
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Craig Hawks

7/7/03

GSEC Practical Requirements (v.1.4b)

Case Study: Securing a Legacy eBusiness Application

1.0 ABSTRACT
I was assigned the task of reviewing an enhancement for a client’s legacy
eBusiness application. My task was to assure that the enhancement would not
introduce any new security vulnerabilities in to the system. The enhancement
was quite simple, so in an effort to add value I requested and received
permission to perform an assessment the entire system. Performing that
assessment provided an opportunity to test my SANS training. The following
paper is a review of the assessment and subsequent remediation efforts of that
system.

2.0 Before
For the sake of both simplicity and privacy I am going to use the acronym of LEA
(Legacy eBusiness Application) to describe this application. LEA is an externally
facing Internet eBusiness application that allows financial investment brokers
access to consolidated financial investment portfolio information that has been
collected from external sources. Being a legacy system, there was certainly
newer and better technology available, but the user base was comfortable with
LEA so the client was not inclined to upgrade.

LEA had been up and operational for approximately four years when my client
contracted to add additional external users by way of three new broker
companies. The necessary application changes to add the new brokers were
minor and would take a very short time to assess and implement, so I suggested
to the client that because LEA had been in production for such a long period of
time, perhaps I should perform a detailed assessment of the entire application
and environment rather than just assess the enhancement. My client was not
opposed to this, but cautioned that my work needed to be completed in a very
short period of time so that the scheduled introduction of the new vendor
companies would occur as planned. I agreed to be quick and thus began my
assessment.

2.1 Preliminary Assessment
Since time did not permit an all-inclusive assessment1 of LEA, I felt I needed to
hit the most important items as completely as time would allow. Authentication,
authorization, confidentiality, and vulnerability would be my focus at the
application level. Ports and patch level would be my focus at the Operating
System/Server level. Although I would not actively look in other areas, if I
stumbled across an anomaly I documented it for follow up later.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Before I could begin my assessment I needed to gain a technical understanding
of LEA. To achieve this I met with the LEA project team and requested a system
walk through. I also went on a search for documentation that would detail the
system architecture, function, and interfaces. Although it took some time to locate
all the diagrams and text, I did finally gather enough material to get started.

I concluded that the hardware architecture and infrastructure would be adequate
for the additional users that this application was trying to support. The
documentation, although thin, appeared on the surface to corroborate the project
teams description of the overall system function as well as LEA’s interactions
with other interfacing adjacent systems. I would perform more detailed analysis in
the days ahead.

Even though I was working in LEA’s test environment I asked for permission in
writing from client management before I began using the tools and techniques
presented in the SANS Security Essentials course2. My first task was to footprint
the LEA environment. It was during this exercise that I received my first surprise.
According to the LEA system documentation, the LEA servers were supposed to
be deployed in a separate segment of the corporate network with a firewall
protecting the remainder of the corporation should a penetration against LEA be
successful. However, my testing revealed that LEA was not on a separate
network segment nor had the host-based firewall been installed! I feared that if
the LEA test environment was configured incorrectly, then it was likely that LEA
would be positioned and configured incorrectly in production as well. After talking
to the client network configuration and web groups my concerns were confirmed.
The firewall was not present in production and LEA was not on a separate
network segment. This was a very high risk finding, so I quickly notified the LEA
project team and my client management so that they could take the steps
necessary to logically reposition LEA in the production environment.

Since my goal was to assess such things as vulnerabilities, patches and ports, I
decided that the quickest way to accomplish this was to perform a penetration
and verification test of the application and its environment. In order to accomplish
this quickly I choose to use an automated tool as well as manual efforts of my
own.

My choice was to use Nmap3 to scan LEA and the LEA environment. And, I didn’t
want to strictly rely on automated tools, so I chose to perform some manual
testing that might be best described as ethical hacking. My goal was to assess
the application and environment and try to penetrate LEA and escalate my
privileges and ultimately gain root access.

I was surprised at the quantity and type of vulnerabilities that I discovered. I
found minimal authentication and that the password file was stored unencrypted
in a public directory. I found there was little access control and that any

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

authenticated user could manipulate the URL string and traverse the entire
application unencumbered. I found that there was little confidentiality. Sensitive
user documents, with confidential customer information were stored unencrypted
and unprotected in a common directory. The application formed the user
document URL string, but this string could easily be manipulated so that a user
could view or edit a document regardless of ownership. I found scripting errors in
the application that revealed sensitive system information. I found many functions
and fields that were susceptible to SQL injection and DOS attacks. The little
transaction logging that did occur was stored in the clear in a public directory.
The port scan found more open ports than I have space here to enumerate; few
of which actually needed to be open. I also discovered that the LEA operating
system, database server and web server had never been patched or upgraded.
An accident just waiting to happen!

2.2 Vulnerabilities
Below are the most serious vulnerabilities that I discovered.

• Authentication – I found that LEA only employs basic access controls.
User passwords are not encrypted thus leaving them open to view by any
user. I found that the administration pages openly show the user
passwords in plain text. Also, there is not a user lock out after repeated
unsuccessful attempts nor is there a requirement for strong passwords.
Consequently, LEA does not adequately protect the integrity of the data
used in the application. The basic access controls in LEA do not assure
the accountability of the individual logged on, therefore it cannot be
ensured that only authorized users are viewing the files or performing
authorized updates. Also, since LEA maintains both end users and
administrative users with the same functionality, vulnerabilities transcend
the user layer and migrate into the system level.

• Unsecured Single Directory - The unsecured directory in question was a

directory where the consolidated portfolio information was collected and
retained in client files. These client files were stored in one common
directory. This is an insecure practice that can lead to unauthorized file
access. (A better practice is to segregate the user files by client into
separate directories.) My additional concern was that this single directory
was not secured. This non-secured directory when coupled with the
Parameter Manipulation vulnerability allowed direct assess to client file
contents without enforcing any authentication or checking of whether the
specific user is authorized to access the information contained in the file.
Further, with the other vulnerabilities that I discovered in LEA, with very
little effort any malicious Internet user could access all information in the
client user files.

• Parameter Manipulation - This vulnerability allowed the user to

manipulate the URL string and traverse the application at will. When

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

coupled with the Unsecured Single Directory vulnerability, the malicious
user has an easy channel for violating the user file integrity. I also found
many instances where a malicious user could manipulate the input fields
and save the information to a file thus using the application to perform
erroneous file updates that would appear normal and correct.

• Input Validation and Control - Input validation is useful for assuring that

information entered via the application conforms properly in both type and
structure. LEA performed no type of input checking; hence the user files
often contained meaningless or erroneous data.

 Improper input control allows the malicious user an easy entrée for
System compromise. Some of the more likely attacks are the Denial of
Service4 and the Buffer Overflow5.

• Configuration Exposure – These errors disclose sensitive system

information. My testing allowed me to find LEA’s DNS information. When
the database is unavailable and during other error conditions the header
information is displayed in error messages as the source of the system
error. Some simple parameter manipulation (see above) allowed
additional content to be returned. The content referenced “include files”
which in turn contained the database DNS. The DNS contained the
username, password, and database name used to access the database.
Using this DNS information allowed an additional path of compromise of
the system.

• Missing Logout Function - LEA included a Login function but did not

include a function to end the user’s session. This is a standard
requirement for authenticated sites to prevent the user from leaving the
site and having their credentials remain valid. Without the Logout
function, it is easier for a malicious user to impersonate a valid user and
access user files.

• Missing Change Password Function - LEA did not include a function to

enable the users to change the password assigned to them by the system
administrator. Without allowing the users to change their passwords,
accountability cannot be ensured because both the administrators and the
users know the users’ passwords and compromise of the system is easier
because the passwords never change.

• Unknown Functions – I discovered a partially working Manager function

and a partially working User Administration function on LEA. Although the
names of these functions seem to suggest control access to the
management site of the application, it was determined that attempting to
use the functions had only part of the desired effect on LEA.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

• Test Page left on Server - Several test pages were found in the
application. These test pages appeared to attempt some database activity
with an invalid data source. Test pages can disclose sensitive information
and assist a malicious user with attacking the application. These pages
should have been removed prior to roll out to production.

• Email – LEA had an obscure email function likely left over from a previous

version. A malicious user could use this function to send emails with
dubious content. The current user base had no need to send email from
LEA, so I made a notation to recommend removal of this function.

• Log File – The log files for the application contained numerous pieces of

information such as logon ID, logon time, transaction summary, etc. This
type of information should be encrypted and located in a protected
directory. This was not the case. The log file was unencrypted and stored
in a publicly available directory.

 2.2 Risk
 Let’s establish some definitions so that we can discuss risk and risk
assessments6.

• “A risk is the product of the level of threat with the level of vulnerability. It
establishes the likelihood of successful attack.” 7

• “A threat is the potential for violation of security, which exists when there
is a circumstance, capability, action or event that could breach security
and cause harm.”8

• “A vulnerability is a flaw or weakness in a system’s design,
implementation, or operation and management that could be exploited to
violate the system’s security policy.”9

It is important to honestly assess the threat level and vulnerability level. Although
subjective in nature, a properly performed risk assessment will allow the client
and team to focus the correct resources at the most critical issues.

The enumerated vulnerabilities are in the table below with the threat and
vulnerability levels indicated.

Vulnerability Risk
Level

Threat
Level

Vulnerability
Level

Incorrect server location and no
firewall

High 10 10

Unsecured user directory High 10 10
Parameter Manipulation High 8 8
Input Validation High 8 7
Authentication High 8 8
Configuration Exposure Medium 6 7

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Missing Logout Function Medium 6 6
Unknown Functions Medium 5 5
Test pages left on server Medium 5 3
Missing Password Change Function Medium 5 5
Email vulnerability Low 3 3
Log File stored in the clear Low 3 3

At point in my assessment I felt that it was time to re-engage the LEA project
team. Although their knowledge of LEA was certainly better than mine and I felt
that their perspective on the culture of the client and customer would an asset. I
gave the team a short lesson in risk assessment and together we assessed and
ranked the vulnerabilities and then collaboratively developed a remediation plan.
It was important also to involve the development team in this process because
they would be the individuals performing the remediation tasks.

2.3 Remediation Planning
In order to move forward I felt that we needed to develop some
recommendations for remediating these vulnerabilities. Unfortunately because of
the age of the application and nature of the vulnerabilities there was no single
remediation plan that would be both quick and secure. Hence, I developed three
possible remediation plans: a complete rewrite of the application, a partial rewrite
of the application, or a wrapper type (internal IDS or application based firewall)
solution.

The most costly and time consuming solution would be a complete rewrite of LEA
using a more robust and secure design with the inclusion of secure coding
practices since it appeared that the design and coding practices were at the root
of most of these vulnerabilities. The development team after reviewing the code
agreed with me. I felt that a complete rewrite would be the most certain in terms
of remediating all vulnerabilities, so this became my plan “A”.

Plan “B” would be a less costly, but less secure solution; a partial rewrite of LEA
choosing the highest risk items for rewrite. Although this is would not be a perfect
solution, it made sense when weighing cost versus benefit verse risk.

Lastly, I had what I thought was an exotic, but potential useable idea. I thought
that perhaps a “wrapper” type of solution; one of the Application Level IDS,
Application Firewall, or Reverse Proxy type products might be useful and provide
a more secure, less costly solution in the shortest time of all. However, the
wrapper solution wasn’t something that I could be certain would remediate the
vulnerabilities satisfactorily without actually doing some in depth testing. So this
became my plan “C”.

Prepared with all of my findings and team recommendations I scheduled a
meeting with client management. Although the client had been kept aware of my

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

findings as they occurred, they couldn’t help but be overwhelmed by the quantity
and severity of the vulnerabilities when presented collectively. I had come to the
meeting prepared to discuss possible strategies for elimination or mitigation of
these vulnerabilities and that helped to lessen some of their concerns.

My thought going into the meeting was that the client would lean toward plan “B”;
the partial rewrite. They were cost conscious and just becoming Security aware
so I wouldn’t have been surprised if they had chosen what to their eyes would
have been the least expensive solution. However, to my surprise the client
wanted to explore the wrapper type solutions; plan “C”! They wanted to see how
completely this solution remediated LEA and then perhaps leverage the solution
onto other “problem” applications and servers. I readily agreed to this approach
because I wanted to explore these products a little better. After some discussion
the client agreed to set up a test environment with servers and software to mirror
the LEA production environment. Once we narrowed the vendor field to a
reasonable number we could then obtain demo code and see how effective the
wrapper type tools would be for remediating LEA.

3.0 During
The client was quite generous in providing equipment and facilities for the test
environment and the LEA development team was excited about the opportunity
for new learning. I was especially interested to see how the wrapper solutions
would perform, but I also was keenly aware that remediation of the vulnerabilities
needed to be the primary focus and I couldn’t get caught up in technology.

3.1 Solution Testing
A search of the Internet turned up several dozen vendors of wrapper type
solutions in the form of proxy, reverse proxy, Intrusion Detection10, Intrusion
Prevention, etc, type products. It would have been impossible for every member
of the team to review every product, so to evenly distribute the burden I divided
the vendors into categories of: Application Level Intrusion Detection,
Proxy/Reverse Proxy, and Intrusion Prevention; and assigned members of the
LEA team to the various categories to perform reviews of these products. The
team members knew they needed to review the product documentation looking
for function and applicability to solving our list of vulnerabilities and they did an
excellent job of narrowing the field. They compiled a list of products that looked
good “on paper” and then together we narrowed the list to two products for a
hands-on evaluation.

The first product was a Host Based Internal Prevention Solution (HBIPS)11. The
second was a Web Application Firewall Solution (WAFS)12. Although my intention
is not to disparage either of these products, my comments might be construed as
such, so to avoid any legal problems I will only be referring to them by their
functional acronyms.

The HBIPS was the first wrapper type of solution that we tested. This particular

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

HBIPS uses a combination of signatures and rules to perform its function. The
user sets up the rules, the HBIPS learns the application signatures and use both
together to perform the Intrusion Prevention function in a kind of defense in
depth. (Detailing the function of these products beyond the scope of this paper,
but I included some links at the end of this paper for anyone that desires
additional information13.)

WAFS was the second product that we reviewed. This product referred to a built
in set of logic to determine the types of legitimate requests that LEA should
process and the WAFS would filter out everything else. WAFS also a learn mode
so that additional requests can be filtered out as well as provisions for relaxing
the rule set when necessary so that requests WAFS has incorrectly chosen to
filter out, can be allowed through to LEA.

To keep an appropriate level of consistency, the testing that we would perform
would be the same as we performed in the earlier penetration testing, scanning
and ethical hacking. In preparing to test, we were surprised to find that there was
considerable set up and fine tuning with each of these products. We kept careful
notes knowing that we would be saving much rework later on if we choose to roll
out either product.

Each product performed as advertised and each product had its strong points
and weak points. Our task now was to determine if either product remediated
enough of our vulnerabilities to justify a purchase.

3.1.1 Solution Testing Results – Unsecured Single Directory
The unsecured single directory was a basic design flaw. We certainly didn’t
expect either product to create and maintain subdirectories, but we had hoped
that perhaps one or both would be able to control access to the files.
Unfortunately this was not the case. Due to the poor design of the system a
properly authenticated user could still view user files that they did not have
authorization to view. The only way to make these products control unauthorized
access would be to set up a rule for each file which would take many hours of
initial set up and then add an additional rule for every new file created on the
system, and that would be completely unreasonable. However, we did take note
that if we changed the design and segregated user files into separate directories,
then a rule could be set up by user, which would assure that only the correct user
would be viewing a file. The overhead of performing this function would be
minimal.

3.1.2 Solution Testing Results - URL Parameter Manipulation
Controlling URL Parameter Manipulation is an area where both products
functioned at their best. With minimal instruction we were able to learn how to
compose the rule set for properly formed URL’s and legitimate URL’s. Thus it
was fairly easy to configure the HBIPS. The WAFS learn mode was also
straightforward so that after minimal set up it too was ready for testing.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

We repeated the initial test of URL parameter manipulation and found that both
products did an excellent job of blocking or disallowing this type of activity. We
also made sure to test the positive; that valid web addresses were permitted and
both products performed perfectly.

3.1.3 Solution Testing Results – Input Validation
Field level input validations were one of our medium risk areas. We needed to be
sure that each field only allowed the valid range of inputs. Each product could be
configured to partially prevent compromise of the system, however neither was
able to completely remediate this vulnerability. Again, this was due to the design
and programming of LEA. Had the initial programmers put in limit and format
checking, then either of these products would have been an excellent choice to
do macro level validation with the LEA performing the micro level checking.

3.1.4 Solution Testing Results – Authentication
Neither of these products was able to remediate the authentication issues.
Strange as it seems both the HBIPS and the WAFS viewed authentication
requests as legitimate valid operational requests and passed them into the
application rather than aid in refining or excluding the user based on finely tuned
rules.

In order to remediate this vulnerability we would have to build better
authentication into the application, which would require a design change and
coding.

3.1.5 Solution Testing Results - Configuration Exposure
HBIPS has the inherent ability to completely remediate this vulnerability. Within
the bounds of our tests, any messages the LEA tried to display to the user were
trapped by the HBIPS and a generic error message that would not reveal any
configuration information was displayed to the user.

WAFS was able to remediate this vulnerability, but did require some fine-tuning
to trap all of the application generated error messages.

3.1.6 Solution Testing Results - Missing Logout Function
Neither product was designed to provide logout functionality, so we weren’t
surprised by the fact that there was no way to configure either product to perform
this function. This would be another function that we would have to design and
code ourselves.

3.1.7 Final Analysis and Recommendations
I assembled all of the test results and created a report for client management. My
analysis of the testing results showed that both the HBIPS and WAFS products
remediated or mitigated most of the vulnerabilities and I felt that both products
were a good value. Ultimately I recommended the HBIPS because it was slightly

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

easier to configure and its cost was slightly less than the cost of the WAFS.

I recommended that the development team redesign and recode the directory
structure into multiple client directories. This would all the user files to be
segregated by client. Once the files were segregated I recommended that the
directories be encrypted and secured at the operating system and application
level. Properly performed, these actions would completely remediate this
vulnerability.

I recommended that the authentication scheme be redesigned and recoded with
encrypted passwords, a change password function, and a logout function.

I recommend remediation of the Input Validation and Configuration exposure
vulnerabilities through redesign and recoding. Both were judged to be high risk
and I felt it necessary that they be remediated.

I wasn’t certain if the client had relocated the servers to a separate, protected
segment of the network and installed the host-based firewall as yet, so I included
that recommendation in my report.

I did not recommend remediation of the Unknown Administrator functions. They
were judged to be of medium risk and would have taken quite of bit of cost to
remediate.

There were some medium and low risk items that I felt could be handled quickly
so I included them in my report. There was an email vulnerability that could allow
a malicious user to redirect a LEA generated email. Since generating an email
from LEA was a seldom used function, I recommended that the email function be
removed thus eliminating this vulnerability. I recommended that all of the test
pages remaining on the production server be removed. I also recommended that
the system log file and log file directory be secured.

I submitted my report to client management and followed up with a meeting to
formally present my findings. I was pleased to find that my client elected to go
forward with all of my suggestions. So, the LEA development team was
instructed to work through the redesign and recoding while client management
placed an order for the HBIPS product. And to avoid a repeat of the design and
coding errors currently in LEA, client management arranged a “Secure Coding”
training program for the development team.

So as not to inconvenience the three new broker companies, my client went
forward with adding the broker companies to the production version of LEA while
remediation continued in the development area.

3.2 Remediation
The redesign, recode and retest efforts took seven weeks to complete. During

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

that time the clients Web and Network group relocated the LEA production and
test servers to a separate network segment and installed a host-based firewall.
Concurrently the client obtained the HBIPS media and set about to load and
configure it on the LEA server in the same manner as it had been configured
during the Solution Testing phase of the project.

The remediated LEA code was rolled out to the test environment where we
conducted a final set of tests to assure that the redesigned and recoded system,
in concert with the HBIPS, remediated the vulnerabilities at the level that we
anticipated. To my relief we were successful in that effort.

Some of my final work on this project consisted of performing port scans and
insisting that unneeded ports be closed and remain closed. I tested and
examined to assure that the Operating System, Database and Web Server were
patched and upgraded to the appropriate level. I also counseled the client on the
importance of keeping the servers and software patched and current. I also
worked with the client to develop a regular schedule of scanning and testing to
assure that ports remain closed. With this work complete, the remediated LEA
was rolled out to production.

4.0 After
The client was very pleased by the final outcome of this remediation effort. The
overall risk in LEA was greatly reduced. Prior to remediation LEA contained five
high-risk items, five medium risk items and two low risk items. After remediation
LEA only contained one medium risk item.

There were many additional wins from this project. The client became much
more security aware as a result of working through the issues in LEA. The client
made certain that all future development was performed using the learning
gained from the Secure Coding practices course that the programmers took prior
to remediating LEA. The client developed a practice of installing, testing and
rolling out Operating System patches and upgrades on a regular basis. The client
developed a system of periodic port and vulnerability scans. And the client is in
the process of developing a corporate security practice.

1 Slater, S, PhD, CISSP slater@nsconsult.com, A Practical Guide to Application
Security Reviews,

2 Cole, E., Fossen, J., Northcutt, S., & Pomeranz, H. SANS Security Essentials
with CISSP CBK Version 2.1. USA: SANS Press, 2003

3 Nmap Stealth Port Scanner;
http://www.insecure.org/nmap/

 4 Carnegie Mellon Software Engineering Institute,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 http://www.cert.org/tech_tips/denial_of_service.html

 5 Carnegie Mellon Software Engineering Institute,
 http://www.cert.org/homeusers/buffer_overflow.html

 6 Boyle, K. kip_boyle@jeffersonwells.com, & Menninger, M.
macr.menninger@amnu.net, Scaling Information Security Risk Assessments.,
Jefferson Wells International Seatle, Washington

7 Cole, E., Fossen, J., Northcutt, S., & Pomeranz, H. SANS Security Essentials
with CISSP CBK Version 2.1. USA: SANS Press, 2003. Appendices A-147, 2003
8 Cole, E., Fossen, J., Northcutt, S., & Pomeranz, H. SANS Security Essentials
with CISSP CBK Version 2.1. USA: SANS Press, 2003. Appendices A-147, 2003
9 Cole, E., Fossen, J., Northcutt, S., & Pomeranz, H. SANS Security Essentials
with CISSP CBK Version 2.1. USA: SANS Press, 2003. Appendices A-141, 2003

10 Best Practices - Intrusion Detection Systems
http://www.itsc.state.md.us/info/InternetSecurity/BestPractices/Intrusion.htm

11 Innella, P.,& McMillanm, O., Tetrad Digital Integrity, LLC, An Introduction to
Intrusion Detection Systems, http://www.securityfocus.com/infocus/1520
12 Englund, M., Securing Systems with Host-Based Firewalls – Implemented With
SunScreen™ Lite 3.1 Software SunIT Network Security Group Sun
BluePrints™OnLine - September 2001,
http://www.sun.com/solutions/blueprints/0901/sunscreenlite.pdf

