {
 $eingabe = 'e:\outmessage';
}
$outmsg = $eingabe;

print 'What is the password [secret] : ';
chop ($eingabe = <STDIN>);
if (! $eingabe) {
 $eingabe = 'secret';
}
$password = $eingabe;

print 'Where is the image [e:\srcimage.bmp]: ';
chop ($eingabe = <STDIN>);
if (! $eingabe) {
 $eingabe = 'e:\srcimage.bmp';
}
$image = $eingabe;

print 'Where to put the image [e:\stegimage.bmp]: ';
chop ($eingabe = <STDIN>);
if (! $eingabe) {
 $eingabe = 'e:\stegimage.bmp';
}
$outimage = $eingabe;

system(“start –w jwiew Embed -e $outmsg -p $password $image \\
$outimage”);

system(“rundll32.exe shell32.dll,MailToProtocolHandler \\
$address”);

The script first collects the necessary information and embeds it within a jpg-
file. The start –w command waits until the process is done. After this step
the standard mailclient is opened, so you just have to attach the picture.
But this should only give an idea of the process. One can easily do an
encryption before the message is hidden etc.

Conclusion

Steganography and cryptography combined, are a powerful weapon to get
information to the recipient. With tools like PGP you can guarantee, that the
message is not touched or seen on its way. Hiding this message within any
hostfile (e.g. .pdf, .html, .txt, .jpg, .exe, .dll, ...) makes it almost impossible for
someone to even have an idea of its existence.
When taking a look around in the masses of tools, you can find some
interesting ones to even hide the message within the headers of IP-traffic.
There is even a LINUX-filesystem called StegFS [22], that shows up almost
like an ext2fs (with some additional features, of course). However, the
drawback of this filesystem is that the movement of the heads, which is

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Michael Meister Sans GSEC Certification Page 14 of 15
1.4b Option 1

necessary for spreading the bits across the harddrive, makes this filesystem
very slow.
Steganography is just starting to become popular. As more and more people
become concerned with their privacy and more and more regulations are
being passed, steganography will increase in popularity.

References

[1] Neil Johnson: Steganography and Digital Watermarking Tool Table

http://www.jjtc.com/Steganography/toolmatrix.htm

[2] Andrew Brown: Helpfile from s-tools4

[3] Fabien A.P. Petitcolas: MP3Stego

http://www.cl.cam.ac.uk/~fapp2/steganography/mp3stego/

[4] Fabien A.P. Petitcolas: steganographic software

http://www.cl.cam.ac.uk/~fapp2/steganography/stego_soft.html

[5] Ross J. Anderson, Fabien A.P. Petitcolas: On The Limits of Steganography

http://www.cl.cam.ac.uk/~fapp2/publications/jsac98-limsteg.pdf

 [6] Hide data in oblivious channels. (Linux cryptography software.)

http://munitions.vipul.net/dolphin.cgi?action=render&category=06

[7] COTSE-Steganography Tools

http://www.cotse.com/tools/stega.htm

[8] free-it.org: linux kryptografie datenschutzlinks open source

http://www.free-it.org/archiv/0_Produkte/krypto-datenschutz.html

[9] http://www.demcom.com/english/steganos/ind ex.html

[10] Neil F. Johnson: Steganography
 http://www.jjtc.com/Steganography/

[11] Fraunhofer IIS - AMM - Layer-3 Info

http://www.iis.fraunhofer.de/amm/techinf/layer3/

[12] Joint Photography Experts Group

http://www.jpeg.org/

[13] StegoArchive.Com - Steganography Information, Software to

Enhance Your Privacy
http://www.jjtc.com/stegoarchive/stego/software.html

[14] Sourceforge: stego-lame
 http://sourceforge.net/projects/stego-lame/

[15] Burkhard Schröder: Kryptographie und Steganographie
 http://www.burks.de/krypto.html

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Michael Meister Sans GSEC Certification Page 15 of 15
1.4b Option 1

[16] Heise Verlag: Cryptocampagne
 http://www.heise.de/ct/pgpCA/stego.shtml

[17] Heise Verlag: Cryptocampagne
 http://www.ct.heise.de/ct/01/09/links/170.shtml

[18] GSEC Security Essentials Toolkit
 http://www.securityhaven.com/settools.html

[19] Neobyte Solutions: Invisible Secrets

http://www.invisiblesecrets.com

[20] Neil F. Johnson: Steganography: Seeing the Unseen

http://www.jjtc.com/pub/r2026.pdf

[21] Neil F. Johnson: An Introduction to Watermark Recovery from Images

http://www.jjtc.com/pub/nfjidr99.pdf

[22] Andrew D McDonald: StegFS, Partition level steganographic

filesystem for Linux.
http://www.mcdonald.org.uk/StegFS/

[23] Steinberg Research: Professional Audio Editing Tools

http://www.steinberg.net

[24] NBInfo: XTM PC-Emulator ER6

http://www.nb-info.co.uk/xtminfo.htm

[25] Collin Jörg: AIKON-Reviews – 9210 with DOS, Windows3.1 and LINUX

http://www.aikon.ch/reviews/sw_review.php3?softwareid=230

