
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

1

1

L is for Login

Carolee L. Rand
GSEC
version 1.4b

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

2

2

L is for login...(abstract/summanry section)

The first experience most people have with any computer usually begins with the
process of "logging in." With just a user name and a password (hopefully, a password)
a user finds his/her way onto a computer system.

Security policies usually define who, when and how a person may log in to a particular
computer or network. They might dictate which accounts are available to which
computer, an account naming scheme and/or password policies. On the surface, it
might appear to an end user that the login mechanisms on various UNIX platforms are
the same. The user might use the same user name and password on several different
types of computers and wind up in the same directory, not knowing that the
identification and authentication mechanisms varies from platform to platform.

This paper will look at login commands, authentication mechanisms, passwords and
password management programs used in several UNIX platforms, highlighting aspects
of Solaris 8 and Red Hat Linux (RH) 7.3.

G is for getty

In the beginning there was a getty process waiting on a serial port for in input from an
end user. That getty process called the login process which accepted username and
password input from the end user and attempted to authenticate that information with
the system password file (/etc/passwd). The password file contained most of the
information about the user needed by the system to authenticate the user and create
the proper environment for her/him.

Today, login processes follows similar steps, but there are other login mechanisms
available. Computers are often networked and/or run X-windows or X based window
managers such as CDE, KDE and gnome Protocols such as NIS, XDM, RPC, etc.
provide additional means of system access and logins. All perform the same function:
obtain information from an end user, use it to authenticate against a database and
allow the user access to the computer if the authentication is successful.

Early in UNIX System V, /etc/getty, /bin/login and /etc/passwd were the main
components of the login procedure. The password file of yesteryear provides the basis
for current day password files and merits investigation.

/etc/passwd continues to be the place where account information is stored (we will not
be discussing LDAP here.) It is a flat file database, formatted with one record per line.
Each record contains up to seven colon-delimited fields. (see fig. 1). The first field,
username, can contain up to eight characters. Although this is how the user identifies
themselves, the computer uses the numerical information in the UID and GID fields to
differentiate between users.

The second field in /etc/passwd can hold the 1-way encrypted password hash and its

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

3

3

seed. It can also hold one or more characters that are not part of the password hash or
it can be left empty.

Most security plans mandate that all accounts have passwords of some sort. What
they are really mandating is that some text, either an encrypted hash and seed (valid
password) or one or more ASCII characters that would not be part of the hash (invalid
password) be present in the password field. An empty password field, two colons
following the username, is an undesirable situation as it opens the door to
unauthenticated system entry.

On systems that use the /etc/password file for account information and authentication,
the password field may be formatted to force the user to apply rules about password
change dates, expiration and expiration warnings. The password field in this type of
password file is thirteen characters without special parameters in place. By adding a ","
and up to two one character codes, password aging can be put into effect. The first
code stands for number of Weeks until the password expires. The second (optional)
field represents the minimum number of weeks until the password may be changed
again. The default is zero weeks and is represented by a "."

These fields may also be formatted to force the user to change their password at the
next login. By appending a "," followed by a "." we are setting the password to expire in
zero weeks, (immediately) and the password program prompts the user for a new
password at his/her next login. This is the closest this form of password authentication
comes to enforcing a security policy mandating that each account have its own
password.

One difference between the password files of yesteryear (late 1980's, early 1990's) and
the password files of contemporary UNIX systems is that the encrypted password is no
longer displayed in the password field in the world readable password file. Did I
mention the /etc/passwd file is world readable? Back when computing power was not
what it is today, exposing the encrypted password posed little security threat as the
computing power required to "crack" even a weak password was beyond the reach of
most. Additionally most networks were limited to the size of a room limiting the
chances of an uninvited someone snooping on the networked machines. Contemporary
password files continue to hold world readable information about the users, their home
directories and shells. The password field has been moved to a restricted access (root
access-only) file, usually /etc/shadow, and the password fields for all records in the
password file hold a single character, usually asterisk.

Other information requirements for a valid interactive account include the listing of a
"home directory" and a default "shell" for the user. On some UNIX systems, if the
home directory listed for the user is unavailable, the system will let the user log in, but
places the user in the system root directory (not so good) or in /tmp (better). On other
platforms, such as IRIX, a user will not be able to log in if the specified shell program is
unavailable. Placing the full path of available shells in the /etc/shells file "legalizes" the
use of these shells and makes them available to other programs, like ftp. It is possible

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

4

4

to assign a shell in /etc/password that does not exist in /etc/shells and have success in
RH LINUX.

It is a good practice to assign bogus shells to system accounts present in the
/etc/passwd files that exist to facilitate several facilities (like lp) but are not supposed be
used for interactive login. To prevent a successful login from these accounts, change
or assign invalid shells that come with most UNIX operating systems such as
"/bin/false" or "/sbin/nologin" to these accounts.

S is for Shadow

Shadow password files (/etc/shadow) make it more difficult for non-root users to obtain
encrypted passwords. With shadow files in use, the encrypted passwords are saved in
a non-world-readable file, /etc/shadow, that exists in tandem with the traditional, world-
readable /etc/password file. The format of the /etc/shadow file provides additional
benefits other than the obscuring of encrypted passwords. Up to eight fields per record
may be used to set password change parameters. (See figure 2.) Password change and
expiration dates can be set at the "day" level, rather than at the "week" level of the
/etc/passwd file. These fields use real numbers, rather than coded entries. Additionally,
it is possible to set a precise expiration date for the account.

On Solaris systems, the default values for password aging and size are found in
/etc/default/passwd. On RH Linux systems, the default values are set in /etc/login.defs
as well as other parameters for account creation. Assigning values in the /etc/shadow
files overrides these parameters.

It is still very important to protect the shadow file or whatever file is used to hold account
passwords. The computing power available in todays home computers is more than
enough to allow password cracking utilities like "John the Ripper" and "L0phtcrack" to
uncover the weakest passwords (or more) in a shadow file.

O is for Other (places to set system-wide login defaults)

Unpassworded accounts make it possible for anyone to log into a system knowing only
half of the login equation, the account name. Operating systems are configurable to
require that only accounts with passwords are used, however the configuration options
differ between various platforms.

For example, on System V UNIX platforms such as Solaris and IRIX, the
/etc/default/login file is available to set up system-wide account defaults, including
password change and warning times and whether or not the account is required to have
a password.

The /etc/default/login file that is part of the IRIX UNIX operating system offers two
variables that can be set to require password entry to the system.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

5

5

The PASSREQ variable, when set, requires that each account has a password. If
the account has no password, the user is prompted to supply one at login time. I
find this setting dangerous in the case where an intruder might find an
unpassworded account. If the intruder logs in, he/she will be prompted to supply
a new password and the logs will show only that a user changed their password.

The MANDPASS variable, when set also requires that users use a password. If
there is no password set, it locks the user out of the system at login time. This is
my preferred setting because it forces the user to contact an administrator to
obtain access to the system and alerts them to the problem of the non-
passworded account. It also prevents an intruder from easily logging into the
system if they find the non-passworded account before the administrator.

The Solaris UNIX operating system also uses the /etc/default/login configuration file, but
does not include the "MANDPASS" variable. An intruder finding a non-passworded
account (for whatever reason it came to exist) could log in, create a new account and
enter the system undetected.

Red Hat Linux systems use /etc/login.defs to provide some of the system wide defaults
defined on other platforms in /etc/default login. In this file, password change
parameters can be set, but it has no variable for controlling whether or not passwords
are required for all accounts.

Root privileges are required to change all fields in the password and shadow files and
modify the settings in the /etc/default/login and /etc/login.defs files. Various tools for
editing files and variables exist across the many UNIX platforms and are available to
both administrative and end-users. Some parameters of these commands are
accessible by root only.

Many commands and GUI interfaces exist to give administrators guidance and
assistance with working with account management and login default files. Some
commands may be found on most UNIX platforms, others are platform specific. We will
look at a few of these commands here.

Syntax Verification: /etc/passwd, /etc/shadow files

pwck This command is available on most System V UNIX variants. It checks
the syntax of /etc/passwd and /etc/shadow by default, and reports on incorrect
number of fields, unknown shells and missing home directories. Run this
command (where available) after manually editing passwd and shadow files.

logins I have found this command only on Solaris systems. It has many
parameters for checking various parts of the password and shadow files. It is
also capable of checking the syntax of NIS password and shadow maps. It is a
very helpful tool for searching for missing passwords in accounts when large
password files are used. (logins -p). Use of both of these commands is limited to

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

6

6

the root user.

Password/Shadow File Creation

pwconv, grpconv These commands may be used by the root user to convert
password and group files to password/group files and shadow/gshadow files.
They automatically create the shadow/gshadow files and populate them with
matching entries to the passwd/group files. These commands are found on most
UNIX systems.

pwunconv Reverses the work of the pwconv command, merging the
information from /etc/shadow and /etc/passwd files into one single /etc/passwd
file. Not all platforms that use the pwconv command use the pwunconv
command. Under HP-UX, pwunconv is not used and other practices must be
followed. Before using a command like pwconv, it is wise to check how the
particular platform deals with reversing the program.

Password/Shadow File Modification

vipw To limit the number of mistakes that could be made while editing a
password file, the vipw command creates a a vi editing environment with syntax
error checking facilities. Vipw locks the passwd or shadow file, so that it cannot
be accessed for writing by anyone else while editing is taking place. Upon
invocation, the target file is locked and a copy is created for the purpose of the
edit. Upon completion of editing, during the save process, the file is checked for
syntax and the user is prompted to make changes if problems are identified.
Once the program validates the syntax, the new file overwrites the original file
and the file locking is removed. This command is available on most UNIX
systems and is only available to the root user.

chage A RH Linux command that gives the administrator the ability to modify
password change, warn and expiration dates from the command line. Regular
system users can use the command with the "-l" option to check on the expiration
date of their password.

passwd This is the command recognized by most users as the one used to
change passwords. Users have the capability to change their own password, as
long as they can supply the current password to the program. The root user can
change any accounts (on that system) password and is not prompted for the
users current password.

In addition to being the primary password changing mechanism, password is
capable of manipulating several password characteristics. It is important to
check the man(ual) page for password on whatever platform is in use to see
which options are available and how they are used.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

7

7

In addition to encouraging users to create and use "strong passwords",
passwords that include a mix of letters, numbers and punctuation characters, it
is also good (in my opinion) to NOT change or set passwords on Friday
afternoons.

chsh This command allows users to change their login shell. Without this
command a user would have to get the root user to make the change. The user
can specify any valid shell available on the system; it does not have to be listed
in /etc/shells.

GUI Account Creation Tools

Most UNIX platforms have some screen-based tool for creating user accounts. Most
prompt the administrator for account information and create entries in the appropriate
system files, as well as create a home directory with several shell resource (rc) scripts
in place. A few are listed here:

PLATFORM:Solaris IRIX HP-UX RHLinux AIX

TOOL: admintool User Mgr. SAM linuxconf SMIT

P is for PAM

The suite of tools known as Pluggable Authentication Modules (PAM) was developed by
SUN Computer Systems and released to the world in 1996. It is designed to give the
administrator the ability to customize security settings for all applications that require
authentication without having to modify the application. It gives the administrator a way
to add parameters to various authentication services such as requiring a strong
password rather than just a password. PAM is found on most flavors of Linux and on
many commercial UNIX platforms.

The PAM suite consists of a library, (/usr/lib/)libpam, a variety of modules and either a
configuration file, pam.conf or a directory pam.d. Both types of configuration files are
usually found in /etc. On Solaris 8 systems, modules are found in /usr/lib/security
and have a pointer to them in the /etc/pam.conf file. Modules on many Linux systems
are found in the /usr/security directory.

PAM syntax is similar whether the entry is found in the /etc/pam.conf file or in a service
file in /etc/pam.d. The configuration syntax for a config file found in /etc/pam.d is:

module-type control module-path module arguments

The syntax for an entry in /etc/pam.conf is:

service module-type control module-path module-arguments

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

8

8

Module-type refers to the type of authentication that will be applied. In a process called
"stacking," modules of the same type can be stacked in a configuration file to create the
need for multiple authentication requirements to be met.

The four PAM module types are:

account Checks for valid account parameters such as password aging and
expiration. It comes into play after the user is authenticated and determines if the
user should be granted access.

authentication Provides authentication through a variety of means including
passwords and biometrics. Credentials may be set, refreshed or destroyed.

session Controls things that should be done before or after the user is
authenticated. This can include logging, mounting disks or dismounting disks at
the close of the session.

password This is the module that allows users to change their passwords.

PAM control flags are used to determine the behavior to be followed if/when
authentication fails.

The four PAM control types are:

required Successful only if all modules tagged as required are successful. All
modules will be checked and if some checks result in failure, the first failure will
be reported.

requisite Failure to authenticate using this module results in the immediate
denial of authentication. No additional authentication can occur.

optional Significant only if it is the only module of its type for this service.

sufficient If this control succeeds in authentication, then authentication is
successful, and all other controls are skipped, including the ones marked,
"required".

The use of these modules and control flags provides flexibility in the way authentication
is configured. When a service is called, the PAM configuration entry or file contacts the
PAM library which in tern calls the appropriate module. The modularity of PAM allows
for several layers of authentication to be used for a particular service.

Figure 3 shows the PAM configuration file for login on a system running RHLinux 7.3.
As you can see, most of the control flags are "required" which means that all the
modules must pass in order for the user to log in. Figure 4 shows the entries for login
taken from a Solaris 8 system.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

9

9

R is for Record keeping

The last component of login that this paper will cover is login accounting. Record
keeping is an important part of any security plan. By default, UNIX systems log
successful logins and can be configured to log unsuccessful logins too.

Many UNIX/LINUX systems gather successful login information in log files that have
names that end in tmp. In most cases a utmp file/log will contain information about
accounts that are currently logged in and a wtmp file/log will contain information about
successful logins over a period of time. The information in these files is stored as data,
and is only viewable using commands written to do so. These are also files that are
commonly modified by attackers to cover up a system break in.

who Found on all unix systems. Reads from the .../utmp file to display which
accounts are currently logged in. Options are available to make who look at the
.../wtmp file or look at both files and do a comparison.

w The shortest UNIX command, w, looks at the same database as who but
reports not only which accounts are logged on, but what each account is doing.

last This command looks at the .../wtmp file and reports on logins over a period
since the last time the log was rolled over. Last also reports system crashes,
boots and reboots and also shows which users are currently logged in.

Additional login logging may be achieved by configuring various utilities to send error
messages to syslogd, the UNIX logging daemon. PAM error messages are delivered to
syslogd via the "auth" syslog facility. The syntax for adding this functionality is viewable
in Figure 5.

Configuring the "auth" facility provides the added bonus of placing records of attempted
network logins in the syslog log. "Auth" is the facility used by the tcpwrappers program
which can be used to screen network login attempts.

E is for the End

In a homogeneous setting, in which only one flavor of UNIX is in use, management of
system configurations for passwords and logins is fairly straightforward working within
the structures made available by whatever operating system is in place. Often, today,
more than one UNIX platform exists on any given network and administrators must be
savvy with choices they make to implement security policy across the the board.

Password management can take place in the password file, shadow file, PAM
subsystem and other places, dependent upon platform. Administrators need to know
where all these places are and choose the best options for implementing their plans.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

10

10

By looking specifically at various aspects of the UNIX, "login" procedure, we have seen
several examples of variations in command availability and syntax and the evolution of
UNIX through the development of /etc/shadow files from /etc/passwd. Regardless of
how seasoned an administrator may be, reading the man pages for all the files and
commands that will be part of the secure configuration is a must. UNIX is always
changing, sometimes in slow and subtle ways.

------------------------------------- references
Aileen Frisch, Essential System Administration December 1995
O'Reilly and Associates

Rebecca Thomas, Rik Farrow, UNIX Administration Guide for System V, 1989
Prentice Hall

Chris Hare, "Revisiting UNIX Password Controls", SysAdmin Journal, Vol10, Number
10, October 2001.

http://tldp.org/LPD/User_Authentication-HOWTO
Linux Documentation Website

http://docs.sun.com
SUN Solaris Documentation Website

http://docs.sgi.com
SGI IRIX Documentation Website

http://www.linux.org/apps/AppId_2506.html
Download site for Linux-PAM

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

11

11

http://wwws.sun.com/software/solaris/pam/
Sun Site for PAM

Figures:

Figure 1. /etc/passwd

username:password:UID:GID:GECOS:/home/dir:/startup program
jsmith:dfGzpC/Ufda.dz:505:1000: John Smith:/home/jsmith:/bin/bash

username The name of the account
password 13 character encrypted password
UID User ID (number)
GID Group ID (number)
GECOS Comment Field
/home/dir Full path to account home directory
/startup/program Full path to program that will start when user logs in. Typically a shell.

Figure 2. /etc/shadow

username:encrypted password:last-change date:min-days:max-days:warning-
days:inactive-day: expiration date:

jsmith:dfGzpC/Ufda.dz:12182::::::

username The name of the account, matches entry in /etc/passwd
password The encrypted password
last-change date The number of days since 1/1/70 (start of UNIX time) that the password
 was changed.
min-days Minimum number of days that must pass before user can reset password
max-days Maximum number of days that can pass before user is required to change
 password.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

12

12

warning-days Number of days before max-days for the system to warn the user of the
 impending required password change.
inactive day The account will expire on the actual date specified in this field.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

13

13

Figure 3. /etc/pam.d/login (RH 7.3)

#%PAM-1.0
auth required /lib/security/pam_securetty.so
auth required /lib/security/pam_stack.so service=system-auth
auth required /lib/security/pam_nologin.so
account required /lib/security/pam_stack.so service=system-auth
password required /lib/security/pam_stack.so service=system-auth
session required /lib/security/pam_stack.so service=system-auth
session optional /lib/security/pam_console.so

Figure 4. /etc/pam.conf (login lines found in pam.conf)(Solaris 8)

login auth required /usr/lib/security/$ISA/pam_unix.so.1
login auth required /usr/lib/security/$ISA/pam_dial_auth.so.1
login account requisite /usr/lib/security/$ISA/pam_roles.so.1
login account required /usr/lib/security/$ISA/pam_projects.so.1
login account required /usr/lib/security/$ISA/pam_unxi.so.1

Figure 5. PAM logging in /etc/syslog.conf

auth.alert /dev/console
auth.crit root
auth.info;auth.debug /var/log/pamlog

