
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Chris Kwabi Page 1 09/08/03

XML Web Services Security and Web based
Application Security

Chris Kwabi
 GIAC Security Essentials Certification Practical Assignment Version 1.4bC

Security Essentials Certification (GSEC)
Practical Assignment

Version 1.4b (amended August 29, 2002)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Chris Kwabi Page 2 09/08/03

Abstract ...
Introduction..

XML Web Services Overview ..
XML Web Services Security Introduction ...

Common Web Application Security Vulnerabilities...6
Uncorroborated parameters..6
Broken Access Control ..7
Broken Account and Session Management ..7
Cross-Site Scripting (XSS) Flaws ..7
Buffer Overflows...8
Command Injection Flaws ...8
Error handling Problems ..9
Insecure Use of Cryptography..9
Remote Administration Flaws..10
Web and Application Server Misconfiguration...10

Implications for XML Web Services based applications ..11
XML Web Services Security Framework...

Web Services Security Model Motivation..12
Web Services Security Model Terminology...13

Web Service ..13
Security Token ..13
Signed Security Token...13
Claims ...13
Subject ..13
Proof-of-Possession ...13
Web Service End Policy ..14
Claim Requirements ..14
Intermediaries..14
Actor ...14

Web Service Security Model Principles ...14
Web Services Security Framework Specifications ...16
Initial Specifications..17
Follow on Specifications ...17

WS-Security: SOAP Message Security ..
Extended Example...18
Security Considerations ...21

Conclusion..
References..

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Chris Kwabi Page 3 09/08/03

Abstract
XML Web Services are emerging as the fundamental building blocks for creating
distributed integrated, interoperable solutions across the Internet. They represent
a new paradigm in distributed computing that allow applications to be created
from multiple XML Web Services dispersed across the web originating from
various sources regardless of where they reside or how they were implemented.
With all its promise of interoperability and ease of use, XML Web Services are
severely hampered by the inherent lack of support for security within initial
versions of the standard. This threatens to limit widespread adoption of the
technology, as concerns for confidentiality and message integrity across
company boundaries are not adequately addressed. In recognition of this, efforts
are currently underway to create a standardized security framework for XML Web
services.

This paper provides high-level insights into how to create secure distributed,
language neutral, platform independent web based applications using XML Web
Services. A description of some of the efforts that are currently underway to
create a standardized security framework for XML Web Services Security along
with a representative example of a secure XML Web Services message.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Chris Kwabi Page 4 09/08/03

Introduction
XML Web Services are emerging as the fundamental building blocks for creating
distributed integrated, interoperable solutions across the Internet. They represent
a new paradigm in distributed computing that allow applications to be created
from multiple XML Web Services dispersed across the web originating from
various sources regardless of where they reside or how they were implemented.

It provides an open standard, loosely coupled, language-neutral, platform-
independent way of linking applications within an organization, across
enterprises, and across the Internet. Unlike previous distributed computing
technologies like CORBA and DCE, XML Web services are relatively simple and
easy to implement and stand to transform the web from the standard click and
pull model that is prevalent today to a distributed workflow model that connects
the underpinnings of commerce together across the globe. Businesses will be
able to communicate with relative ease in ways that were previously not feasible.

With all its promise of interoperability and ease of use, XML Web Services are
severely hampered by the inherent lack of support for security within initial
versions of the standard. This threatens to limit widespread adoption of the
technology, as concerns for confidentiality and message integrity across
company boundaries are not adequately addressed within the initial standard
protocols. In recognition of this, efforts are currently underway to create a
standardized security framework for XML Web services. The recently released
WS-Security standard, which defines the hooks to ensure end-to-end message
integrity, confidentiality and security of web services, provides the foundation for
this framework.

This paper attempts to highlight the current state of affairs and discusses efforts
that are currently underway to rectify the situation. Today, because of the
ubiquity of the HTTP protocol across the web, XML Web Services applications
are generally built on the same infrastructure as traditional web applications. We
start, therefore, by presenting some of the most common security vulnerabilities
frequently found in traditional web applications and provide recommendations on
how to avoid them. Next we provide a description of the XML Web Services
Security framework that is currently being developed and end by providing a
more in depth look at the pillar of the of the security framework, the WS-Security
specification.

XML Web Services Overview
Many formal definitions of “XML Web Services” exist. However, there are several
basic characteristics that they all possess.

• XML Web Services operate over standard protocols and technologies like
XML, HTTP, TCP/IP, SMTP and others. Today the de facto transport
mechanism for XML Web Services is HTTP protocol. The message

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Chris Kwabi Page 5 09/08/03

protocol, however, is defined to operate over any number of different
transport mechanisms.

• XML Web Services expose functionality to web users through a
standardized protocol called SOAP and is the de facto communication
standard for exchanging XML Web Services messages. It is a
specification that defines an XML format for message exchanges between
communicating parties involved in a web services session. It defines a
simple extensible XML messaging format that can be used over multiple
protocols with a variety of differing programming models (e.g.
requst/response, RPC). It also defines a complete processing model that
outlines how messages are processed as they traverse through a path
and provides a rich flexible framework for defining higher-level application
protocols that offer increased flexibility and interoperability in distributed
heterogeneous environments. Because of the ubiquity of HTTP on the
web today, the initial SOAP specification includes definitions for how
SOAP is used with HTTP and RPC. Invocations of other transport
mechanisms for SOAP messages are currently not standardized and
consequently may cause interoperability issues.

• XML Web Services provide a standard mechanism to describe their
interfaces that allow potential users to build solutions that incorporate
functionality provided by the XML Web Service. This standard service
description mechanism is provided in the form of an XML document format
called the Web Services Description Language (WSDL).

• XML Web Services can be registered so that other potential users can find
them using another component of the standard called Universal Discovery
Description Interface (UDDI)

In securing web services each of these components described need to be
considered. In this document, however, we focus on securing the messaging
component and play particular attention to securing SOAP messages.

XML Web Services Security Introduction
One of the biggest concerns about the potential use of web services is the
concern of vulnerabilities within the infrastructure that may allow malicious users
to attack their system. These attacks could result in limiting availability, private
data being compromised, or loosing control of a machine. Furthermore, Web
Services based systems face some of the same security issues that currently
afflict traditional web applications. When an organization puts up a web
application, they invite the whole world to send them HTTP requests. Attacks
buried in these requests sail past firewalls, filters, platform hardening and
intrusion detection systems without notice because they are inside legal HTTP
requests. Even secure websites that use SSL typically just accept the requests
that arrive through the encrypted tunnel without scrutiny. Some basic guidelines
for constructing secure web based applications along with common web

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Chris Kwabi Page 6 09/08/03

application security vulnerabilities are presented below. These guidelines are
applicable to XML Web Services based applications as well.

Common Web Application Security Vulnerabilities
In crafting secure XML web services based solutions it is important to be aware
of the most common web application security vulnerabilities that are typically
exploited in traditional web based applications. Because of the ubiquity of HTTP
in the web today, XML Web Services are generally deployed over HTTP.
Consequently these security vulnerabilities are also applicable to the majority of
XML Web Services applications as well. A summary of the most significant web
application security vulnerabilities is presented below. Web based application
developers need to be aware of the susceptibilities in the infrastructure so they
can design systems that are immune to these exploits.

Uncorroborated parameters
When web applications neglect to validate information included in web requests
before using this data, they render themselves susceptible to parameter
tampering based attacks. Web applications (XML Web Services included) use
HTTP requests to determine what actions to take. Attackers can tamper with any
part of an incoming HTTP request including the URL, query string, headers,
cookies, form fields, and hidden fields to bypass the web site’s security
infrastructure. Some of the common parameter tampering attacks include forced
browsing, command insertion, SQL injection, cookie poisoning and hidden field
manipulation. Unfortunately, a significant number of web applications are
designed to use client side input validation only which can easily bypassed,
leaving web applications exposed without any real protection against malicious
parameters. It is relatively simple for an attacker to generate their own HTTP
requests and sidestep any of the security mechanisms included within the client.
Therefore, it is important to implement server side checks to defend against
parameter manipulation attacks. In fact, a huge number of attacks on web
applications would become extremely difficult or nearly impossible if server side
validation was included in web-based designs.

The best defense against these types of attacks is to ensure that all parameters
are validated before they used. Each parameter should be validated against
exact rules that specify what input will be allowed. Guidelines on how parameter
validation should be conducted include checking for the following;

• Data type (string, integer, real, etc)
• Allowable character set
• Minimum and maximum length
• Whether a null is allowed or not
• Whether the parameter is required or not
• Whether duplicates are allowed
• Numeric ranges
• enumerated values
• specific patterns

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Chris Kwabi Page 7 09/08/03

Broken Access Control
In the context of building secure web application, access control refers to how
web applications go about granting access to content and functionality to some
users while denying it to others. Access control mechanisms in web applications
are typically tied to the content and functionality that the web site provides. When
restrictions to constrain authenticated users to only perform activities that they
authorized to are not properly implemented, attackers can exploit this defect to
access other user’s accounts, view sensitive data, or use unauthorized functions.
Web application access control mechanism’s are generally not well thought out
and typically morph over time without a consistent global approach. Access
control mechanisms in web applications should be based on the associated
security policy and be included in the security architecture from the beginning of
the design cycle. The security policy should specify what types of users can
access the system and what types of actions and content each class of users are
allowed to access.

Broken Account and Session Management
Each web application must establish sessions to keep track of the stream of
requests directed at the application from each user. HTTP does not inherently
provide session management so web applications must generally handle this
themselves. Today, most of the common web application environments provide
this capability themselves. However, if session tokens are not adequately
protected, attackers can easily take over an active session and assume the
identity of the original user. Creating strong session tokens and ensuring that
they are sufficiently protected throughout their active lifecycle is an essential
element of a secure web application. Another major vulnerability included in this
category is associated with backend authentication. Backend authentication
refers to how web applications authenticate themselves to backend systems
such as databases, directories, and web services. Web applications must have
access to the appropriate security credentials in order to access these systems.
This implies that if the web server is compromised these backend systems may
be at risk. Often plaintext passwords and other easily exploitable security
credentials are directly embedded in source code and configuration files.
Provisions should be made to ensure that security credentials needed to access
backend systems from within the web application are sufficiently protected.

Cross-Site Scripting (XSS) Flaws
Cross site scripting (XSS) refers to an exploit that can transpire when an attacker
uses a web site to send malicious code, usually written in a scripting language
like JavaScript, to another user. When a web site sends information out that it
receives from one user to another user without checking the data then that web
site is vulnerable to cross site-scripting attacks. A malicious user can insert
harmful code in the input and use the web site to forward it other users. These

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Chris Kwabi Page 8 09/08/03

attacks exploit the trust that these targeted end users have in the web site to
perform tasks that would not be normally allowed. These messages are often
disguised by using things like Unicode to make them look less suspicious. Users
are typically tricked into clicking on a link or submitting a form, which causes the
injected code to travel to the vulnerable web server. The web server then reflects
the attack back to the unsuspecting user’s browser, which then executes the
code because it appears to come form a trusted server.

XSS attacks are categorized into two types depending on how the malicious
payload is introduced into the server. Stored XSS attacks generally refer to
attacks where the malicious code is permanently stored on the server in for
example a database, message forum etc. Reflected XSS attacks are introduced
via alternate mechanisms like email or other servers.

Like many other attacks, the best defense against XSS attacks is to perform
rigorous code reviews of all parameters to make sure that only permitted data are
allowed by these parameters.

Buffer Overflows
Buffer overflows are mechanism used by intruders to corrupt the execution stack
of web applications or for that matter any other application that is vulnerable to
this type of an attack. By sending carefully crafted input messages to a web
application, an attacker can cause the web application to execute arbitrary code
that can be designed to take control of the machine. They are generally difficult
to detect and extremely difficult to exploit. Buffer overflows can be found in the
web server products, application server products and the web applications
themselves.

Keeping up with the latest bug reports and software updates for your web and
application server can significantly reduce the likelihood of these attacks. For
custom applications, ensuring that all code that accepts inputs from HTTP
requests perform the appropriate size and type checking on these inputs.

Command Injection Flaws
Web applications typically pass parameters when they need to access external
systems or the local OS. If an attacker can embed malicious commands in these
message parameters, the external system can then be made to execute these
commands on behalf of the web application. These attacks can include calls to
the OS via system calls, calls to external programs via shell commands, and calls
to backend databases using SQL commands (for e.g. SQL injection). Similarly,
scripts written in Perl, Python and other scripting languages can be inserted into
poorly designed web applications and executed. Web applications that use
interpreters are particularly vulnerable to this type of an attack.

A large number of web applications employ OS features and external programs
to provide functionality within the application. When a web application passes

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Chris Kwabi Page 9 09/08/03

along data from an HTTP request to an external system, it must carefully check
this information before passing it along to verify that this data is confined to what
is allowed. If this is not done, attackers can inject special characters, malicious
code, or command modifiers into the data and these poorly designed web
application will blindly pass along this data for execution by the external system.

Error handling Problems
The improper handling of errors in the code of a web application can result in a
variety of security vulnerabilities for the web site. In poorly designed systems,
detailed internal error messages such as stack traces, database dumps and are
displayed to the user. These messages divulge system implementation details
that can be exploited by a knowledgeable hacker.

Web applications, like most other applications, generate error conditions during
the course of normal operation. Examples of these errors include out of memory,
null pointer exceptions, system call failures, database unavailable, network
timeout and a host of others. Proper handling of these errors within the
application should provide meaningful error messages to the user, diagnostic
information to administrators and no useful information about the internal
workings of the web site to potential intruders.

Good error handling design implementations should be capable of handling any
feasible set of inputs and still enforce the requisite security. Straightforward error
messages should be generated and logged so that their cause can be reviewed
later to determine whether they were triggered by an error in the web site or by
an attacker. Error handling should not only focus on user inputs, but should
include errors generated by internal components such as system calls, database
queries, or any other internal calls.

Insecure Use of Cryptography
Most web applications today are required to store sensitive information within the
application infrastructure either in a database or in a file system somewhere.
Sensitive data like passwords, credit card numbers, account data and other
proprietary data are often stored within the application using encryption.
Unfortunately, developers frequently overestimate the protection provided by
encryption and are careless in securing other aspects of the infrastructure.
Common areas where mistakes are made include:

• Insecure storage of encryption keys, certificates and passwords
• Improper storage of secrets in memory
• Poor random generators
• Poor encryption algorithm choice
• Failure to encrypt sensitive data
• Inventing new encryption algorithms
• Failure to include support for security credential maintenance procedures,

like key changes

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Chris Kwabi Page 10 09/08/03

The best way to avoid cryptographic errors is to minimize the use of cryptography
unless absolutely necessary. When it must be used, cryptographic libraries that
have been substantially exposed to public scrutiny should be used. Furthermore,
cryptographic functions should be encapsulated and carefully reviewed.

Remote Administration Flaws
Administrative interfaces to web sites provide powerful features for managing a
web application that can be exploited by intruders if not adequately protected.
The interfaces typically allow administrators to efficiently manage users, data,
and content on their site. Not surprisingly however, these interfaces are
frequently the focus of attacks by intruders both inside and outside the
infrastructure due to their enormous power.

Common problems include weak authentication and/or encryption on these
administrative web interfaces, lack of enforcement of keeping lesser
administrators restricted to areas where they are authorized, flaws in the
separation between users and administrators, and making unnecessarily
powerful administrative functions available.

Web and Application Server Misconfiguration
The configurations of the web and applications servers used by a web site play a
critical role in ensuring the security of the web site. These servers are
responsible for serving up content and invoking applications that generate
content. Application servers may also provide other useful functions to the web
application, like data storage, directory services, mail, messaging etc. Some of
the sever configuration problems that can plague a site include:

• Unpatched security flaws in the server software
• Server flaws and configurations that allow directory listing and directory

traversal attacks
• Unnecessary default, backup or sample files, including scripts,

applications, configuration files and web pages
• Improper file and directory permissions
• Unnecessary services enabled including content management and remote

administration
• Default accounts with their default passwords
• Administrative or debugging functions that are enabled or accessible
• Overly informative error messages
• Improperly configured SSL certificates and encryption settings
• Use of self-signed certificates to achieve authentication and man-in-the-

middle protection
• Use of default certifications

Intruders can use any number of security scanning tools available on the market
to detect many of these flaws and once detected, use these vulnerabilities to
exploit the web site. Ensuring that both the web and applications servers have

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Chris Kwabi Page 11 09/08/03

been hardened and updated with the latest security patches is an essential first
step in preventing this kind of an exploit.

Implications for XML Web Services based applications
Avoiding these pitfalls and following the recommendations provided above to
create secure web based application infrastructures that are not susceptible to
any of the vulnerabilities mentioned above is an essential first step in ensuring
that the web application is securely protected.

XML Web Services based applications present an interesting problem in this
light, however. Users of a poorly designed XML Web services site may
inadvertently expose themselves to security vulnerabilities by interfacing with this
site and vice versa. It is essential therefore to validate that the Web Services
systems that you interface to, do not inadvertently expose your application to
malicious exploits.

XML Web Services Security Framework
The benefits of using an open standard, loosely coupled, platform independent
way of linking applications within organizations, across the enterprise and over
the Web is becoming apparent as more and more XML Web Services pilots and
production systems are being deployed. By far, the most significant promise of
the emerging XML Web Services paradigm is the ability to deliver, integrated
interoperable solutions that span organizational boundaries. However, the lack of
a comprehensive security model within the existing architecture to ensure the
integrity, confidentiality and security of the Web Services architecture is a serious
draw back to the wide spread adoption of this technology. Before wide spread
adoption can truly be expected from the industry, a comprehensive security
framework must be developed for the technology. In recognition of this
deficiency, a number of industry proponents (IBM, Microsoft etc), have joined
together to put together a plan and roadmap for developing a set of specifications
that address how these messages can be protected in a Web services
environment. This effort attempts to create a security model that brings together
previously incompatible security technologies like public key infrastructure and
Kerberos and is being designed to facilitate the creation of secure Web services
in the heterogeneous IT world that is characteristic of environments where this is
expected to be utilized. A broad set of specifications are being developed that
cover security technologies like authentication, authorization, privacy, trust,
integrity confidentiality, secure communications channels, federation, delegation
and auditing across a wide spectrum of application and business topologies.
This section describes the vision of this effort and provides an indication of where
they are in the process and what needs to be done.

By leveraging the built in extensibility inherent in the XML Web Services model,
the specification builds upon foundational technologies like SOAP, WSDL, XML
digital Signatures, XML Encryption and SSL/TLS. The WS-Security specification

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Chris Kwabi Page 12 09/08/03

represents the corner stone of this effort and defines the core facilities for
protecting the integrity and confidentiality of messages within this protocol. It also
provides mechanisms for associating security related claims with the message.
WS-Security specification is only the beginning of a much larger effort to produce
specifications that deal with policy, trust and privacy issues.

Web Services Security Model Motivation
Providing a comprehensive security framework for web services requires
integration of currently available processes and technologies with the evolving
security requirements of the emerging web services applications. It requires
solutions to both technological (secure messaging) and business processes
(policy, trust, risk), and requires coordinated efforts by vendors, application
developers, network and infrastructure providers and users of these services.

To achieve this, the functional requirements of application security must be
abstracted from the particular security mechanisms used. For example, a user
performing an online transaction should not be impacted by whether he uses a
cell phone or a desktop computer as long as each device can securely provide
the proper identity. The goal of this security framework is to allow the creation of
interoperable solutions with relative ease using heterogeneous systems. For
example, the secure messaging model supports both PKI and Kerberos identity
mechanisms and views them as particular incarnations of a broader facility that is
capable of being extended to support other identity mechanisms. Integration
accomplished within the framework of a single security model abstraction
enables entities to still use their existing investments in security technology and
yet be able to securely communicate with other entities that use different security
technologies. Furthermore, as organizations with differing identity mechanisms
attempt to collaborate using web services, the security trust model provides a
flexible framework that can be used to allow them to interoperate when
configured with the appropriate authorization.

Each customer and every web service has their own set of security requirements
based on their particular business needs and operational environment. Since
these requirements typically vary and are often expressed in different levels of
specificity, a successful approach to the web services security model requires a
set of flexible interoperable security primitives that through the use of policy and
configuration enable a variety of secure solutions

To address these challenges, efforts are underway in industry and in the
standards bodies that propose an evolutionary approach to creating secure,
interoperable Web services based on a set of security abstractions that unify
formerly dissimilar technologies. As an example of this evolutionary approach,
the secure messaging model can be added to existing transport level security.
This approach for example, could add message level integrity and or persistent
confidentiality to an existing web service whose messages are currently carried

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Chris Kwabi Page 13 09/08/03

through a Secure Sockets Layer tunnel. A more detailed description of this
evolutionary web services security framework is provided below.

Web Services Security Model Terminology
In order to avoid any ambiguity, a number of the terms that are used to describe
the proposed security framework are described below.

Web Service
The term “Web service” can apply to a wide variety of network base application
topology. In this context, the term “Web Service” describes application
components whose functionality and interfaces are exposed to potential users
through the use of existing and emerging Web technology standards including
XML, SOAP, WSDL, and HTTP. In contrast to web sites, browser based
interactions or platform dependent solutions, Web services are computer-to-
computer based services that are generated via defined formats and protocols in
a platform independent and language neutral manner.

Security Token
Security tokens are defined as representations of security related information.
Examples include x.509 certificates, Kerberos tickets, mobile device security
tokens from SIM cards, and usernames.

Signed Security Token
Signed security tokens are security tokens that contain a set of related claims
that have been cryptographically endorsed by an issuer. Examples include X.509
certificates and Kerberos tickets.

Claims
A claim is a statement about a subject that is generated either by the subject or
by relying party that associates the subject with the statement. No restrictions are
placed on the types of claims that can be made or on how these claims are
expressed. Claims cab be used for example to assert the sender’s identity or
authorized role.

Subject
The subject of a security token is the entity (person, application or business)
about which the claims expressed in the security token apply. The subject of a
security token possesses information that is necessary to prove ownership of the
security token.

Proof-of-Possession
This refers to the information used in the process of proving ownership of a
security token or set of claims. The private key associated with the public key
contained in a security token would be considered proof-of-possession.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Chris Kwabi Page 14 09/08/03

Web Service End Policy
Web services have complete flexibility in specifying the claims they require in
order to process requests. Collectively, these required claims and related
information is referred to as the Web Service End Policy. End policies can be
expressed in XML and can be used to specify requirements related to
authentication, authorization, or other custom requirements.

Claim Requirements
Claim requirements can be applied to entire messages or parts of a message, to
all actions of a particular type or actions under a given set of conditions. An
example of this would be a service requiring a requestor to prove authorization to
purchase above a certain amount.

Intermediaries
As SOAP messages traverse through a system from the initial requestor to a
service end point, they may be operated on by intermediaries that perform
actions such as message routing, or even message modification. Examples
include intermediaries adding headers to the message, encrypting or decrypting
portions of the message or adding security tokens. Care should however be
taken to ensure that message alterations do not destroy message integrity,
violate trust models or destroy accountability.

Actor
An actor is an intermediary or end point that is identified by a URI and that
processes SOAP messages.

Web Service Security Model Principles
XML Web Services are generally accessed by sending SOAP messages that
request specific actions from the targeted service end points. In return, these end
points process these requests and send back SOAP message responses to the
requesting parties. Within the context of the web services security framework,
securing XML web services essentially entails securing the integrity and
confidentiality of these messages and ensuring that the targeted service only
acts on requests that provide the necessary claims requested by the operating
policies associated with the service.
Today, the de facto standard for providing transport level security for web
services is the secure sockets layer (SSL)/transport layer security (TLS) protocol.
SSL/TLS typically enable point-to-point secure sessions that provide security
features like authentication, data integrity and confidentiality. SOAP messages
are typically sent using HTTP over SSL/TLS, which implies that, each node along
a SOAP message’s route will be exposed to potentially sensitive data that may
be contained in the message.

IPSec is a network layer security protocol that can also be used to secure XML
web services applications. In scenarios where the communication end points and
intermediaries are known before hand, secure IPSec sessions can be set up a

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Chris Kwabi Page 15 09/08/03

priori to provide the necessary network level security. Like SSL, IPSec provides
similar security features like host authentication, data integrity and confidentiality,
although at a much lower level in the OSI stack and can be configured to secure
point-to-point sessions between communicating parties in a web services set up.

Both these security mechanisms rely on protocols that are defined outside of the
SOAP message protocol itself. Although SOAP is typically associated with HTTP,
the SOAP message format is not tied to a single protocol. It is conceivable for a
SOAP message to be routed over multiple protocols as it travels towards its
destination

Web services applications exist in a wide variety of configurations that include
mobile devices, gateways, proxies, load-balancers, demilitarized zones (DMZs),
outsourced data centers, and globally distributed dynamically configured
systems. These systems rely on the ability of the message processing
intermediaries to forward messages from one intermediary to another until they
reach their final destination. The SOAP messaging model operates on logical
end points that abstract the physical network and the application infrastructure
and consequently frequently incorporate a multi-hop topology that may include
any number of intermediary actors. A direct consequence of this is that the
confidentiality and integrity of data in the messages flowing through an
intermediary may be compromised after transport level processing is completed
between two intermediary. This compels upstream message intermediaries to
rely on security evaluations made by previous intermediaries and to completely
trust their handling of the messages. This may not be acceptable in certain
scenarios where highly sensitive information is transported within these
messages and calls for a comprehensive end-to-end Web Service Security
architecture to secure communications between two logical end points involved
in a session. This comprehensive security architecture should leverage both
transport and application level security mechanisms to achieve this.

The proposed security framework includes the following characteristics:
• A Web service can require an incoming message to prove a set of claims

(e.g. name, key, permission, etc) that it may require. The service may
reject or ignore messages that arrive without the required claims. The set
of required claims and related information is referred to as the policy.

• A requestor can send messages with proof of the required claims by
associating security tokens with the messages. These messages demand
a specific action as well as prove that their sender has the right to demand
the action.

• When a requestor does not have the necessary claims, the requestor or
someone on its behalf can attempt to retrieve the necessary credentials by
contacting other web services. These other services are referred to as
Security Token Services and may require their own set of claims. Security
token services broker trust between different rust domains by issuing
security tokens

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Chris Kwabi Page 16 09/08/03

Policy

Security
Token

Requestor

Security
Token Service

Policy

Security Token

Claims

Claims

Web Service

Policy

Security Token Claims

Figure 1: Generalized XML Web Services Security Framework (Source: “Security
in a Web Services World: A Proposed Architecture and Roadmap”)

This generalized secure messaging framework depicted above is based on
claims, policies, and tokens can support several specific security models like
identity-based-security, access control lists, and capabilities based security. It
allows the use of existing technologies such as x.509 public key certificates,
Kerberos shared secret tickets, and even password digests. The framework
provides an integrating abstraction that allows systems to bridge diffident security
technologies and is sufficient to construct higher-level key exchange,
authentication, authorization, auditing and trust mechanisms.

Web Services Security Framework Specifications
The strategy described above and the WS-Security specifications described
below provide the framework and foundation for the proposed Web services
security model. The set of security specifications that will be included in this
model is presented below and will be based on the message security
specification (WS-Security)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Chris Kwabi Page 17 09/08/03

SOAP Foundation

WS-Security

WS-Policy WS-Trust WS-Privacy

WS-SecureConversation WS-Federation WS-Authrorzation

Figure 2: XML Web Services Security Framework Specifications (Source:
“Security in a Web Services World: A Proposed Architecture and Roadmap”)

Initial Specifications
• WS-Security: This specification which is the cornerstone of the framework

(currently in existence) describes how to attach digital signatures and
encryption headers to SOAP messages. It also describes how to attach
security tokens, including binary encoded tokens such as X.509
certificates and Kerberos tickets, to these messages.

• WS-Policy: This specification, which is currently undefined, will describe
the capabilities and constraints of the security (and business) policies on
intermediaries and endpoints (e.g. required security tokens, supported
encryption algorithms, privacy rules.)

• WS-Trust: this specification (currently under development) will define a
framework for trust models that enables web services to securely
interoperate.

• WS-Privacy: This specification (currently under development) will describe
a model for how Web services and requestors stat privacy preferences
and organizational privacy practice statements

Follow on Specifications
• WS-SecureConversation: This specification will describe how to manage

and authenticate message exchanges between entities including security
context and establishing and deriving session keys.

• WS-Federation: This specification will describe how to manage and broker
trust relationships within a heterogeneous federated environment including
support for federated entities.

• WS-Authorization: This specification will describe how to manage
authorization data and authorization policies.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Chris Kwabi Page 18 09/08/03

WS-Security: SOAP Message Security
The WS-Security specification describes enhancements to the SOAP messaging
specification to include message integrity and message confidentiality. It also
defines how to attach and include security tokens within SOAP messages.
Finally, it includes a facility for specifying binary encoded security tokens like
X.509 certificates. Each of these enhancements can be used independently or in
conjunction with each another to accommodate a wide range of security models.

WS-Security provides a general-purpose mechanism for associating security
tokens with messages. No particular type of security token is required and it is
designed to support multiple security token formats.

Message integrity is provided by leveraging XML Signature in conjunction with
security tokens (which may contain or imply key data) to ensure that messages
are transmitted without modifications. The integrity mechanisms are designed to
support multiple signatures, potentially by multiple actors and to be extensible to
add additional signature formats.

Similarly, it leverages the XML Encrytion standard in conjunction with security
tokens to keep portions of SOAP messages confidential thus providing message
confidentiality. It includes support for additional encryption technologies,
processes, and operations by multiple actors. The encryption may reference a
security token.

Finally, WS-Security includes a mechanism for encoding binary security tokens.
It describes how to encode X.509 certificates, Kerberos tickets and also includes
opaque encrypted keys. It also includes extensibility mechanism that can be
used to further describe the characteristics of the security token included with the
message.

Extended Example
A representative example of a secure SOAP message using the WS-Security
specification is presented below. The example is provided without delving into
the specific details of each of the constructs defined within the WS-Security
specification and is provided for illustrative purposes. The example is fairly
involved and for the uninitiated may appear intimidating. The message
demonstrates the use of timestamps, digital signatures, X.509v3 token key,
symmetric key encryption XML Web Services message constructs within the
example.

(001) <?xml version="1.0" encoding="utf-8"?>
(002) <S:Envelope xmlns:S="http://www.w3.org/2001/12/soap-envelope"

xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/xx/secext

"
xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/xx/utility"

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Chris Kwabi Page 19 09/08/03

xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">
(003) <S:Header>
(004) <wsu:Timestamp>
(005) <wsu:Created wsu:Id="T0">
(006) 2001-09-13T08:42:00Z
(007) </wsu:Created>
(008) </wsu:Timestamp>
(009) <wsse:Security>
(010) <wsse:BinarySecurityToken

ValueType="wsse:X509v3"
wsu:Id="X509Token"
EncodingType="wsse:Base64Binary">

(011) MIIEZzCCA9CgAwIBAgIQEmtJZc0rqrKh5i...
(012) </wsse:BinarySecurityToken>
(013) <xenc:EncryptedKey>
(014) <xenc:EncryptionMethod Algorithm=

 "http://www.w3.org/2001/04/xmlenc#rsa-
1_5"/>

(015) <wsse:KeyIdentifier
EncodingType="wsse:Base64Binary"
(016) ValueType="wsse:X509v3">MIGfMa0GCSq...
(017) </wsse:KeyIdentifier>
(018) <xenc:CipherData>
(019)
<xenc:CipherValue>d2FpbmdvbGRfE0lm4byV0...
(020) </xenc:CipherValue>
(021) </xenc:CipherData>
(022) <xenc:ReferenceList>
(023) <xenc:DataReference URI="#enc1"/>
(024) </xenc:ReferenceList>
(025) </xenc:EncryptedKey>
(026) <ds:Signature>
(027) <ds:SignedInfo>
(028) <ds:CanonicalizationMethod
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
(029) <ds:SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
(039) <ds:Reference URI="#T0">
(031) <ds:Transforms>
(032) <ds:Transform
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
(033) </ds:Transforms>
 (034) <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
(035) <ds:DigestValue>LyLsF094hPi4wPU...
(036) </ds:DigestValue>

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Chris Kwabi Page 20 09/08/03

(037) </ds:Reference>
(038) <ds:Reference URI="#body">
(039) <ds:Transforms>
(040) <ds:Transform
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
(041) </ds:Transforms>
(042) <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
(043)

<ds:DigestValue>LyLsF094hPi4wPU... 1
(044) </ds:DigestValue>
(045) </ds:Reference>
(046) </ds:SignedInfo>
(047) <ds:SignatureValue>
(048) Hp1ZkmFZ/2kQLXDJbchm5gK...
(049) </ds:SignatureValue>
(050) <ds:KeyInfo>
(051) <wsse:SecurityTokenReference>
(052) <wsse:Reference URI="#X509Token"/>
(053) </wsse:SecurityTokenReference>
(054) </ds:KeyInfo>
(055) </ds:Signature>
(056) </wsse:Security>
(057) </S:Header>
(058) <S:Body wsu:Id="body">
(059) <xenc:EncryptedData
Type="http://www.w3.org/2001/04/xmlenc#Element" wsu:Id="enc1">
(060) <xenc:EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#3des-cbc"/>
(061) <xenc:CipherData>
(062)

<xenc:CipherValue>d2FpbmdvbGRfE0lm4byV0...
(063) </xenc:CipherValue>
(064) </xenc:CipherData>
(065) </xenc:EncryptedData>
(066) </S:Body>
(067) </S:Envelope>

Figure 3. Secure SOAP Message Example – source; “ Web Service Security:
SOAP Message Security”

A review some of the key sections of the example is provided below. Readers
are encouraged to refer to the “WSS SOAP Message Secuirty-11” specification
for more background.

Lines (003)-(057) contain the SOAP message headers.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Chris Kwabi Page 21 09/08/03

Lines (004)-(008) specify the timestamp information. In this case it indicates the
creation time of the message.
Lines (009)-(056) represent the <wsse:Security> header block. This contains the
security-
related information for the message.
Lines (010)-(012) specify a security token that is associated with the message. In
this case, it specifies an X.509 certificate that is encoded as Base64. Line (011)
specifies the actual Base64 encoding of the certificate.
Lines (013)-(025) specify the key that is used to encrypt the body of the
message. Since this is a symmetric key, it is passed in an encrypted form.
Line (014) defines the algorithm used to encrypt the key.
Lines (015)-(017) specify the name of the key that was used to encrypt the
symmetric key.
Lines (018)-(021) specify the actual encrypted form of the symmetric key.
Lines (022)-(024) identify the encryption block in the message that uses this
symmetric key. In this case it is only used to encrypt the body (Id="enc1").
Lines (026)-(055) specify the digital signature. In this example, the signature is
based on the X.509 certificate.
Lines (027)-(046) indicate what is being signed. Specifically, Line (039)
references the creation timestamp and line (038) references the message body.
Lines (047)-(049) indicate the actual signature value – specified in Line (042).
Lines (051)-(053) indicate the key that was used for the signature. In this case, it
is the X.509 certificate included in the message. Line (052) provides a URI link to
the Lines (010)-(012). The body of the message is represented by Lines (056)-
(066).
Lines (059)-(065) represent the encrypted metadata and form of the body using
XML Encryption.
Line (059) indicates that the "element value" is being replaced and identifies this
encryption. Line
(060) specifies the encryption algorithm – Triple- DES in this case. Lines (062)-
(063) contain the actual cipher text (i.e., the result of the encryption). Note that
we don't include a reference to the key as the key references this encryption –
Line (023).

Source; “ Web Service Security: SOAP Message Security”

Security Considerations
As was pointed out earlier, the WS-Security specification provides mechanisms
for ensuring message integrity and confidentiality as well as the ability to include
associated security tokens within the message structure. It does not, however,
include support for establishing trust between communicating parties. For
example, when an application relies on digital signatures to establish trust,
security components outside the scope of the WS-Security specification like
certificate validation and processing are required to ensure the validity of
cryptographic keys that are used for the basis of the trust. Existing specifications

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Chris Kwabi Page 22 09/08/03

like the XML Key Management Specification (XKMS) and future specifications
like WS-Trust mentioned above can be used to provide Trust services between
communicating parties. Key management life cycle issues associated with
administration of cryptographic keys are necessary to establish the basis of the
security infrastructure. Some of the related issues include

• Secure generation of keys,
• Secure distribution of keys,
• Secure revocation of keys,
• Controlling the use of the different type of keys such that they are only

used for their intended purpose,
• Managing access to keys, which is a matter of ensuring that personnel

and applications only use keys they have been authorized to use,
• Keeping an audit trail of key usage.

Applications using the WS-Security specification are required to establish and
manage validity of the cryptographic keys before including them within these
secure message constructs.

It is also strongly recommended that SOAP messages exchanged over an open
network like the Internet include digitally signed elements to ensure their integrity.
However, since imposters can record signed messages and send them back as
replay attacks, it is important to combine the use of digital signatures with other
security mechanisms like timestamps, sequence numbers or nonces to ensure
the uniqueness of the message and to prevent replay attacks.

Digital signatures used for the verification of claims by the sender should be
confirmed by requiring the sender to prove knowledge of the corresponding
private key. This can be established through a challenge response mechanism
whereby the relying party sends a message that the sender is required to sign
and subsequently send back for verification. Once again, timestamps, sequence
numbers or expirations should be used to ensure the integrity of these messages
and to prevent replay attacks.

Security tokens appearing in <wsse:Security> header elements must be signed
by their issuing authority to provide message recipients with the assurance that
the messages have not been forged or altered since issuance. Furthermore,
message senders should be sure to sign any security token elements that it can
voucher for that have not been signed by their issuing authority.

The incorrect application of the combination of signing and encrypting a common
data element can introduce security vulnerabilities. For example, if digitally
signed data left in the clear, is accompanied by the encrypted digitally signed
data counterpart, this would leave the system vulnerable to plain text guessing
attacks.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Chris Kwabi Page 23 09/08/03

Message Ids and timestamps should also be signed to ensure that they have not
been modified in any way. Signed timestamps can be used to counter replay
attacks by caching the most recent timestamp from a particular service for a
given period of time. A minimum of five minutes should be used as a guideline for
detecting replay attacks for timestamps and nonces in highly interactive
sessions.

Passwords included in these messages should be adequately protected if the
underlying transport mechanisms do not provide adequate protection against
eavesdropping.

Conclusion
As more and more companies evolve their IT infrastructures to include XML Web
Services as the primary mechanism for interoperating with business partners and
the like, it will be essential for them to understand the security implications of
using XML Web Service message constructs within their web based applications.
The efforts currently underway to create a standardized security framework to
facilitate interoperability and end-to-end security amongst heterogeneous
systems involved in XML Web Service communications sessions will go a long
way in promoting wide spread adoption of this open standard web based
message protocol.

References

1. OASIS. “Web Services Security: SOAP Message Security” Working
Draft 11. URL http://www.oasis-open.org/committees/documents.php
(3 March 2003).

2. Open Web Security Application Project (OWASP).“The Ten Most
Critical Web Application Security Vulnerabilities”. URL
http://www.owasp.org/ (13 January, 2003)

3. Matt Powell, Microsoft Corporation. “Real SOAP Security” URL
http://msdn.microsoft.com/webservices/building/default.aspx?pull=/library/en
-us/dnservice/html/service11212001.asp (21 November, 2001)

4. Open Web Security Application Project (OWASP). “A Guide to Building
Secure Web Applications”. URL http://www.owasp.org/ (11
September, 2002)

5. WC3. “XML Key Management Specification (XKMS)”. URL
http://www.w3.org/TR/xkms (30 March, 2001)

6. Jeannine Hall Gailey, Microsoft Corporation, “Encrypting SOAP
Messages Using Web Services Enhancements”. URL
http://msdn.microsoft.com/webservices/building/default.aspx?pull=/library/en
-us/dnwebsrv/html/wseencryption.asp (March, 2003)

7. Joint whitepaper by IBM and Microsoft. “Security in a Web Services
World: A Proposed Architecture and Roadmap”. URL

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Chris Kwabi Page 24 09/08/03

http://msdn.microsoft.com/webservices/understanding/default.aspx?pull=/libr
ary/en-us/dnglobspec/html/ws-rm-exec-summary.asp (March 13, 2003)

8. Roger Wolter, Microsoft Corporation, “XML Web Services Basics”,
URL
http://msdn.microsoft.com/webservices/understanding/default.aspx?pull=/libr
ary/en-us/dnwebsrv/html/webservbasics.asp (December 2001)

9. Aaron Skonnard, Microsoft Corporation. “Understanding XML
Schema”. URL
http://msdn.microsoft.com/webservices/understanding/default.aspx?pul
l=/library/en-us/dnxml/html/understandxsd.asp (March 2003).

