
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Niles Mills
Practical Assignment
GIAC Security Essentials Certification (GSEC)
Version 1.4b (amended August 29, 2002)
Option 2 - Case Study in Information Security

Title: Comprehensive Anomaly Detection (CAD)

Note: This paper assumes that the reader has a working knowledge of Linux
administration, shell scripting, Perl programming and TCP/IP networking.

Abstract

A mid-size city in North Carolina had all of its servers and workstations directly
connected to the Internet and was under continual attack (city administration, police
department, fire department, water and power, etc.). With loss of service and data
exposure as key concerns, the city was considering a set of traditional firewalls to
mitigate the risk. An additional concern was that those firewalls could be compromised
as well (without the city's knowledge) and leave them just as exposed as before
installing the firewalls. Coupled with the security risks was a practical issue of a limited
municipal budget, which steered the solution towards the world of open source.

When researching possible open source solutions, one utility stood out as an example
of what we needed to accomplish: portsentry[1]. Portsentry[16] is a port-monitoring tool
that is able to take action when a change occurs in the signature of a machine's ports.
Put another way, if an intruder accesses a port that is not in the allowed port list,
portsentry[16] can automatically add a packet filtering rule (among other responses) to
block the intruder from any further connection efforts. Watching how portsentry[16]
reacted led to the idea that we could build a set of firewalls that could monitor their own
health once they were connected to the Internet. This monitoring went beyond the
usual combination of Tripwire[25] and HID/NID systems and included the ability to take
automated action in response to detecting a change in the known and expected state of
each firewall. The actions were ranked by the severity of the detected change and
could range from simple notification to network disconnect to full system shutdown.
Several years after implementation, the firewalls have deflected a steady stream of
attacks and in one case, a firewall took itself off the Internet when an ftp service was
compromised, proving the value of the monitoring daemons.

Before Snapshot

Before beginning the project, the city was running Oracle on a HP9000 (HP/UX),
accounting systems on IBM RS6000's (AIX) and MIPS-based minis (RISCOS),
Microsoft Exchange, primary/backup Domain Controllers and fileservers on PC-based
servers (Windows NT) and various applications on several hundred PC's running
different flavors of Windows 95/98. PC's were networked via a mix of Microsoft
networking and an aging Novell network. All of these machines were connected directly

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

to the Internet via an ISP-supplied router with each machine owning a static, external IP
address. The city's intranet was a spider web of hubs and switches within buildings,
bridges/frame-relay to connect some buildings and a private cable system (city-owned
head-end unit) to connect other buildings.

Microsoft Windows-based machines were compromised on a daily basis via direct
attacks (NT null-password attacks), email-delivered backdoors (Back Orifice) as well as
a continual parade of virii and worms. Although there was no direct evidence that the
AIX/HPUX/RISCOS machines were being hacked, anyone with access to the same wire
as the city's subnet could have easily lifted a telnet login stream and logged in to those
servers. Also at risk was the exposure of the police department's data to the rest of the
city. In addition to wanting to isolate itself from the rest of the city, the police
department was interested in establishing an independent, direct internet connection to
the state's Justice department for access to online driving records and criminal records.
With the city's security problems, however, the state would not allow the connection to
be set up.

As an initial solution, the city asked their ISP to block external access to the usual
Microsoft ports (137/udp, 138/udp, 139/tcp) as well as telnet (23/tcp) and Oracle
(1521/tcp). The ISP assured the city that the ports were being blocked, but nmap[13]
scans of the city's address space showed that the ports were still visible to the outside
world.

At this juncture, the city elected to solve their problems without the ISP's help and a
decision was made to install a set of firewalls.

During Snapshot

Building the firewalls consisted of installing GNU/Linux on PC-class hardware,
configuring the Linux kernel[10], installing the Comprehensive Anomaly Detection
(CAD) utilities and most important of all -- creating a complete signature of each firewall
before ever connecting it to the internet.

1. Operating System (GNU/Linux) Installation

Three Dell PC's were purchased, each with 350 MHZ Pentium II CPUs, 64 MB of RAM,
8 GByte disks and two 3Com NICs. The Slackware[18] GNU/Linux distribution
(Slackware v3.6, Linux kernel[10] 2.0.35) was installed on each PC. The kernel was
configured to disable IP-forwarding and to only include those drivers necessary to
support the installed hardware. All services except for ftp were disabled in
/etc/inetd.conf and all daemons were disabled in the /etc/rc.d startup scripts except for
named (DNS), sendmail[17] (SMTP), ssh and CERN[8] (HTTP proxy server). A TCP
wrapper[24] was used for the ftp service. At the time these firewalls were built, named
was still in the 4.7 source tree and susceptible to root compromise, so it was installed
under /chroot/named and invoked via chroot. The firewalls are currently running the
latest 9.X version of the BIND[6] source.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Since the firewalls were configured to be non IP-forwarding, there would be no way for
PC's behind the firewall to surf the internet, so the CERN[8] http proxy server (v3.0) was
installed. Although CERN[8] did not have the throughput proxy performance of
SQUID[23] or Apache[22], it was selected due to its excellent security record. Recent
changes to the way modern websites behave (Microsoft ASP-based servers, in
particular) dealt a blow to CERN's[8] ability to proxy all pages and it was replaced with
an Apache[22] proxy server from the Apache V1.3 source tree.

All routing on the firewalls is based upon static routes created at boot-time. No dynamic
routing protocols (RIP, etc.) are installed. And although these firewalls were built some
time ago, they have been kept current with the latest versions of the Linux 2.2
kernel[10], zlib[21], openssl[15], openssh[14], BIND[6], Apache[22], sendmail[17], wu-
ftpd[20] and related utilities.

2. Network Topology

The city consists of two logical groups: the police department and everyone else. The
network and firewalls were laid out as follows:

FW1 = Firewall between City and Internet
FW2 = Firewall between City and Police Department
FW3 = Firewall between Police Department and State Justice Department

Internet <> FW1 <> City <> FW2 <> Police Dept <> FW3 <> State Justice Dept.

3. CAD Installation

The CAD utilities were designed, written and tested over a several month period on an
offline (not connected to the Internet) system. When they were complete, installation of
the CAD system on the firewalls was accomplished by copying the CAD source tarball
from a CD into the /tmp directory of each firewall. The tarball's contents were extracted,
creating the following subdirectories in the firewall's /root directory:

Directory Functionality

fence/admin This directory contains routines that are common to all the individual
utilities (described below in this section), as well as a template for
creating new CAD utilities. Definition of users, interfaces, firewall rules
and responses to actions are all set in this directory. The files that
require modification are listed below in sections 3.1 through 3.4.

fence/attr This utility monitors the attributes of every file found in each of the
directories found in the $PATH variable. Monitored objects include
links, files, pipes, inodes and directories. At run time, discrepancies

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

are considered to be of SEVERITY_MEDIUM, resulting in the external
NIC being taken offline after notifications are sent to users.

fence/cops This is the veteran COPS[9] utility. It checks directory and file
ownership, groups and permissions from the vantage point of correct
configuration for system data (/etc/passwd, /etc/groups, uucp setup,
mail setup, ftp configuration, world writable files that shouldn't be, etc.).
If you can make it through COPS, you're in pretty good shape.

fence/daemons This keeps track of which daemons are running, as well as the
MD5[12] checksum of the in-memory image of each daemon. The
/proc filesystem allows you to treat running executables as though
they are disk images, allowing the comparison of the MD5 value of a
true disk image against the in-memory /proc/PID#/exe image.
Daemons that have been altered after being loaded are thus easily
identified.

fence/dev The dev utility keeps track of the entries in the /dev directory structure,
notifying the system when new devices appear or existing devices drop
off. Changes to the /dev structure after boot time could indicate a
serious breach.

fence/diskspace The diskspace utility keeps track of the amount of free diskspace, free
memory and consumed swap space. Getting this utility set up takes
some time as it is not trivial to figure out what the 'normal' memory
usage is. This is typically a matter of setting limits, letting the
diskspace utility trigger an alert, analyzing the alert and adjusting the
limits again. It took several months to get this setting right on each
firewall.

fence/dirs The dirs utility tracks the expected directory structure of the firewall,
reporting on newly created and missing directories. The presence of
a new directory is considered an indication of a breach.

fence/files The files utility works in the same way as the dirs utility, tracking the
expected file contents of directories, reporting on new files and
missing files. Unlike the dirs utility, which is pretty easy to set up, it
took several months to get the false alerts written into the 'skip' file for
this module. Once it was done, though, it became a valuable addition
to the tool set.

fence/fw This directory contains the firewall 'fw.run' kernel packet-filtering setup
utility and is described in section 3.1, below.

fence/ftp This utility keeps track of all files uploaded to the ftp server directories.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

fence/kernel This utility keeps track of the kernel run-level, setting an alert if the level
changes.

fence/links Much like the CAD dirs and files utilities, this module keeps track of soft
links, notifying when new links appear or existing links are deleted, both
of which indicate breaches. In addition, it will notify when the hard object
underneath a soft link is deleted (ie., bad soft link), again indicating a
breach.

fence/logins The logins module keeps track of all unexpected logins by validating
against a set of allowed userids and ttys. Exceptions are treated as
malicious logins.

fence/logs This directory contains the 'logs' utility which monitors the size of files in
the /var/log directory. Since each firewall is running a log
rotation/truncate utility (home-grown, 'trim_all'), excessive logfile size is
an indication of unwanted activity, signalling a potential breach.

fence/md5 This utility keeps a Tripwire[25]-like database of MD5[12] values for
selected directories and files. The utility is driven by a set of tables that
are created once at system generation time. Every 10 minutes, the
MD5[12] values of every file in the database are checked against the
database and exceptions are taken to be an indication of a breach. A
'replace.value' utility allows one or more files to have their MD5[12]
values updated in the database when making approved changes to the
firewall.

fence/ports The 'ports' utility watches all open server ports, validates them against a
list of known ports and notifies when unexpected ports appear as server
ports. There is also a 'skip' mechanism that lets the administrator use
the lsof[11] utility to accept some transient server ports as non-malicious.
The 4.7 BIND named daemon was notorious in this regard and
generated quite a few false alerts when this utility was first installed.
Netdate can also generate false alarms with transient server ports.

fence/rcommands

 This utility scans the entire drive for the presence of any r-prefixed
commands. Although this appears to be a redundant utility, overlapping
the CAD 'files' utility, this is different in that it scans the entire drive, while
the 'files' utility scans a selected list of directories. In general r-prefixed
utilities should not be anywhere on the system (rlogin, rdist, etc.).

fence/setuid This utility scans the entire drive for the presence of any new setuid
commands. Although this appears to be a redundant utility, overlapping

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

the CAD 'files' utility, this is different in that it scans the entire drive,
while the 'files' utility scans a selected list of directories.

fence/snort This module runs snort[19] on every interface, archives the results every
12 hours and aggregates the activity into attack-report summaries. This
utility currently is only used as an administrative reporting utility, but
could easily be extended to use the CAD notify function as well.

Four files required customization for each firewall:

3.1 fence/admin/fw.run (kernel packet-filtering rules)

/fence/admin/fw.run is a bash script that employs a table-driven approach to configure
the kernel's packet filtering rules. The tables are embedded within the script itself (see
Appendix for full source) and are processed at run time by the script reading itself to
determine addresses and ports. An example of a data table within the fw.run script is

_networks_clean() {
 # Field 1: IP Address block for interface
 # Field 2: Comment
 192.168.100.0/24 Intranet
}

The fw.run script requires the private IP address block of the clean-side intranet, the
address block of the external NIC, as well as a list of the services that will be advertised
on the firewall. The script itself contains extensive instructions on configuration.

3.2 fence/admin/nics (determines internal/external NICS)

The fence/admin/nics file is a list of the firewall's network adapters and identifies which
adapter is the 'clean-side' NIC and which is the 'dirty-side' NIC. While it might seem that
one could determine which is which at run time by using the RFC-1918 private
addresses as a clue, that doesn't work when the firewall is a barrier between two private
address networks. This is in fact the case for FW2 in the city's infrastructure. The nics
file contains clear documentation of the record format for the data.

3.3 fence/admin/services (describes severity levels)

The fence/admin/services file is a list of all the scripts that will use the CAD system's
notify function. Each line in the script contains the script name that will call notify, as
well as an associated severity, described in full later in this paper. The services file
contains embedded instructions on how to add entries. The services files is an
important construct because it allows utilities that do not ship with the CAD system to
also use the CAD's notify function. Again, this is also explained further on in this paper.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

3.4 fence/admin/users (describes whom to notify)

The fence/admin/users file is a list of users that should be notified for the
SEVERITY_LOW and SEVERITY_MEDIUM events. The list also distinguishes
between local and remote users.

4. Firewall Signature Creation and CAD Startup

After all software had been installed (GNU/Linux, CAD, daemon upgrades), each utility
in the CAD system was run to initialize its piece of the firewall signature. This was a
simple matter of cd'ing into each of the /fence directories listed in section 3 (above) and
running "./create". Running the create script would create a flatfile dataset in each
subdirectory. The flatfile contained the signature of that subsystem when the firewall
was clean. To get the CAD system running, entries were added to root's crontab
database for each CAD utility and the system was ready for connection to the internet.

One of the liabilities of monitoring a comprehensive signature for a firewall is the care
you must take when making approved changes to the system. One must always be
thinking about what part of the firewall's signature is being changed before it is changed.
As an example, if you are going to upgrade the sendmail daemon (a too-frequent task),
you know that you'll be changing the MD5 values of the /sbin/sendmail daemon and
probably those of the /etc/mail/*.cf files, too.

There are two ways to deal with that. One way is to make the changes and let the
system trip an alarm and then clear the alarm quickly before the system shuts down.
The other method is to know what the time window is between the MD5 checks and
then get the work done within that window, replacing the MD5 values with the 'md5'
utility's 'replace.value' function. Either way, it requires careful work to keep the
signature intact and the system online.

5. CAD top-level Monitor/Response System

The CAD system operates by running the individual tests (described in section 3,
above) on a frequent schedule via the cron scheduling facility. When a test completes
with no errors, it exits quietly. When a test encounters an error, indicating that the
signature of the firewall has been altered, the test first generates a message file with a
description of the error and then calls the fence/admin/notify script with the following
syntax:

fence/admin/notify name_of_calling_script full_path_to_message_file

After logging the event in an audit trail (fence/admin/audit_trail), the notify script then
looks in the fence/admin/services table to determine what action to take. A few lines
from the services table will serve to show its use:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

/root/fence/dev/test SEVERITY_LOW
/root/fence/md5/test SEVERITY_HIGH
/root/fence/ports/test SEVERITY_MEDIUM

Based upon the SEVERITY associated with the script that encountered the error, the
notify script will take the following actions:

SEVERITY_LOW email users in fence/admin/users table
SEVERITY_MEDIUM email users, shut down internet-side NIC
SEVERITY_HIGH email users, shut down all NICs
SEVERITY_EXTREME message to console, halt machine

In the case of SEVERITY_LOW and SEVERITY_MEDIUM events, an administrator can
still connect to the firewall through the intranet-side NIC, resolve the condition and keep
running. In the case of SEVERITY_HIGH and SEVERITY_EXTREME events, physical
access to the machine is necessary to allow restart, forensic analysis and subsequent
recovery.

* An interesting note is that any root-priveleged process can take advantage of the
CAD system's fence/admin/notify process, by simply making sure that
fence/admin/services has an entry for the calling script. This means that the CAD
system can be easily extended beyond the utilities that come packaged with it.

6. Individual CAD Utilities

The individual CAD utilities share a common format. Each subdirectory typically
contains the following files:

Scripts:

list A ksh or bash script to scan for items of interest.

create A ksh or bash script that runs the 'list' script to create a flatfile named
'allowed'.

test A ksh or bash script that first runs the 'list' script to create a flatfile named
'current' and then runs an intelligent comparison of the 'allowed' and
'current' flatfiles.

Datafiles:

allowed A list of the allowed objects, created by the 'create' script.

skip A flatfile that contains known exceptions that we don't want to trigger
errors.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

current A list of the current objects, created by the 'test' script.

diffs A list of differences between the 'allowed' and 'current' flatfiles, taking into
account the exceptions found in the 'skip' flatfile. When the 'diffs' file is
greater than zero bytes in length, the individual CAD utility will call the
fence/admin/notify script so that appropriate action can be taken.

The differences between utilities typically are found in the test script, which can vary
from a simple 'ls' output to a complex analysis of 'lsof' and 'netstat' data. Each CAD
script is documented internally. An example of one CAD utility (ports) is included in this
paper's Appendix VI. All of the utilities can be reviewed by downloading the CAD utility
set. (See reference [7], below).

After Snapshot

The firewalls achieved the three goals of isolating the city's machines from the internet,
isolating the police department's machines from the rest of the city and allowing the
police department to set up a direct connection to the state's Justice department. To
date, although the snort[19]-based logging has shown many deflected attacks, there
has been just one intrusion, wherein a ftp server (wu-fptd) on the primary, outward-
facing firewall was compromised by a buffer-overflow attack, granting the attacker a root
shell. Fortunately, the directory scanning daemon detected the directory creation that is
part of the attack and as a response, disconnected the firewall from the internet,
eliminating the root login of the attacker.

There are still outstanding issues that surround the potential compromise of Microsoft
Windows-based machines from behind the firewall. The non-forwarding primary firewall
is helpful when a PC is compromised and turned into a malware-driven server, as the
newly created server port can not be seen from outside the firewall. For the same
reason, compromised PC's can not establish outbound connections other than to the
SMTP server or the HTTP proxy server. And there lies the vulnerability -- a malware
application that wants to send information home via the HTTP proxy or via email can not
be stopped. Also, a malware application can not be prevented from wandering around
the city's intranet, scanning and attempting to break into other machines behind the
firewalls. Thus far the city's effort to deal with this liability has centered around running
virus detection software on all Windows-based machines, but that is only as good as the
current virus definitions.

Alert readers will have noted that the monitoring, detection and response processes are
all running as root, which is a liability in itself. It would take a non-trivial effort to change
the daemons to run as non-root, as some of the system information needed by the
monitoring daemons requires root privileges. Still, every little bit helps when you are
putting layers of protection in place, so whatever could run as non-root would improve
the security of the system.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

All in all, the CAD project was successful, eliminating the vulnerabilities identified at the
beginning of the task. Subsequent to the completion of the CAD project, the
cablemodem-based infrastructure was replaced with a GNU/Linux-based VPN, the
police department began selling services to other police departments via GNU/Linux-
based VPNs, malicious email attachments were made safe via procmail and a remote
ssh/expect-based NOC was constructed for external monitoring and software
deployment, but those are topics for other papers.

References

[1] Craig Rowland. Port Scan Detection and Active Defense System. Feb 2002.
URL: ttp://web.archive.org/web/20020207005420/www.psionic.com/products/
portsentry.html (Aug 20 2003)
Note: The original PSIONIC website has been absorbed into Cisco and is now only
available at the Internet Archive Project (Wayback Machine).

[2] William R. Cheswick, Steven M. Bellovin. Firewalls and Internet Security. 1994.

[3] D. Brent Chapman and Elizabeth D. Zwicky. Building Internet Firewalls. Nov 1995.

[4] Mark Grennan. Firewall and Proxy Server HOWTO. Feb 2000.
URL: http://www.ibiblio.org/pub/Linux/docs/HOWTO/Firewall-HOWTO

[5] Daniel Lopez Ridruejo. The Linux Networking Overview HOWTO. July 2000.
URL: http://www.ibiblio.org/pub/Linux/docs/HOWTO/Networking-Overview-HOWTO

Source Code:

[6] Internet Software Consortium. BIND utilities.
URL: http://www.isc.org/products/BIND/

[7] Niles Mills. CAD. 2000.
URL: ftp://www.dnsppp.net/pub/nmills/cad.tgz

[8] European Laboratory for Particle Physics. CERN proxy/webserver.
URL: ftp://ftp.dnsppp.net/pub/nmills/CERN.tgz
Note: This source is no longer available at CERN. This tarball is what we used for our
project.

[9] Dan Farmer. COPS. 1992.
URL: ftp://ftp.dnsppp.net/pub/nmills/cops-1.04.tar.gz
Note: This source is no longer available at Purdue's FTP server. This tarball is what we
used for our project.

[10] Linus Torvalds et. al. Linux kernel.
URL: ftp://ftp.kernel.org/pub/linux/kernel/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

[11] Vic Abel, Ray Shaw and others. lsof.
URL: ftp://lsof.itap.purdue.edu/pub/tools/unix/lsof

[12] Ronald L. Rivest (MIT). md5
 URL: ftp://ftp.dnsppp.net/pub/nmills/md5.tgz
 Note: This is not the latest MD5 source, but reflects what we used for the project.

[13] fyodor@insecure.org. nmap scanner.
 URL: http://www.insecure.org/nmap/nmap_download.html

[14] Tatu Ylönen and many others. SSH. OpenSSH.
URL: http://www.openssh.com/portable.html

[15] Mark J. Cox, Ralf S. Engelschall, Stephen Henson, Ben Laurie and many others.
openssl.
URL: http://www.openssl.org/source/

[16] Craig Rowland. portsentry.
URL: ftp://ftp.dnsppp.net/pub/nmills/portsentry-1.0.tar.gz
Note: The original PSIONIC website has been absorbed into Cisco and is no longer
online. This tarball is the one we used for the project.

[17] Eric Allman and others. sendmail SMTP server.
URL: ftp://ftp.sendmail.org/pub/sendmail/

[18] Patrick Volkerding. Slackware GNU/Linux.
URL: http://www.slackware.com/getslack/

[19] Marty Roesch and many others. snort.
URL: http://www.snort.org/dl/

[20] University of Washington. wu-ftpd ftp server.
ftp://ftp.wu-ftpd.org/pub/wu-ftpd/

[21] Jean-loup Gailly and many others. zlib compression library.
URL: http://www.gzip.org/zlib/

[22] Apache web/proxy server.
URL: http://httpd.apache.org/download.cgi

[23] SQUID: http://www.squid-cache.org/Versions/v2/2.5/
Note: not used for project. Only noted as a reference.

[24] Wietse Venema. TCP-Wrappers.
URL: ftp://ftp.porcupine.org/pub/security/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

[25] www.tripwire.org. Tripwire checksum utility.
URL: http://www.tripwire.org/downloads/index.php

Appendices

Appendix I - fence/admin/services

services
#
Field 1: full path to service
Field 2: severity, as defined in notify script
#
Notes:
#
1. Fields are whitespace-delimited.
2. Record order is not important.
3. Comments begin with '#' and are ignored.
4. Comments begin in column 1 only.
5. Empty records are ignored.

/root/fence/dev/test SEVERITY_LOW
/root/fence/ftp/test SEVERITY_LOW
/root/fence/logins/test SEVERITY_LOW
/root/fence/logs/test SEVERITY_LOW
/root/fence/md5/test SEVERITY_HIGH
/root/fence/attr/test SEVERITY_LOW
/root/fence/ports/test SEVERITY_MEDIUM
/root/fence/dirs/test SEVERITY_MEDIUM
/root/fence/files/test SEVERITY_MEDIUM
/root/fence/links/test SEVERITY_MEDIUM
/root/fence/rcommands/rcommands SEVERITY_LOW
/root/fence/rlogin/test SEVERITY_LOW
/root/fence/setuid/setuid_chk SEVERITY_MEDIUM
/root/fence/cops/test SEVERITY_LOW
/root/fence/snort/test SEVERITY_LOW

End services

Appendix II - fence/admin/nics

nics
#
Field 1: short hostname, as returned by "hostname --short | tr [A-Z] [a-z]"
Field 2: device name for nic (as defined by ifconfig)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Field 3: clean or dirty
#
Notes:
#
1. Fields are whitespace-delimited.
2. Record order is not important.
3. Comments begin with '#' and are ignored.
4. Comments begin in column 1 only.
5. Empty records are ignored.

Remote

fw1 eth0 dirty
fw1 eth1 clean
fw2 eth0 dirty
fw2 eth1 clean
fw2 eth1:0 clean
fw2 eth2 dirty
fw2 eth3 clean
fw3 eth0 clean
fw3 eth1 dirty

End nics

Appendix III - fence/admin/users

users
#
Field 1: short hostname, as returned by "hostname --short | tr [A-Z] [a-z]"
Field 2: email_address
Field 3: local or remote
Field 4: service name or SERVICES_ALL
#
Notes:
#
1. Fields are whitespace-delimited.
2. Record order is not important.
3. Comments begin with '#' and are ignored.
4. Comments can only begin in column 1.
5. Empty records are ignored.

Remote

fw1 msp@XXXXXXXXXXX.XXX remote SERVICES_ALL
fw1 root@localhost local SERVICES_ALL
fw2 msp@XXXXXXXXXXX.XXX remote SERVICES_ALL

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

fw2 westj@localhost local SERVICES_ALL
fw2 root@localhost local SERVICES_ALL
fw3 msp@XXXXXXXXXXX.XXX remote SERVICES_ALL
fw3 westj@localhost local SERVICES_ALL
fw3 root@localhost local SERVICES_ALL

Local

mojave msp@localhost local SERVICES_ALL
sawtooth msp@localhost local SERVICES_ALL
camelot msp@localhost local SERVICES_ALL
hatcreek msp@localhost local SERVICES_ALL
bigsur msp@localhost local SERVICES_ALL

End users

Appendix IV - fence/admin/notify

#!/bin/bash

Usage:
#
/root/fence/admin/notify full_path_to_current_script full_path_to_message_file
>/dev/null 2>&1 &

alias source=.
source /usr/bin/ksh/common.path

_shutdown_delay=10 # minutes

_fence=/root/fence
_services=$_fence/admin/services
_users=$_fence/admin/users
_nics=$_fence/admin/nics
_audit_trail=$_fence/admin/audit_trail
_errors=$_fence/admin/errors
_911=$_fence/admin/911
_hostname=$(hostname --short | tr [A-Z] [a-z])

_error()
{
 cat >>$_errors <<EOF
$(date): $*
EOF

 cat <<EOF

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

$(date): $*
EOF
 exit 1
}

#---#
Get service name and notification type.
#---#

_argument1=$1
_argument2=$2

if [x"$_argument1" = x""]
then
 _error S001: notify invoked without service-name argument
fi

if [! -f $_services]
then
 _error S002: $_services not found
fi

if [! -r $_services]
then
 _error S003: $_services exists, but is not readable
fi

(leading/duplicate spaces in records don't matter with "set --")
 _service_count=$(egrep -c ^$_argument1 $_services)

case $_service_count in
 0)
 _error S004: unable to locate service in $_services: $_argument1
 ;;
 1)
 set -- $(egrep ^$_argument1 $_services)
 _service_name=$1
 _severity=$2
 ;;
 *)
 _error S005: duplicate records for service in $_services: $_argument1
 ;;
esac

#-------------------#
Get message file.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

#-------------------#

if [x"$_argument2" = x""]
then
 _error M001: $_service_name invoked notify without message-file argument
fi

if [! -f $_argument2]
then
 _error M002: can not locate $_service_name message-file: $_argument2
fi

if [! -r $_argument2]
then
 _error M003: $_service_name message-file is not readable: $_argument2
fi

_message_file=$_argument2

#--------------------------------------#
Perform actions based upon severity.
#--------------------------------------#

_message_to_audit_trail()
{
 echo $(date): $_severity $_service_name $* >> $_audit_trail
}

_message_to_console()
{
 _date=$(date)
 echo -e "\r" >/dev/console
 echo -e "$_date: ALERT: $_severity \r" >/dev/console
 echo -e "$_date: $_service_name \r" >/dev/console
 echo -e "$_date: $* \r" >/dev/console

 while read _line
 do
 echo -e "$_date: $_line\r" >/dev/console
 done < $_911

 _message_to_audit_trail message sent to console: $*
}

_user_list()
{

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 # $1 contains 'local' or 'remote'

 _email_list=$(egrep ^$_hostname $_users | fgrep -e SERVICES_ALL -e
$_service_name | fgrep $1 | fgrep -v -e '#' | sed -e 's/^[[:space:]]*//g' -e
's/[[:space:]]*[[:space:]]/ /g' | cut -f2 -d\ | sort | uniq) # two spaces after '-d\'
}

_email_users()
{
 for _user_type in $* # where $* contains 'local' and/or 'remote'
 do
 _user_list $_user_type # load _users with list of email addresses

 for _user in $_email_list
 do
 _message_to_audit_trail emailing $_user

 _service_dirname=$(dirname $_service_name)

 echo $_extra_message > /tmp/notify.message.$$
 echo >> /tmp/notify.message.$$
 cat $_message_file >> /tmp/notify.message.$$

 mailx -s "$(echo $_severity | sed 's/ERITY_/-/g') $(hostname) $(basename
$_service_dirname)" $_user < /tmp/notify.message.$$
 done
 done

 rm -f /tmp/notify.message.$$
}

_shutdown_nics()
{
 for _nic_type in $* # where $* contains 'dirty' and/or 'clean'
 do
 for _nic in $(egrep ^$_hostname $_nics | fgrep $_nic_type | fgrep -v
DISALLOW_SHUTDOWN | fgrep -v -e '#' | sed -e 's/^[[:space:]]*//g' -e
's/[[:space:]]*[[:space:]]/ /g' | cut -f2 -d\) # two spaces after backslash
 do
 _message_to_audit_trail shutting down ${_nic_type}-side NIC: $_nic
 ifconfig $_nic down # DEBUG ONE ITEM
 _message_to_audit_trail ifconfig $_nic down return code: $?
 done
 done
}

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

_delay()
{
 _message_to_audit_trail delay for $_shutdown_delay minutes

 _shutdown_delay_seconds=$(expr $_shutdown_delay * 60)

 sleep $_shutdown_delay_seconds # yes, posix sleep takes 'm' as modified, but this is
more portable

 _message_to_audit_trail delay completed
}

_shutdown_machine()
{
 _message_to_audit_trail shutting down machine

 shutdown -h now # DEBUG ONE ITEM

 _message_to_audit_trail shutdown -h now return code: $?
}

_message_to_audit_trail alert received

case $_severity in

 SEVERITY_LOW)
 _extra_message=""
 _email_users local remote
 ;;

 SEVERITY_MEDIUM)
 _extra_message="$(hostname): DIRTY-SIDE NICS WILL BE SHUT DOWN IN
$_shutdown_delay MINUTES"
 _email_users local remote
 _message_to_console DIRTY-SIDE NICS WILL BE SHUT DOWN IN
$_shutdown_delay MINUTES
 _delay
 _message_to_console DIRTY-SIDE NICS HAVE BEEN SHUT DOWN
 _shutdown_nics dirty
 ;;

 SEVERITY_HIGH)
 _extra_message="$(hostname): ALL NICS HAVE BEEN SHUT DOWN"
 _email_users local
 _message_to_console ALL NICS HAVE BEEN SHUT DOWN
 _shutdown_nics dirty clean

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 ;;

 SEVERITY_EXTREME)
 _extra_message=""
 _message_to_console MACHINE HAS BEEN SHUT DOWN
 _shutdown_machine
 ;;
 *)
 _error A001: unknown severity: $_service_name $_severity
 ;;
esac

End

Appendix V - fence/admin/fw.run

#!/bin/bash

_networks_clean()
{
 # Field 1: IP Address block for interface
 # Field 2: Comment

 # Please ensure that NIC addresses are in
 # /usr/local/psionic/portsentry/portsentry.ignore

 192.168.100.0/24 Intranet
}

_networks_dirty()
{
 # Field 1: IP Address block for interface
 # Field 2: Comment

 # Please ensure that NIC addresses are in
 # /usr/local/psionic/portsentry/portsentry.ignore

XXX.XXX.XXX.0/24 XXXXXX SDSL 512KB
 0.0.0.0/0 Internet
}

_forwards()
{
 # Field 1: IP Address
 # Field 2: interface to be used for forwarding
 # Field 3: Comment (optional)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 192.168.100.3 eth2 mirror
 192.168.100.40 eth2 sparc
 192.168.100.128 eth2 bigsur
 192.168.100.129 eth2 hatcreek
 192.168.100.130 eth2 hatcreek wireless
}

_services_clean()
{
 # Clean-side services.

 # Field 1: Protocol (tcp, udp, icmp or all)
 # Field 2: Port (numeric) or port-range (number:number)
 # Field 3: Service-name (used as comment)
 # Field 4: Clean-side incoming addresses: Internal-host, netblock or "all"
 # Field 5: Access-allowed: intranet, extranet or both
 # Field 6: Comment (optional)
 #
 # Do not enable 8080 proxy, that is driven by /etc/proxy/allowed
 #
 # If "all" is specified, # open up for
 # entire clean-side netblocks.
 #
 # Protocol/port records can be repeated.

 tcp 20 ftp-data all both
 tcp 21 ftp all both
 tcp 22 ssh all both
 tcp 222 ssh-ITIC all both
 tcp 23 telnet 192.168.100.32 intranet
 tcp 25 smtp all both
 tcp 37 time all intranet
 tcp 53 dns all both
 tcp 67 bootps all intranet
 tcp 110 pop3 all both but will be limited to intranet in
_services_dirty
 tcp 119 nntp all intranet
 tcp 137 netbios-ns all both but will be limited to intranet in
_services_dirty
 tcp 138 netbios-dgm all both but will be limited to intranet in
_services_dirty
 tcp 139 netbios-ssn all both but will be limited to intranet in
_services_dirty
 tcp 143 imap2 all intranet
 tcp 220 imap3 all intranet

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 tcp 445 msoft-ds all both but will be limited to intranet in
_services_dirty
 tcp 515 printer all intranet

tcp 873 rsync all intranet
 tcp 1723 pptp all both but will be limited in _services_dirty to
fw6
 tcp 6000:6010 x11 all intranet

tcp 6346 gnutella all both

 udp 37 time all intranet
 udp 53 dns all both
 udp 67 bootps all intranet
 udp 137 netbios-ns all both but will be limited to intranet in
_services_dirty
 udp 138 netbios-dgm all both but will be limited to intranet in
_services_dirty
 udp 139 netbios-ssn all both but will be limited to intranet in
_services_dirty
 udp 445 win2k-netbios all both but will be limited to intranet in
_services_dirty

udp 500 ipsec all both

 icmp all both
}

_services_dirty()
{
 # Dirty-side services.

 # Field 1: Protocol (tcp, udp, icmp or all)
 # Field 2: Port (numeric) or port-range (number:number)
 # Field 3: Service-name (used as comment)
 # Field 4: External-host, netblock or "all"
 # Field 5: Comment
 #
 # If "all" is specified,
 # open up for entire dirty-side netblock
 # (0.0.0.0/0).
 #
 # Protocol/port records can be repeated.

 tcp 20 ftp-data all
 tcp 21 ftp all
 tcp 22 ssh all
 tcp 222 ssh-ITIC 192.168.100.0/24 intranet

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 tcp 25 smtp all
 tcp 53 dns all
 tcp 80 www all
 tcp 110 pop3 192.168.100.0/24 intranet
 tcp 137 netbios-ns 192.168.100.0/24 intranet
 tcp 138 netbios-dgm 192.168.100.0/24 intranet
 tcp 139 netbios-ssn 192.168.100.0/24 intranet
 tcp 445 msoft-ds 192.168.100.0/24 intranet replaces 137/8/9 for Win2000
 tcp 515 printer 192.168.100.0/24 intranet

tcp 6346 gnutella all
tcp 1723 pptp all

 udp 53 dns all
 udp 137 netbios-ns 192.168.100.0/24 intranet
 udp 138 netbios-dgm 192.168.100.0/24 intranet
 udp 139 netbios-ssn 192.168.100.0/24 intranet
 udp 445 win2k-netbios 192.168.100.0/24 intranet replaces 137/8/9 for
Win2000

udp 500 ipsec all

 icmp all
}

_proxy_server()
{
 # Field 1: IP Address for proxy server
 # Field 2: Comment

 192.168.100.1 Apache
}

_black_list()
{
 # Field 1: IP Block
 # Field 2: Comment

 210.0.0.0/8 Asia APNIC-CIDR-BLK2, Australia
 211.0.0.0/8 Asia APNIC-CIDR-BLK2
 218.0.0.0/8 Asia APNIC4
}

##
#####
NO USER-MODIFIABLE CODE BELOW THIS POINT
#####
##

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

#--#
STANDARD SETUP
#--#

alias source=.
source /root/fence/admin/path
source /root/fence/admin/fw

Appendix VI - Example of single CAD utility (ports)

VI (1) create script:

#!/bin/bash

source /root/fence/admin/path

cd /root/fence/ports

./list tcp > tcp.allowed

./list udp > udp.allowed

VI (2) list script

#!/bin/bash

source /root/fence/admin/path

case $1 in
 tcp) netstat -tan | fgrep LISTEN | sort | sed 's/ */ /g' | cut -f4 -d" " ;;
 udp) netstat -uan | egrep ^udp | fgrep '0.0.0.0:*' | sort | sed 's/ */ /g' | cut -f4 -d" " ;;
 *) echo invalid or missing argument ;;
esac

VI(3) test script

#!/bin/bash

#----------------------#
Pre-Processing Setup
#----------------------#

alias source=. # PRECURSOR_ZERO
source /root/fence/admin/path # PRECURSOR_ONE

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

cd /root/fence/ports # PRECURSOR_TWO
_baseline=$(pwd) # PRECURSOR_THREE

#----------------------#
Global Variables
#----------------------#

#----------------------#
Subroutines
#----------------------#

_validate()
{

The subroutine is called with "valid" set to "no".
If all is well, this routine leave valid unchanged.

protocol=$1
port=$2
service=$3
interface="$4"

debug
#
echo protocol is $protocol
echo port is $port
echo service is $service
echo interface is $interface

-P = no port names (ie., don't check /etc/services)
so that the netstat port will match the lsof port

case $protocol in
udp) lsof -P -iUDP |
 tee ./test.lsof.tmp.$$ |

 fgrep -e COMMAND -e $port |
 tee ./test.tmp.$$ |
 egrep ^$service |

 fgrep "$interface" |
 fgrep -q :$port >/dev/null 2>&1

retval=$? ;;

tcp) lsof -P -iTCP |
 tee ./test.lsof.tmp.$$ |

 fgrep -e COMMAND -e $port |
 tee ./test.tmp.$$ |
 egrep ^$service |

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 fgrep -q *:$port >/dev/null 2>&1
retval=$? ;;

*) protocol_lsof=UNDEFINED
 retval=1 ;;

esac

if [$retval = 0]
then

Criteria match approved data.
valid=yes

else
if [! -s ./test.tmp.$$]
then

Port was gone before we could check it.
valid=yes

fi
fi

}

_report_diffs_new()
{

while read symbol data
do

port=$(echo $data | cut -f2 -d:)

valid=no

while read record_type service_exception interface_exception
do

if [x"$record_type" = x"exception"]
then

_validate $protocol $port $service_exception
"$interface_exception"

fi
done < exceptions

if [$valid = no]
then

echo port in question is port $port for protocol $protocol
echo
echo test.tmp.$$:
echo
sed 's/^/new port: /g' < ./test.tmp.$$
echo
sed "s/^/$protocol.diffs.new: /g" < $protocol.diffs.new

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

echo
case $protocol in

tcp) netstat -tan ;;
udp) netstat -uan ;;
*) ;;

esac
echo
ps xaflw
echo
echo test.lsof.tmp.$$:
echo
cat ./test.lsof.tmp.$$
echo
echo $protocol.current:
echo
cat $protocol.current
echo
echo snort logs:
echo

 fgrep :$port /var/adm/snort/*/*
echo

fi

rm -f ./test.tmp.$$./test.lsof.tmp.$$ # created above in _validate

done < $protocol.diffs.new
}

#----------------------#
Main Processing
#----------------------#

./list tcp > tcp.current

./list udp > udp.current

for protocol in tcp udp
do
 diff $protocol.allowed $protocol.current > $protocol.diffs
 egrep -e '^>' $protocol.diffs > $protocol.diffs.new
 egrep -e '^<' $protocol.diffs > $protocol.diffs.missing

 > $protocol.errors

 if [-s $protocol.diffs.new]
 then

_report_diffs_new >> $protocol.errors

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 fi

 if [-s $protocol.diffs.missing]
 then
 echo Missing $protocol ports: >> $protocol.errors
 echo >> $protocol.errors
 cat $protocol.diffs.missing >> $protocol.errors
 echo >> $protocol.errors
 fi

 if [-s $protocol.errors]
 then
 echo END >> $protocol.errors

Save some debug info - not needed now that we're using lsof.
#
timestamp=$(date '+%Y.%m.%d.%T')
cp $protocol.errors $_timestamp.errors.$protocol
ps xaf >> $timestamp.errors.$protocol
netstat -tan >> $timestamp.errors.$protocol
netstat -uan >> $timestamp.errors.$protocol

/root/fence/admin/notify /root/fence/ports/test
/root/fence/ports/$protocol.errors >/dev/null 2>&1 &

fi
done

#----------------------#
Housekeeping
#----------------------#

End

END-OF-DOCUMENT

