
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Detecting Compromised Systems
With

An Automated NMAP Fingerprinting
Tool

Yet another layer of defense in depth

Jason Ostermann
SANS Track I - GSEC
Version 1.4b, option 1

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Abstract

Every system requires many levels of defense against attacks. These defenses
need to both help prevent intrusions and also detect intrusions. Many software
packages exist to fulfill these roles, but all have certain weaknesses. Many
remote exploits take advantage of buffer overflows in faulty software to install a
backdoor which allows the intruder to use the system at their leisure. Current
tools do not provide sufficient detection of such exploits. An automated
fingerprinting tool based on NMAP can directly detect and report such a system
change.

The Problem
In any well-configured network, a trade-off between security and usability is
established to provide services and protect the machines from improper use.
This paper focuses on the average publicly available machine on a DMZ
providing services to the Internet at large. This may be a company’s web server,
an email server, DNS server, VPN server, or any other machine that is
connected to the Internet. As with any installation, many levels of protection are
recommended for such machines.

Network vulnerability probes have skyrocketed over the past few years. These
probes may only be reconnaissance, or they may be an active attack against a
machine. Neither Unix nor Windows systems are inherently secure from network
attacks. In fact, both types of operating systems are regularly scanned and
exploits are continuously released for both. (Current Scanning Activity) Attacks
take many forms, from mostly harmless worms that only spread themselves to
malicious code that modifies the host machine. Even harmless worms, such as
the Robert T. Morris worm of 1988, need to be detected and prevented. While
the RTM worm did not cause direct damage to the machines it infected, its
uncontrolled behavior made many machines unusable (Spafford). While it
appears this was an accidental side effect of the RTM worm, similar tactics are
used to launch denial of service attacks today. These DOS attacks can easily
cause millions of dollars of damage to corporations who find their Internet
services effectively disabled.

Attack sophistication has increased significantly in the past few years, meaning
that vulnerabilities are getting easier to exploit. Before the Internet boom of the
mid 90’s, a cracker needed a significant skill set to compromise a machine. Over
the past few years, attacks have become more automated and more universal.
(Allen, et all) The following graphic from “Improving the Security of Networked
Systems” shows the trend towards more powerful tools allowing easier
unauthorized access to machines.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The threat is significantly increased by the ease of use of current ‘autorooters’. “A
successful autorooter will give crackers what they want: complete control of a
target machine with little effort, fast. Scanning networks for vulnerable machines,
gaining unauthorized administrative access, installing backdoors, all the tricks of
the trade, can all be achieved at the click of a button.” (Tanase) With this type of
tool, an entire class C subnet can be scanned and all vulnerable machines
rooted in a matter of minutes. Adding worm capabilities to these programs is
typically trivial. Distributed attacks of this nature will most likely become as
commonplace as email viruses have become in the past five years.

This paper focuses on a specific, but common, category of exploit. These
exploits use vulnerabilities within common server software, such as BIND,
Sendmail, IIS, and Apache, to run arbitrary code. Almost all attacks will modify
the machine in one way or another. Current exploits tend to install root kits or
Denial Of Service daemons. Root kits allow the intruder to access the machine
as root whenever they want, typically over a rogue telnet or ssh server. Denial of
service daemons have either a timed attack or listen on the network for an attack
command.

The root cause of the vulnerabilities is typically buffer overflows in network
services. That simply boils down to bad programming. On the surface, buffer
overflow exploits sound very complex. However, tutorials exist to assist in the
creation of such exploits. (Aleph One) Once such an exploit is written, it is
effective against all similar machines. In some instances, such as BIND, IIS and
WU-FTPD, many overflows are discovered over a period of years. If all
programmers followed strict security guidelines, vulnerabilities would sharply
decrease. Since that’s not likely to happen, users of software packages must

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

stay up to date. New releases typically patch discovered vulnerabilities, and in
the case of Open Source projects, the patch can be written and distributed within
hours of the discovery.
Even packages that have a good track record for security may contain a
devastating vulnerability. The OpenSSH program had very few vulnerabilities in
their past, with none allowing root access to its host. In 2002, a vulnerability was
discovered in OpenSSH’s authentication scheme that affected all recent versions
which allowed an attacker to gain root access to the host. OpenSSH is primarily
distributed as part of OpenBSD and developed to the same standards. The
OpenBSD group prides themselves with proactive security auditing in all their
software development. Their homepage, www.openbsd.org, even proudly
proclaimed “No remote holes in the default install, in over 6 years!” After the
OpenSSH vulnerability was discovered, a workaround was quickly published,
and a new version with a completely different authentication scheme was
released at the same time as the vulnerability report. (CERT® Advisory CA-2002-
18) No exploits were reported, but the OpenBSD group still changed their motto
to “Only one remote hole in the default install, in 6 years!” The upshot is that
while keeping software current and watching CERT for advisories will help
reduce your exposure, it is by no means a guarantee.

A wise administrator will use machine state tools such as Tripwire to monitor the
vital files of their machines. If the attack modifies these files, such as adding
itself to the startup scripts, a properly configured state monitor will detect the
change and warn that administrator. Now that Tripwire has become fairly
common, attacks can find ways to disable the service or bypass it completely.
Exploits can be installed without changing any system files. Once the machine
reboots or the rogue service crashes, the attacker simply needs to re-run their
exploit to recreate their back door. In such an instance, there would be no
changes to the system for a state monitor to detect. Such an exploit could install
itself in a busy location, such as /tmp, and obfuscate itself to avoid manual
detection. Since this exploit is careful not to alert a state monitor, it will avoid
overwriting typical tools such as ps, netstat and ls. Without replacing these
utilities with special versions designed to hide the existence of the exploit, the
intrusion can be easily detected locally on the machine. Local detection using
these utilities is seldom performed, and very seldom automated. Usually, a
thorough search only occurs if a user or administrator notices strange behavior
on a machine. This will usually be a very long time after the machine was
exploited, and usually after much damage has been done.

After a machine is exploited, it presents a hazard to its owners and to all other
machines connected to it. Just as open SMTP relays act as hopping points for
spam distributors, exploited machines act as hopping points for system attackers.
These compromised machines must be detected and quarantined as quickly as
possible.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

How to Detect
While preventing such attacks is difficult to impossible, detecting them is quite
easy. All one has to do is determine whether or not a new network service has
been started on a machine where no such changes should have been made. The
NMAP (www.insecure.org) port scanner already provides a wonderful base to
build upon. NMAP is a very easy to use network tool that scans specified hosts
for all open network ports. (Fyodor) A rather simple set of scripts could be built
around NMAP to provide automated scanning and reporting of specified
machines.

When a system is in a known-good state, an NMAP report is generated as a
baseline configuration, or fingerprint. This fingerprint lists the currently open
listening ports. When the machine is known to be good, this list will only contain
the services explicitly desired on that machine. If this list ever changes, there
must have been a modification of the machine. NMAP only reports active
listening ports, and does not detect connections to a machine. In other words, it
doesn’t matter how many clients are connected to services on that machine. All
that matters are the available network services. Also note that it can only report
services available to it. If a machine is extensively protected by a firewall, many
attacks of this nature will result in new services that the attacker cannot access.
For instance, if a root kit starts a telnet server on port 13373, but the firewall in
front of the server only allows ports 80 and 443 to that machine, the exploiter will
not be able to make use of the machine. Of course, this intrusion still needs to be
detected so the faulty software can be corrected and to prevent any other attacks
that may damage the system.

The following is an example NMAP run:

closet:~$./nmap 10.1.1.2 -sT -sU -oN 10.1.1.2.scan > /dev/null

-sT specifies a standard TCP connection scan. This is the simplest and most
obvious scan. Since there is no need to act covertly, an obvious and reliable
scan should be used.
-sU specifies to also scan UDP ports. While less common than TCP servers, a
UDP server can easily be used to control a machine.
-oN specifies to output normal human-readable text to 10.1.1.2.scan.
The redirection to /dev/null is used because NMAP also echoes its report to
stdout while running. Since this will most likely be run by cron, we do not want
any output. Cron, by default, captures all output by scheduled programs and
emails it to the user that scheduled the task.

closet:~$ cat 10.1.1.2.scan

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

nmap 3.28 scan initiated Sun Aug 3 16:44:52 2003 as: ./nmap -sT -sU -oN
scan1.txt 10.1.1.2
Interesting ports on 10.1.1.2:
(The 3060 ports scanned but not shown below are in state: closed)
Port State Service
21/tcp open ftp
23/tcp open telnet
25/tcp open smtp
80/tcp open www
113/tcp open ident
Nmap run completed at Sun Aug 3 16:48:17 2003 -- 1 IP address (1 host up)
scanned in 204.700 seconds

This run shows a fairly typical machine that only offers FTP, Telnet, SMTP, www
and ident services. Keep in mind that a scan on a standard install for complex
distributions such as Solaris typically result in over a hundred open ports. To
modify this output into a fingerprint friendly format, the # comments and
parentheses lines need to be removed. The comment lines will change with
every scan, and the parentheses lines change whenever there is a service
change. Since the number of closed ports is of very little usefulness for this
system, that line can also be removed. These modifications can be placed into a
single line as:

closet:~$ grep –v ^# 10.1.1.2.scan | grep –v ^\(> 10.1.1.2.fp

The resulting file, 10.1.1.2.fp, needs to be protected like any other critical system
file. At the very least, its permissions should be read only for everyone. Better
yet, it should be monitored by TripWire. Even better, it can be stored on a CD-R
to prevent any modification whatsoever.

A periodic scan of the protected machines should be compared to the fingerprints
generated earlier. If there are any differences, an alert should be emailed to an
administrator, and/or an administrator could be paged. To compare results, the
periodic scan should be processed just like the fingerprint, then compared to the
fingerprint.

closet:~$./nmap 10.1.1.2 -sT -sU -oN 10.1.1.2.scan > /dev/null
closet:~$ grep –v ^# 10.1.1.2.scan | grep –v ^\(> 10.1.1.2.test
closet:~$ diff 10.1.1.2.fp 10.1.1.2.test

If diff reports anything, then the network state of the system under question
changed, and should be investigated. The following is an example:

closet:~$ diff 10.1.1.2.fp 10.1.1.2.test
33a34,42
> 1014/udp open unknown

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

> 1015/udp open unknown
> 1016/udp open unknown
> 1017/udp open unknown
> 1018/udp open unknown
> 1019/udp open unknown
> 1020/udp open unknown
> 1021/udp open unknown
> 1022/udp open unknown

There are now nine new UDP ports open. If there have not been authorized
configuration changes to the machine in question, this could be an indicator of an
intrusion. An administrator should use this information to investigate the machine
and determine the cause of the anomaly.

Making it usable
The system needs three main components: an installer, a periodic scanner, and
a system modification tool. The installer should follow a process similar to the
following:

1) Collect vital information, such as installation locations, methods to
contact administrators, and scanning schedule.

2) Copy the various scripts to a secure location
3) Create a location to store the fingerprint data
4) Collect a list of machines, either via the terminal or from a file, to

monitor
5) Add the scanning script to cron
6) Create the fingerprints

Since creating the fingerprints may require a very large amount of time, the script
may wish to offer to schedule that task to run at a later time.

The scanning script needs to scan all the protected machines and compare the
current scan’s output to the fingerprint. Any differences should be stored in order
to be relayed to an administrator and/or kept as evidence. After all the machines
have been scanned, a report showing the failures or specifying all successes
should be sent to an administrator. The following is an example script in pseudo-
bash:

ERR=0
DATE=`date +%m%d%y`
for each machine; do

nmap $machine –sT –sU –oN /tmp/$machine.scan.$DATE > \
/dev/null

grep –v ^# /tmp/$machine.scan.$DATE | grep –v ^\(> \

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

/tmp/$machine.test.$DATE
if diff $machine.fp /tmp/$machine.test.$DATE > /dev/null; then

ERR=1
echo “Differences detected on $machine:” >> \

/tmp/report.$DATE
echo “(fingerprint to the left, current to the right)” >> \

/tmp/report.$DATE
diff $machine.fp /tmp/$machine.test.$DATE >> \

/tmp/report.$DATE
else

rm –f /tmp/$machine.test.$DATE
fi

done
if [$ERR –eq 1]; then

sendmail $ADMIN < /tmp/report.$DATE
fi

The primary pseudo code is the `for each machine` segment. If the scanning
system simply stores each machine’s fingerprint in a known directory as
<machine’s ip>.fp, then that line can be changed to:

for machine in `ls $fp_dir | sed s/\.fp//`

If the implimentor chooses to store the list of machines in a text file with one IP
per line, that command would be similar to:

for machine in `cat $machine_list`

Modification tools should be provided to add or remove machines from the
system and to update a machine’s fingerprint after an authorized change. While
updating this monitoring system whenever making any other change to a network
is bothersome, it simply needs to be added to the already long list of standard
tasks to be completed. Just as tripwire must be updated when a major system file
is changed, this monitoring system will need to be updated whenever a system
change occurs. If the network is well planned and seldom changed, this should
never be a problem. If the network is highly dynamic, the administrators may
wish to tackle other problems before implementing a scanner.

Making it secure

The machine performing the network scans needs to be protected along with
your other machines. Ideally, this machine will have unfiltered access to all the
machines it needs to probe. That certainly does not mean that a firewall should
be modified to allow all traffic from this machine into a private network without

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

any questions asked. An ideal implementation would have a scanner on each
network with unfiltered direct access to all machines it needs to monitor. Since
that is unlikely, a single machine in a private network may suffice. If at all
possible, this machine should be protected by TripWire and should not have a
console attached. The fingerprint library and TripWire database should be stored
on a CD-R to prevent modification.

With some extra work, the entire scanning system can be chroot jailed and use
only static binaries. For this to work, the fingerprint database must be mounted
under the location of the scanning system. For instance, if the scanner is located
in /usr/local/scanner, the fingerprint database must be somewhere like
/usr/local/scanner/fpdb. The system would likely need static versions of the
following programs installed within its scope:

• Bash
• Sendmail (client only, see)
• Sed
• Diff
• Grep
• Nmap

Each of these should provide minimal difficulty in compiling statically. If an
attacker compromises this machine, it is unlikely that they would replace these
static binaries with compromised versions. This safety measure would likely keep
the scanner running even if the scanning machine were compromised.

Inherent Problems
There are a few inherent problems with such a system. Primarily, it provides a
very promising list of machines and their services in one location. If the scanning
machine is compromised and the attacker spends some time investigating, they
may be able to find the fingerprint database. If the database is stored on a CD-R,
then it will show up in the mount table, making detection easy. With such a
database, an attacker would have a perfect list of machines to further investigate.
This could assist their spread and success of attacks throughout the network.
Keeping the fingerprint database on disk, so it does not show up in mount can
mitigate the risk. The administrator can also obfuscate the location of the
scanning system, such as somewhere under the vast X11 directory tree, or
somewhere deep in /var.

If any of the monitored machines provide RPC services, the system may report
many false positives. RPC services typically do not use predefined ports.
Instead, they bind to a random port then register themselves with portmap.
Since their port can change with just a reboot or process reload, the scanner
would report a false positive. With some advancement, the scanner can be

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

modified to monitor RPC services explicitly. `rpcinfo` provides a list of RPC
services available on a host. For hosts providing RPC services, an outline
similar to the following would create a better fingerprint:

1) Scan the system as usual and process the NMAP output
2) Run `rpcinfo –p $MACHINE` to get a list of RPC services
3) Remove the services listed in the rpcinfo report from the fingerprint
4) Add a processed list of services to the end of the fingerprint

The scanner would use the same steps to generate a matching fingerprint, which
could be directly compared to the original. This solution also requires the
scanning machine to access the portmapper, typically on TCP port 111, on the
monitored machine.

Conclusion
Attacks continually improve and advance. “Script kiddies” who use prepackaged
exploits and do not possess the knowledge to manually exploit a machine are
already widespread. Vulnerability probes occur continually. Simply put, system
defenses must be extensive to protect one’s machines on the current Internet.
For administrators who control only a few machines and continually access and
monitor those machines, a scanning system such as this may not provide a
valuable return on investment. For installations with many machines and very
little individual monitoring, an automated scanning tool may detect many
intrusions that went otherwise unnoticed. This tool is certainly not a silver bullet,
but may prove to be exactly the right tool at the right time.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Aleph One. “Smashing the Stack for Fun and Profit.” Phrack Volume 7, Issue 49.
November 8, 1996. URL: https://www.phrack.com/phrack/49/P49-14 (August 10,
2003).

Allen, Alberts, Behrens, Laswell and Wilson. “Improving the Security of
Networked Systems.” October 2000.
URL:http://www.stsc.hill.af.mil/crosstalk/2000/10/allen.html (August 2, 2003).

Carnegie Mellon Software Engineering Institute CERT Coordination Center.
“CERT® Advisory CA-2002-18 OpenSSH Vulnerabilities in Challenge Response
Handling.” December 6, 2002. URL:http://www.cert.org/advisories/CA-2002-
18.html (August 20, 2003).

Carnegie Mellon Software Engineering Institute CERT Coordination Center.
“Current Scanning Activity.” August 19, 2003.
URL:http://www.cert.org/current/scanning.html (August 19, 2003).

Fyodor. “The Art of Scanning.” Phrack Volume 7, Issue 51. September 1, 1997.
URL: https://www.phrack.com/phrack/51/P51-11 (June 30, 2003).

Spafford, Eugene. “The Internet Worm Incident.” September 19, 1991. URL:
http://www.cerias.purdue.edu/homes/spaf/tech-reps/933.pdf (August 25, 2003).

Tanase, Matt. “Introduction to Autorooters: Crackers Working Smarter, not
Harder.” August 21, 2002. URL:http://www.securityfocus.com/infocus/1619 (July
27, 2003).

The OpenSSH Group. “A Revised OpenSSH Security Advisory, preauth.” July
18, 2002. URL:http://www.openssh.com/txt/preauth.adv (August 15, 2003).

