
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Security Essentials Certification Practical
Jason A. Richards
Version 1.4b
July 28, 2003

Auditing and Ensuring the Security of Homegrown Scripts

ABSTRACT

One of the greatest instruments available in a system administrator’s tool belt is
the ability to write scripts in order to automate routine and even not-so-routine
tasks. Since becoming a system administrator myself, I have written hundreds of
scripts, some that are simply a conglomeration of commands that I needed to
execute I few times in a row, and then never again. Other times and more often,
those scripts are written and stored for using over and over again, saving myself
countless hours of work. While scripts can be very useful to a system
administrator, they can also be and often are a huge security hole due to the
speed with which they are written and the need to “get it done quick,” rather than
to “get it done right.”

In this paper I present a methodology for auditing your network of systems for
these scripts to identify whether they reveal any security concerns, how to
proceed if they do, and I reveal common security problems with various scripting
languages. This paper is written not only for the security conscious
administrator, but also for managers and others that are less technical, but still
need to be aware of these situations.

DEFINITION OF SCRIPTS

A fairly good definition of a script, taken from searchVB.com is “In computer
programming, a script is a program or sequence of instructions that is interpreted
or carried out by another program rather than by the computer processor (as a
compiled program is).” In the context of this paper, a script is a collection of
commands executed in a specific order that provides an expected output using a
widely available interpreter such as perl, expect, bash, python, etc. This
definition is intentionally wide ranging because the many tools that can be used
to write and execute a script are quite different and I’m attempting to encompass
them all here.

By this definition then, any user’s .profile is a script, many operating system
commands are scripts, everything written in perl is a script, etc. Again, in the
context of this paper, we are not usually concerned with operating system
provided scripts, although this area should not be overlooked. We’re only
concerned with scripts that have been written in-house by current and former
employees that know passwords, trade secrets, system configurations,
application vulnerabilities, backdoors, etc. It’s the knowledge of these that lend

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

to gaping security holes in homegrown scripts. System administrators are also
often asked to write web-based scripts that can be used by others in an
organization in order to provide access to information without providing an actual
system login. There are additional security implications of these types of scripts.

WHY SCRIPTS CAN BE UNSAFE

As mentioned in the previous paragraph, employees and contractors are trusted
with sensitive information about the company they work for. This information
commonly finds itself into scripts sometimes on a temporary basis and other
times on a permanent basis. Examples of sensitive information commonly found
in scripts:

• Sensitive passwords
• Key network infrastructure details
• Hostnames, supported protocols and port numbers
• Usernames

Certainly everyone can appreciate the need to keep passwords secret, but how
about the other 3 examples given? Does your organization cover up posted
network infrastructure diagrams during tours? Or better stated, do you provide
copies of your network infrastructure to your direct competitors? Is your name
server setup to allow anyone to pull an entire zone transfer of your domain(s), or
are they only allowed to query for specific hosts? Do you make public a list of
any or all usernames available on a system? These questions are important
because they affect the confidentiality of your organization. Providing any other
this information explicitly or implicitly (via insecure scripts) completes a large part
of an attacker’s reconnaissance mission.

At this point you may think that beyond potential confidential information revealed
inside, a script is safe enough otherwise. This is simply not the case. Much like
human beings, scripts too can be manipulated and tricked into doing things that
we don’t intend for them to do.

SECURING THE INSECURE

Now that we have a general understanding of how scripts, although helpful in
many regards, can be a nuisance, we can discuss the steps necessary to
eliminate their insecurities.

First and foremost, although quite basic, we need to cover the topic of file
permissions. Anyone that is writing scripts on a system need to be familiar with
and understand the implications of the file permissions they give to their scripts.
Ideally, administrators are manually assigning permissions to their scripts as part
of their process of developing it. Failure to specifically do so doesn’t necessarily
have to be a great concern however, if that person has set his/her umask.
Umask is used to define default permissions for newly created files just for these

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

instances to ensure that scripts (and other files) can not be read/modify/deleted
by anyone. Common umasks are 022 and 027. The former example sets all
newly created files’ permissions to 755. For the security-conscious I recommend
the latter, which sets those permissions to 750. If you are unfamiliar with these
concepts the Computer Science Department at Southern Illinois University offers
a nice introduction at: http://www.cs.siu.edu/computing/unix/permissions.html

Knowing who the intended users are for the scripts that you are auditing/writing
helps you to understand what file permissions you need to set on the script. For
instance, if you are writing a log parsing script to be used by your technical
support staff, you’ll probably need to make the script readable and executable by
the world, unless they are part of the group that the script is owned by. That
brings us to a similar topic, file ownership. We already know that umask controls
the permissions of newly created files, but what is the control mechanism for a
new files owner and group owner? These are set to the owner and primary
group of the user that creates the script (and other files). So if I create a script
that I intend for technical support to use, I either have to change the group
ownership of it to their group (assuming they are all part of a single group), or I
have to modify the permissions so that the world can read and execute it. With
that notion in mind, I should first sanitize the script and remove any critical
information from it that I don’t intend for them to see. Being aware of file
permissions, then, helps prevent us from creating scripts with 777 permissions
that contain confidential information.

Ensuring that our scripts are only readable / executable by those we intend is a
good first step in this process. The next step is to ensure that those same people
(or anyone that gains access to their accounts) can’t use a script in a manner in
which we didn’t intend. There are a few ways in which a script can be tricked into
doing something that we didn’t intend. These are credited to David Totsch and
taken from his article in Enterprise Solutions entitled “So, You Think Your Shell
Scripts are Secure” available online at:
http://www.interex.org/pubcontent/enterprise/jul00/16uxsys.html

1. Modifying in-process temporary files
2. Exploiting the use of environment variables
3. Planting a specially formulated file for the script to operate on

Scripts are often used to create, modify and delete a variety of files usually
requiring that we store some portion of the work in an external file while the script
performs other functions until it needs that data again. The length of time that
this temporary file lays in wait can vary from less than a second to countless
minutes, all depending on what else the script needs to do. The problem with
this is that if the script doesn’t take appropriate caution in protecting that
temporary file, it could be modified or even deleted, causing the script to act in
unexpected ways. With the right modification, an attacker could use this to their
advantage. This problem is of great significance because the locations that we

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

store these temporary, in-process files are usually /tmp or /var/tmp, both of which
are world-writable. This means that anyone on the system can delete the
temporary file, and if they know how the structure of the file, they can replace it
with a file of their own. We can protect our scripts from this (to a certain extent)
by first creating a directory with secure permissions and then storing our in-
process files in that secure directory. That way an attacker can’t even see the
files we have stored, let alone the contents in them.

All too often we don’t account for the environment variables that people have set
when they execute our scripts. As usual, most of the time this doesn’t cause a
problem, but some of the time it does. If our shell scripts rely on the PATH
environment variable for the location of ‘echo’ (or any other normally used
command), then we could be in bad shape if the script executes as root and the
user who is executing the script has a malicious ‘echo’ early on in their PATH.
Historically I’ve always gotten around this by hard-coding the full path to the
‘echo’ that I want to use. This can cause problems however, specifically when
my script is on an NFS share and I use it from multiple servers that are not
identical in installation and configuration. A better solution, then, is to sanitize
these environment variables at the beginning of the script. For instance, you
could set the path to be ‘/usr/bin:/usr/sbin’. Generally speaking, that’s a pretty
safe PATH. PATH isn’t the only environment variable we need to be concerned
about, however. IFS, Input Field Seperator, is of equal or even greater concern.
By having a carefully set IFS, a user executing a script can malform the scripts
data and have it execute a list of commands (such as usr local bin echo) instead
of the full path to a specific command (such as /usr/local/bin/echo). This then
relies on PATH to find the usr, local, bin and echo commands. If one of those is
malicious, problems will occur.

Lastly, piping multiple commands together in a script can leave our scripts open
to malicious interpretation. Often times we’ll write a simple script that lists the
files in a directory and executes some operation on those files, be it a word
count, a disk usage summary, etc. Take for instance, the command:

ls -1 | sed “s/^/wc -l /” | sh

We could be in a world of hurt if the directory we execute this in has the following
files:

A;X=`echo \\\057var\\\057tmp`
B;PATH=$X:$PATH
C;Trojan

First, sh will count the lines in A, then it will assign /var/tmp to the variable X.
Second, it will count the lines in B and modify the PATH such that /var/tmp is at
the beginning. Thirdly, it will count the lines in C and execute Trojan.
Presumably, there is a Trojan file in /var/tmp that has malicious code that could

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

mail a copy of the passwd and shadow files, or it could simply start deleting the
entire contents of the disk using rm. A better way to do this is to use a for loop:

for I in *
do
 wc -l $I
done

In this manner, even if those same files exist, the X and PATH variables are only
valid inside the current iteration of the for loop that they are executed. So this
eliminates the issue. Now that we have covered some specifics to shell scripts,
let’s take a look at some other very popular scripting languages, such as perl,
python and expect.

Perl is arguably the most useful scripting language I’ve ever used in
administering systems. With that being said, there are two specific security
issues with it that we should be aware of and account for.

1. Use perl in taint mode
2. Use sysopen() instead of open() (or use perl 5.6 in order to use open())

Perl can be enabled in taint mode by specifying the –t command line option (so
the first line in your perl script becomes: #!/path/to/your/perl –t). In taint mode,
perl checks various function calls for code that could be used maliciously.
Although it can’t account for every scenario, it does a pretty good job. For
instance, it checks to make sure that we’ve specifically defined our environment
variables such as PATH. We need to define these in perl just like in shell scripts,
as mentioned above. A list of the monitored functions has been made available
by Jordan Dimov, from his article “Security Issues in Perl Scripts: Perl Taint
Mode” available online at: http://www.developer.com/open/article.php/631331.

If you’re used to using perl’s ‘open’ function in the following manner, you will want
to consider using sysopen() instead:

open F, $file or print "couldn't open $file: $!";

Joseph N. Hall explains, from his article “effective perl programming” in ;login:
available online at: http://www.usenix.org/publications/login/2000-
4/features/perl.html that the reason for this is because $file be set to “cat
/etc/passwd” and it would do just that. The sysopen() function, on the other
hand, is only able to open files, it can’t execute commands, so using it would be
more appropriate:

sysopen F, $file, O_RDONLY or print "couldn't open $file: $!";

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Alternatively, if you have perl 5.6 or newer available to you, you can continue to
use the open() function as long as it is used in the three arugment manner as
such:

 open (F, “<”, $file) or print “couldn’t open $file: $!”;

A METHODOLOGY FOR AUDITING YOUR ENVIRONMENT

Now that we have discussed some issues with writing scripts, we need to
develop a methodology for taking this new found information and applying it to
your environment. If your platform(s) are brand new, you are the first
administrator to operate them, and today is your first day on the job, then you
have no reason to audit your systems for home-grown scripts because there
aren’t any. However, no one meeting those criteria is likely to come across this
paper, so this section may very well be the most important. I’ll use my
environment as the example for forming this methodology.

Along with several other system administrators, I am responsible for almost 50
separate Unix servers hosting applications such as mail, DNS, web, DHCP,
cablemodem provisioning, etc. Most of these systems have been up and running
for more than year and have had several administrators that have performed
work on them via a command prompt. Undoubtedly there are countless scripts
on each system that have been written on the fly to solve a problem, and also as
a planned upgrade to the system to enhance its usefulness. We need to be able
to identify, review and correct any security issues that these scripts present (or at
least document them so that the risk and exposure can be calculated and
presented to the team and management.) If you can get management, or at
least your teams buy-in that this is an important, time-sensitive issue, then I
suggest you break the work out into components that each person can undertake
individually, because one person may not have the patience or the thoroughness
to complete the job satisfactorily. So in my environment, I would like to split the
fifty systems into five groups so that each team member, including myself have
10 systems to audit.

Once the groups of systems have been identified and I’ve been assigned my
group, I should perform the following steps:

1. The discovery process – This is the process I will need to follow in order to

locate all of the home-grown scripts on each system. The order in which I
execute each of the subtasks to this process is irrelevant, as long as I’m
thorough and complete each one fully.

a. Check all users’ crontab – I’ve found that the most common place

that scripts are referenced in a system are in the crontabs. Fairly often
we write scripts that need to run on an iterative basis at specific times,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

and that’s exactly what cron is for. There’s no need to run crontab -l
for every user on the system, you can simply check the crontab
directory. The Solaris Security FAQ, written by Peter Galvin and
available online at: http://www.itworld.com/Comp/2377/security-faq/
tells us that on Solaris this is located in /var/spool/cron/crontabs.
Redhat’s support resources for cron, available online at:
http://www.redhat.com/support/resources/tips/cron/cron.html reveal
that on Redhat systems, they are located in /var/spool/cron. It may be
different on your system, but executing a find or just manually poking
around should reveal its location. In looking through each crontab,
note each entry listed and then check the actual file referenced to see
if it is an operating system command such as rdate, or if it’s a home-
grown script. Then add this script to your list.

b. Check the process list – Executing ps -ef or ps auxw will give you a

listing of the processes currently running on the system. This can be a
good clue as to what home-grown scripts users are using that may or
may not otherwise be easily determinable.

c. Check users’ home directories – Although this can lend itself to

providing you with a comprehensive list of scripts to check, you need to
exercise caution in this matter and be sure you have explicit written
permission to do so. Users are likely not going to appreciate you
“snooping” around in their personal space, even if they have nothing to
hide. If you do have permission, however, specifically check for ./bin
and ./scripts subdirectories.

d. Compare all files on a system to similar systems – With regard to

file systems local to a Unix machine, this step is generally a catch-all
once you have completed the steps above. By executing a well-
crafted find command, you can generate a listing of all files on the
system and then compare it to a similar listing from another like
machine to generate the differences. A “like” machine is a machine of
the same OS installation, patch-level and preferably install date.
Comparing a Solaris 9 system that was built 6 months ago to a RedHat
6.2 installation from 3 years ago is likely to be very unproductive
whereas comparing two Solaris 8 machines that were built 2 summers
ago, even though the provide completely different services is
worthwhile. This task by no means is not easy, but it will catch all of
the scripts you missed before (including those in /var/tmp,
/usr/local/bin, etc.) A great tutorial on using find has been written by
Computing Services – Web Unit of Athabasca University and is
available online at:
http://www.athabascau.ca/html/depts/compserv/webunit/HOWTO/find.
htm

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

e. Systematically cover shared file systems – In any medium to large
business, this step is likely to be the most challenging. Many
companies find it useful to have a universal shared file system that
extends across a large portion of, if not all of its systems. Since there
is only one, you have nothing to compare it to, like in the step above.
This task is best undertaken over time, and by as many administrators
that you can involve as possible.

2. The auditing process – Now that you (and hopefully your coworkers) have

developed a comprehensive list of the home-grown scripts in use in your
organization, you can combine duplicate entries (such as a script that was
written on one system and copied without changes to one or more other
systems.) If your organization has been around for a while then you’re likely
to develop a lengthy list of scripts to be reviewed. Again, this process may
best be undertaken by dividing out portions of the list to each available
administrator. The meat of this process, then is to review each script that
you’ve been assigned for not only the issues discussed above, but for other
security issues that you’ll need to research on your own. By no means has
this paper covered all, or even a wide-range of security issues related to
home-grown scripts.

3. The implementation process – After having reviewed each of the home-

grown scripts from your list. You should have come up a replacement script,
if you have the technical knowledge, or at least a documented list of the
potential security implications. Regrouping with your fellow administrators, it
now becomes time to cover any scripts that the individual administrator
couldn’t rewrite / correct on his or her own. Having done this, each script also
needs to be reviewed to see whether the changes will impact the scripts
currently in production. Your organization’s change management policies will
dictate whether you can just replace an insecure script with a more secure
script. In my organization, for instance, there are many scripts that we use on
a regular basis that simply provide information, are not used by any
automated processes, and are expendable. Those criteria enable me to fix
and replace the script at will without following our change management
policies. On the other hand, we also have dozens of scripts that are used for
providing customer-facing data, pulling billing reports, and are not
expendable. The changes to these scripts need to be scrutinized, tested and
retested to ensure that they don’t impact the existing service when they are
put into production.

CONCLUSION

Home-grown scripts are necessary and immeasurably advantageous to systems
administrators. To do away with them is not only foolish but impossible. The key
is to learn how to write them securely and to fix the scripts already written that
are insecure. This process is an iterative process and will develop over the years

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

that we work in this field. System administrators need to be conscious of this fact
and need to be resourceful in using the Internet to discover these security
implications, to learn the fixes for the discovered implications, and to be aware of
best practices used by others in the Internet community.

Auditing the existing environment is crucial to being prepared for attacks, both
internal and external. If you can circumvent an attackers reconnaissance
mission, you can likely already circumvented the attack. Therefore, securing
your homegrown scripts is as crucial to your organization as implementing a
firewall, running and regularly updating your virus software and monitoring your
systems for unusual events.

REFERENCES

Computing Services – Web Unit, Athabasca University. “Some examples
of using UNIX find command.” March 30, 1999.

 http://www.athabascau.ca/html/depts/compserv/webunit/HOWTO/find.htm

Department of Computer Science, Southern Illinois University. “Unix
Basics, File Permissions.” 05/10/2000.
http://www.cs.siu.edu/computing/unix/permissions.html

Dimov, Jordan. “Security Issues in Perl Scripts: Perl Taint Mode.”
Developer.com. February 7, 2001.

 http://www.developer.com/open/article.php/631331

 Galvin, Peter. “The Solaris Security FAQ.” Unix Insider. January 1, 2001.
 http://www.itworld.com/Comp/2377/security-faq/

Hall, Joseph. “effective perl programming.” ;login. April, 2000.
 http://www.usenix.org/publications/login/2000-4/features/perl.html

Redhat, Inc. “Cron.” 2003.
 http://www.redhat.com/support/resources/tips/cron/cron.html

searchVB.com. August 27, 2002.
 http://searchvb.techtarget.com/sDefinition/0,,sid8_gci212948,00.html

Totsch, David. “So, You Think Your Shell Scripts are Secure.” Enterprise
Solutions. July, 2000.

 http://www.interex.org/pubcontent/enterprise/jul00/16uxsys.html

