
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Security Implications of SSH

GSEC Certification Version 1.4b (amended 29 August 2002)

By William Pfeifer
18 April 2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 2

Abstract
As an updated and secured version of older protocols such as Telnet and FTP,
SSH is being installed and enabled on an increasing number of devices, from
personal desktops to firewalls. There has been significant discussion on the whys
and wherefores of the installation of SSH, the benefits of SSH over earlier
protocols, and even how to set up tunneling to secure communication for other
protocols via SSH. I have thus far seen little discussion on the potential security
exposure offered by SSH and how to mitigate that exposure. This paper was
written to provide a high-level discussion of some of the security considerations
associated with SSH as well as some potential methods of addressing those
considerations.

SSH is a useful protocol, but to be a true benefit to an organization, it must be
implemented with some care. Evaluation of where in an architecture it is installed
as well as some configuration suggestions can significantly increase the security
of the overall implementation.

A Brief History of SSH
SSH-1 was created in 1995 by Tatu Ylonen, a university researcher in Finland, in
response to a password-sniffing incident on his university network. He released
SSH later that same year as freeware, and included the source code. At the end
of the year, SSH Communications Security, Ltd. (SCS) was founded as a result
of the widespread usage of the new SSH protocol suite. In 1996, SCS released
SSH-2, a new and improved version of SSH-1 that corrected some deficiencies
in the original product. However, SCS issued SSH-2 as a commercial product
and not as freeware; it came with a more restrictive license than SSH-1 (SCS
has since loosened the licensing restrictions). It also lacked some of the features
of SSH-1 and was not backward compatible with the earlier protocol. As a result,
SSH-1 is still more widely deployed than SSH-2. [1]

A common variant of SSH-1 and SSH-2 is OpenSSH, developed by the FreeBSD
group from a derivative of an early version of SSH-1. OpenBSD v2.6 included the
first release of OpenSSH (v1.2.2) in December 1999. OpenSSH v2.0, which
shipped with OpenBSD v2.7 in June of 2000, included both SSH-1 and SSH-2
support in a single program. [2] OpenSSH does not carry the licensing
restrictions included with the SSH-1 or SSH-2 protocols as published by SCS.

The OpenSSH site currently supports a server running the ScanSSH program
written by Niels Provos. This server polls random IP addresses on the internet to
scan for active instances of SSH. When it locates such a server, it records the
version of both the SSH server and the SSH protocol that are running and then
disconnects from the machine. The latest scan by the OpenSSH site’s ScanSSH
server was tallied in April of 2002; of 2.4 million SSH servers polled, 59% were
running OpenSSH v1.99. The next most popular version was SSH v1.5 at 17.9%.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 3

Total use of OpenSSH servers (versions 1.5, 1.99, and 2.0) was 66.8%. Total
use of SSH servers (versions 1.3, 1.5, 1.99, and 2.0) was 28.1%. [3]

Please note that for the purposes of this paper, the term “SSH” refers to the
protocol in general, unless a specific implementation is stated.

Convention
In a paper with as many examples as this one, those examples become
cumbersome (not to mention boring) if the author consistently refers to “the
system administrator”, “a given system”, “a network’s end users” and other such
generic terms. For purposes of the examples in this paper, we will assume that
we all work for InsecurCo. Our system administrator’s name is Bradmin, who
reports directly to a VP who we’ll call Bossman. There is a malicious person
trying to gain access to InsecurCo’s systems and/or private data whom we’ll
name Johnny Hackster. Authorized users of InsecurCo’s network systems are
Mary and Carlo. And let’s call the main file servers Server_1 and Server_2 for the
sake of simplicity.

The Situation
As security awareness grows, more and more administrators and users are
turning to SSH as an effective and easy way to secure their communications via
encryption. In many cases, SSH tunnels are set up to encrypt protocols that do
not include any encryption of their own; common examples of this are remote
control of servers and desktops via VNC over SSH tunnels (see Appendix A for a
sample setup) or remote database access utilizing SQLNet via SSH tunnels.

While SSH provides vastly improved security over the protocols that it was
written to replace (specifically the “r” commands such as rlogin and rsh, but also
Telnet and FTP), the unfortunate reality is that SSH is not a “silver bullet” capable
of removing all dangers. Known exploits of SSH exist that can be used as attack
vectors against a network. For example, the US Department of Energy put out
notice in 2001 that “… many servers running SSH have been compromised…”
via an exploit that allowed attackers to gain root-level access to vulnerable
servers [5]. More recently, CERT updated a list of vulnerabilities with the key
exchange and initialization processes for SSH implementations from multiple
vendors. “In some cases remote attackers could execute arbitrary code with the
privileges of the SSH process… Attackers could also crash a vulnerable SSH
process, causing a denial of service.“ [6] Other such vulnerabilities exist, and
more will be found as time goes on and attackers find new ways to penetrate
secure systems.

As a further danger, SSH port-forwarding can be used to effectively bypass
security measures. If Mary is permitted SSH access to Server_1, then a default
installation of SSH will also allow her to set up port-forwarding tunnels. Because
SSH port forwarding occurs through an SSH-encrypted tunnel, port-forwarded
traffic will bypass most firewalls and/or IDS systems in the path of the tunnel.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 4

Let’s say for this example that Mary has set up an SSH session from her home
PC that includes port forwarding through Server_1 to port 5900 (the standard
VNC port) of Carlo’s desktop at work. She fires up her VNC session and now has
direct control of Carlo’s work machine from her home network. That connection
has bypassed all of InsecurCo’s firewalls, which were set up to deny VNC
sessions from external sources.

If Mary has malicious intent, she could hack the corporate network from home in
ways that might be very difficult to detect and/or prove if necessary. Fortunately
for us, Mary doesn’t have a malicious bone in her virtual body. However if she
forgets to close her SSH session, then when Johnny Hackster comes over for
dinner (he’s really nice once you get to know him), he could surf InsecurCo’s
network while Mary is busy stuffing the turkey. Yet another risk is that if Mary’s
PC had been compromised by a Trojan Horse or virus, that could provide an
alternate avenue for Johnny Hackster to access the internal corporate network.

Threat Mitigation
Obviously, the best way to secure a system is simply to eliminate all external
access to it. Unfortunately, such an approach is simply not practical, and so we
must in all cases strive to find the proper balance between accessibility/useability
and security. Brian McKenney began his article titled “Defense in Depth” as
follows:

A primary Information Assurance (IA) objective is to protect
enterprise or enclave resources through Defense in Depth (DiD). A
DiD strategy combines the capabilities of people, operations, and
security technologies to establish multiple layers of protection--
analogous to protecting a home with multiple defenses. These
defenses may include a strong lock at the front door, secured
windows, an electronic home security system, bright lights on the
outside, a neighborhood watch program, and a dog that barks at
people who walk near the home. An intruder must circumvent these
defenses in order to gain unauthorized entry to the home. With DiD,
the objective is to implement defenses at multiple locations so that
critical enclave resources are protected and can continue to
operate in the event that one or more defenses are circumvented.
Managers must strengthen their defenses at critical locations and
be able to monitor attacks and react to them with a coherent
response. [7]

The point to this is that good security cannot be a single-layered approach.
Multiple layers must be utilized to help ensure that, even if one layer of security
should fail, an intruder’s progress into your network will be arrested or at least
logged by the next layer of security. In terms of SSH, the following progression is
recommended:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 5

1. Evaluate whether SSH is necessary on a given system
2. Evaluate which internal and external entities should be permitted SSH

access to that system
3. Patch, patch, patch
4. Run SSHD as a non-root user
5. Run SSH in a CHROOT environment
6. Use TCPWrappers for additional granularity of control

Evaluate whether SSH is necessary on a given system
SSH is a very useful tool to allow secure remote console access to systems, to
securely move files between systems, and to tunnel insecure protocols between
systems. However, there are many situations in which SSH does not provide any
significant benefit and is nothing but unnecessary overhead on a server, and a
security liability to a network.

Let’s say, for example, that Bradmin has a network appliance that is maintained
via an SSL-encrypted browser-based GUI. All functions of the device can be
controlled from a browser, so the only time that Bradmin needs console access
to the appliance is when he is troubleshooting a hardware failure, and he has a
direct console connection into it then anyway. Since running SSH on the system
provides no benefit for administration and it might provide an avenue that an
attacker could utilize to gain access to key resources, he simply disables SSH on
the appliance.

More common would be a situation in which a device does require SSH but port
forwarding is not utilized. In a case where SSH does provide a clear benefit for
administration of the system but port forwarding is either not necessary or is not
authorized, SSH should be run with port forwarding disabled. To do this for
OpenSSH or SSH-1, you need to set the “no-port-forwarding” option on SSHD,
the SSH daemon. I have thus far been unable to locate an equivalent option for
SSH-2; this may require an alternate method of blocking port-forwarding if such
is available.

Sample Man pages for the main versions of SSH can be located at the following
sites:
SSH-1: http://www.employees.org/~satch/ssh/faq/manpages/sshd1_man.html
SSH-2: http://www.ssh.com/documents/32/sshd2man.txt
OpenSSH (current): http://www.openbsd.org/cgi-bin/man.cgi?query=sshd

Note that for earlier versions of OpenSSH, simply select the appropriate version
of OpenBSD from the drop-down menu on the site referenced above.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 6

Evaluate which internal and external entities should be given access to
SSH on that system
Once you have made the decision that a system should, in fact, have SSH
running, you should then look at what hosts require access to SSH on that
machine. Many security administrators allow open access to SSH servers on port
22 (the standard SSH port) regardless of whether or not such open access is
required because they consider SSH to be a “secure” protocol.

In many situations, SSH access can be restricted to just a few hosts rather than
leaving access open to the world. For example, Bradmin installs SSH on
Server_2; since external entities require access to Server_2 via SSH, he opens
up port 22 (SSH) on his firewall to the world. A week later, Bradmin runs an
external security audit on his network and finds that Server_2 is vulnerable to a
new SSH exploit. He takes a moment to re-evaluate his firewall policy and
realizes that SSH was installed on the system to allow for remote administration
from his home office, and also so that InsecurCo’s partner company DataMiners,
Inc. could run shell scripts on the server. Bradmin will patch the server as soon
as he can schedule downtime, but he immediately restricts port 22 access to his
home IP address and the address block owned by DataMiners, Inc. This simple
step significantly reduces the exposure of the vulnerability and should allow him
enough time to test the SSH patch before he has to install it on his production
server.

Another option to consider is permitting external SSH access to one or two
servers and allowing those servers SSH access to other internal servers; such
servers are generally referred to as “bridgehead” servers. With a setup such as
this, you can permit external access to those servers that are not business-
critical while still providing authorized users with remote console access to critical
servers via the bridgehead servers. Generally more than one server acts as a
bridgehead so that users will still have access to required servers even if one of
the bridgehead servers becomes unavailable due to scheduled maintenance or
other causes.

Let’s say that Bradmin gets a request for SSH access to the InsecurCo financial
server, Acctg. This server sits in its own secured area and for security reasons
no external access has been permitted thus far. He doesn’t want to change that
policy and permit external access of any sort, but this request has come from his
boss Bossman who has made it clear that it is a priority item. Bradmin discusses
the issues with Bossman, and they agree that allowing SSH access to Acctg from
Server_2 does not pose a significant risk. When Bossman requires external
access to Acctg, he will SSH in to the bridgehead server, Server_2, and then
SSH again from Server_2 to Acctg. In this way, Acctg is not exposed directly to
any external threats, but Bossman can freely access the box from wherever he
goes.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 7

Patch, patch, patch
If by now you are not a firm believer in keeping up with the latest patches to
secure your systems, then you either have been hacked as a result or you have
been very lucky (so far).

New exploits come out every day and it’s up to each admin to determine which
patches are critical for which systems. Exploits for services that are exposed to
the open internet should be patched immediately for critical systems. Potentially
compromised services on noncritical systems and/or systems with limited
exposure may be able to wait for the next scheduled maintenance cycle if
necessary, but always with an eye toward risk assessment. A non-critical system
that gets taken over by a hacker might expose the heart of your network to
malicious activity, and so might prove to be a larger liability than the single
system would indicate.

An InsecurCo example of the above might involve Bradmin’s SSH bridgehead
server, Net_Console. Net_Console serves as the corporate SSH bridgehead
server, allowing SSH access to InsecurCo from users all over the world. It sits in
its own dedicated DMZ and has no business-critical processes or data resident
on the server. In short, it has been set up as an SSH server that can be taken
offline with relatively little impact. As new SSH vulnerabilities are found and
patches released, the server is updated, but not very aggressively because the
server is considered to be expendable.

Johnny Hackster comes along and notices that Net_Console has an open exploit
in its SSH daemon. He already has an attack script that he downloaded from the
internet and has been waiting to try out, and he thinks this is just the time. The
attack script works, and Johnny Hackster has a root shell on Net_Console.

No big deal, right? Only if Net_Console has no access to any other InsecurCo
servers, which would make it useless as a bridgehead server! If Net_Console is
actively used as a bridgehead server, it probably has access (via SSH or other
protocols) to almost every server InsecurCo runs, and pretty soon Johnny
Hackster will too.

Any exposed server, and especially the bridgehead servers, must be kept up to
date on patches for any exposed service. Some servers may be left unpatched
because they are considered to be “expendable”, but remember that those
servers could be used as just another hop for an attacker to get into your
network.

Run SSHD as a non-root user
In some cases, administrators may be able to restrict the access that SSH has to
their systems. One possible method of restriction is running the SSH daemon
(SSHD) as a non-root user.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 8

Note that running SSHD as a non-root user creates some limitations with SSHD
and so is not a very popular method of securing SSH. I mention it here because
in certain situations it can be very useful to restrict access where only limited
access is required.

By default, most daemons run as root; this provides them with all the rights that
they could possibly require to a given system to ensure smooth operation. The
unfortunate side effect of this is that, when that process is taken over by an
attacker, the attacker may gain root-level access to your system. A process
running as a non-root user with restricted system access, however, does not
pose nearly so great a security risk in case of a program exploit. If a process is
run as a user who has rights only to what that process requires, then an attacker
taking over that process must continue looking for further avenues to gain full
system access.

SSHD will start and run as a non-root user without issue. However, SSHD
running as a given non-root user will only accept connections from that user; the
daemon will not accept connections from other users. [8] There has been some
discussion regarding the use of public key authentication to allow SSHD to run as
a non-root user. The suggestion is that SSHD running as a non-root user would
be unable to access /etc/passwd (the password file) for authentication. [9] This
might be an interesting topic for further research, but is beyond the scope of this
paper.

Run SSH in a CHROOT environment
A CHROOT environment for a process is frequently referred to as a “jail” or a
“sandbox”. The CHROOT program is used to create a virtual system root at the
specified directory. The purpose of this is to restrict access to a specific portion of
the filesystem. A user or process running in a CHROOT environment cannot
access files outside of the designated portion of the file tree because there is no
way to address them – file system calls have no method of specifying a directory
higher than the perceived root of the file system.

One word of caution about using CHROOT environments: since no access
outside of the newly defined root directory is possible, any utilities, programs,
scripts, or other files that are required must be accessible from the logical “root”
directory.

For example, Bradmin has decided that Carlo only requires access to the files in
his home directory (/home/carlo) and nothing else on the system. When Carlo
logs in to the system, his login script includes the following:

chroot /home/carlo

When the chroot command runs, it redefines root (/) as being located at
/home/carlo. As a result, Carlo can access any files located in his home directory

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 9

or any of its subdirectories, but cannot access anything outside of his home
directory. For Carlo, any files outside his home directory are “above” the root
directory. Note that any utilities such as ls, vi, or less that Carlo requires must be
accessible from within his CHROOT environment or they will not function.

SSH-2 has its own helper application called CHROOT Manager to handle
restricting users to their own home directories when they use SSH. They also
include instruction on how to perform the same functions manually. [10]

There is also a SourceForge project related to setting up a CHROOT
environment for SSH users. It can be found at http://chrootssh.sourceforge.net/.
The project involves adding a patch to OpenSSH to allow the performance of
CHROOT without simply adding the command to a shell script (as in the example
above), which is relatively simple for an experienced attacker to circumvent. [11]

There is also a good overview of setting up various CHROOT environments at
http://www.networkdweebs.com/chroot.html. [12]

Use TCPWrappers for additional granularity of control
TCPWrappers was written by Wietse Venema in 1990 to defend a Dutch
university against a malicious hacker. It functions as a drop-in replacement for
the inetd daemon, which handles incoming requests for such common network
services such as FTP, Telnet, and Finger. Requests for controlled services come
in to inetd (or tcpd, the TCPWrappers daemon), which then calls the appropriate
network service daemon to respond to the request.

Since inetd has no security or logging functions built into it, Mr. Venema wrote
TCPWrappers to replace the functions of inetd with the addition of tracking and
security functions so that he could monitor and/or halt a hacker’s progress
through his university’s network. [13]

TCPWrappers offers administrators the option of allowing or denying connections
to many common network services via the /etc/hosts.allow and /etc/hosts.deny
configuration files. Further, in those files can be specified additional shell
commands to be run when certain criteria are met. This feature allows for some
additional tracking of a suspected intruder by means of finger or other such
programs. Finally, TCPWrappers can log its activity via the standard syslog
service. [14]

One of the most significant advantages to using TCPWrappers from a security
standpoint is that the tcpd daemon exchanges data with neither the network
client nor with the server process. [13] This makes tcpd completely transparent to
authorized users, who simply gain access to the network service as requested.
Unauthorized users will be denied access to the requested service, but cannot
directly address tcpd, and so have very little chance of successfully exploiting the
service.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 10

TCPWrappers is included in the default installation of current versions of Red
Hat linux; configuration information can be found online at
http://www.redhat.com/docs/manuals/linux/RHL-9-Manual/ref-guide/ch-
tcpwrappers.html. [15] SSH-2 also has setup information available at
http://www.ssh.com/support/documentation/online/ssh/adminguide/32/Configurin
g_SSH_Secure_Shell_for_TCP_Wrappers_Support.html. [16]

Let’s say that Bradmin has decided to set up TCPWrappers on his SSH
bridgehead server, Server_2. Since it’s a bridgehead server, he decides to leave
it as a “mostly open” configuration, which means that his default is to permit
connections through unless they’re explicitly denied. He knows of a few folks who
have actively tried to hack their way in before, such as Johnny Hackster, and so
he’ll block their known IP addresses via the /etc/hosts.deny file and keep watch
to see what else he needs to deny.

Mary is traveling for work, and needs to access Server_2 via SSH. She sends
her SSH request to Server_2. Tcpd, the TCPWrapper daemon, intercepts the
request. It checks its access lists, doesn’t see her on the deny list and so lets her
pass. It hands off the request to sshd for normal processing. The whole
procedure is completely transparent to Mary.

Later that evening, Johnny Hackster checks out the server. Since his IP address
is on the deny list, the request comes in to tcpd and is not accepted. Tcpd does
not call sshd to handle the connection, and Johnny Hackster is denied. Another
victory for InsecurCo.

Summary
Reasonable steps must be taken in any SSH implementation to determine first
whether SSH should be run, and then to ensure that it is as secure as possible.
The following is a logical progression to follow with any implementation of SSH.

1. Evaluate whether SSH is necessary on a given system
2. Evaluate which internal and external entities should be permitted SSH

access to that system
3. Patch, patch, patch
4. Run SSHD as a non-root user
5. Run SSH in a CHROOT environment
6. Use TCPWrappers for additional granularity of control

SSH is an invaluable protocol, and a great improvement over the old “r”
commands that are its predecessors. It helps protect against snooping, and can
provide an encrypted tunnel for less secure protocols. However, it is not a
panacea to fix all security risks, and it must be implemented with some level of
caution. Use it wisely as part of a comprehensive security plan.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 11

References
[1] Barrett, Daniel J. and Silverman, Richard E. SSH – The Secure Shell.
Sebastopol: O’Reilly & Associates, 2001. 10-12

[2] “OpenSSH – Project History and Credits”. From the OpenSSH web site.
http://www.openssh.org/history.html

[3] “ScanSSH – SSH Usage Profiling”. From the OpenSSH web site.
http://www.openssh.org/usage/index.html

[4] “ScanSSH – Statistics from the Current Scan Results”. From the OpenSSH
web site.
http://www.openssh.org/usage/ssh-stats.html

[5] “CIACTech02-001: Understanding the SSH CRC32 Exploit”. US Department
of Energy Computer Incident Advisory Capability Technical Document number
UCRL-MI-119788. 9 May 2002.
http://www.ciac.org/ciac/techbull/CIACTech02-001.shtml

[6] “Vulnerability Note VU#389665 - Multiple vendors' SSH transport layer
protocol implementations contain vulnerabilities in key exchange and
initialization”. Computer Emergency Response Team Coordination Center. 20
March 2003.
http://www.kb.cert.org/vuls/id/389665

[7] McKenney, Brian. “Defense in Depth”. February 2001.
http://www.mitre.org/pubs/edge/february_01/mckenney.htm

[8] anne@ipsec.com and satch@employees.org. “The Secure Shell (SSH)
Frequently Asked Questions – Section 3.3. Does it make sense to install SSH as
a non-root user on UNIX?”. November 1999.
http://www.ldeo.columbia.edu/NETWORK/ssh/ssh-faq-3.html

[9] Friedl, Markus. Message from the Neohapsis OpenBSD mailing list. April
2002.
http://archives.neohapsis.com/archives/openbsd/2002-04/0239.html

[10] “Using Chroot Manager (ssh-chrootmgr)”. From the SSH Communications
Security Corp web site.
http://www.ssh.com/support/documentation/online/ssh/adminguide/24/Using_Chr
oot_Manager__ssh-chrootmgr_.html

[11] james@firstaidmusic.com. From the SSH CHROOT project on SourceForge.
http://chrootssh.sourceforge.net/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 12

[12] jonathan@networkdweebs.com. “Chrooting daemons and system processes
HOW-TO”. 12 March 2003.
http://www.networkdweebs.com/chroot.html

[13] Venema, Wietse. “TCP WRAPPER - Network monitoring, access control,
and booby traps”. 15 July 1992.
ftp://ftp.porcupine.org/pub/security/tcp_wrapper.txt.Z

[14] Arruda, Stacy M. “TCP WRAPPERS—What are they??”. 16 February 2001.
http://www.sans.org/rr/unix/TCP_wrappers2.php

[15] Red Hat Linux 9: Red Hat Linux Reference Guide / Chapter 15: TCP
Wrappers and xinetd.
http://www.redhat.com/docs/manuals/linux/RHL-9-Manual/ref-guide/ch-
tcpwrappers.html

[16] “Configuring SSH Secure Shell for TCP Wrappers Support”. From the SSH
Communications Security Corp online documentation.
http://www.ssh.com/support/documentation/online/ssh/adminguide/32/Configurin
g_SSH_Secure_Shell_for_TCP_Wrappers_Support.html.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 13

Appendix A
SSH tunneling on MS Windows with Cygwin and Putty
When I started using VNC as a remote access solution for Windows machines, I
searched for some time to find an SSH server for Windows that was free, stable,
and looked like it was going to be around for a while. The only one I’ve found
thus far that fits those criteria is Cygwin. It took me a while to create an easy
installation and setup checklist, but the below has worked well for me (and my
co-workers and friends) for a while now.

This text is intended as a basic checklist for setting up Cygwin and TightVNC on
Windows, and establishing port-forwarded connections from Windows (via Putty)
and Linux clients (via command-line SSH). I’ve had several people other than
myself use this checklist to set up their machines without issue, so I expect that
it’s complete by now (until versions change).

Setup of Cygwin on the Windows server
Download and install Cygwin from www.cygwin.com. Install the base package
along with the OpenSSH server/client package (under Network), the CygRunSrv
program (under Administration), and Vim from the Editors section. I also
generally include the cygwin-specific man pages from the Documentation
section.

Go to My Computer -> Properties -> Advanced tab -> Environment Variables ->
System Environment and add “CYGWIN=ntsec tty”; also append “c:\cygwin\bin”
to your path.

Open a Cygwin console window and run “ssh-host-config –y”. This will configure
SSH to run on your server. When prompted with "cygwin=", type “ntsec tty”.

To set up Cygwin as a service on your server, type "cygrunsrv -S sshd" in a
Cygwin console window.

To create Cygwin users and groups based on local accounts, open a Cygwin
terminal and type the following:
mkpasswd -l > /etc/passwd
mkgroup -l > /etc/group
Note that the “-l” is for Local user/group database. “-d” can be used to create
users and groups based on Domain accounts, but I haven’t had much luck with
that thus far.

Set up TightVNC on the Windows server
Download and install TightVNC from www.tightvnc.com; a default install is fine.

From Start-> Programs-> TightVNC-> Administration-> Show Default Settings,
enter your access password. Click on the Advanced button, and check “Allow
Loopback Connections”.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 14

From that same page, you can also check “Allow Only Loopback Connections” if
you want to restrict VNC to only accept connections that have tunneled directly to
this box. If you also want to be able to VNC to this machine without tunneling, do
NOT select “Allow Only Loopback Connections”.

Setting up Putty for SSH Port Forwarding for VNC connections
Download and install Putty from
http://www.chiark.greenend.org.uk/~sgtatham/putty/.

Set up a saved session to the Windows server configured above.

From the list in the left-hand panel, select SSH --> Tunnels --> Add new
forwarded port
Set the source port to 5900
Set the destination IP and port to 127.0.0.1:5900
Click Add

Via the left-hand panel, go back to Session and click Save

Connect via SSH to the Windows server.

Setting up *nix for SSH Port Forwarding for VNC connections
At a command prompt, type the following:
ssh -L 5900:127.0.0.1:5900 <IP_address_of_Windows_SSH/VNC_server>

NOTE: format for the above command is: ssh -L
<local_port>:<host_IP_or_loopback>:<remote_port> <remote_ssh_server_IP>

To Connect via VNC
SSH to the remote PC via the Putty profile or SSH command line
Use your VNC client to connect to 127.0.0.1 on the default port of 5900
Because of the port forwarding that you set up above, the VNC connection will
redirect through the SSH tunnel and arrive at the Windows SSH/VNC server.

