
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

An Architecture for Implementing

Enterprise Multifactor Authentication
with Open Source Tools

GIAC (GSEC) Gold Certification

Author:(Student(Tom(Webb,(Tcw3bb@gmail.com(
Advisor:(Kees(Leune(

Accepted:(December(5th,(2013(

(

(

Abstract(
Credential(stealing(has(become(an(epidemic.(Organizations(need(an(effective(and(
cost(efficient(way(to(reduce(the(likelihood(of(being(exploited(thought(this(
vulnerability.(Leveraging(Google(Authenticator,(RADIUS(and(a(REST(API(will(allow(
enterprises(to(enroll(users(into(their(existing(service(portal(and(integrate(services(
easily(with(this(well(supported(protocol.(

(

(

! 2
(

Author(Name,(email@address(((

1. Multifactor background
We are all familiar with how password authentication works as we log into

dozens of systems each day to check email or view bank account balance. This type of

authentication is considered single factor authentication. Authentication can happen

using something you know, something you have, something you are or somewhere you

are (Bishop, 2004). Multifactor combines two or more of these methods to create a

stronger authentication.

Traditionally, multifactor authentication has been expensive to deploy, based on

the cost of buying equipment and the time it took to enroll individuals into the systems.

The use of smart phones in multifactor authentication has lowered the cost of deployment

significantly. This is due to savings from not requiring hardware tokens and the use of

open source software tokens on the phones.

Time based one-time passwords (TOTP) is the method this paper focuses on.

They are considered the something you have portion of authentication methods. There are

several TOTP products, of which RSA SecureID is the most well-known. These products

use various methods to generate a number specific to the individual user that expires after

a predefined time.

Biometrics is based on something you are. Two types of biometrics we find being

used on consumer devices are fingerprint scanners on laptops and facial recognition used

on Android phones. Deployment of biometrics to a large organization is difficult due to

every computing device must have a reader and enrollment of individuals into an

enterprise solution is time consuming. While the new iPhone 5s is one of the largest

consumer devices that have this integrated, there is a reported 20 percent authentication

failure rate (Kosner, 2013). Collecting this data also has privacy concerns (Prabhakar,

Pankanti, & Jain, 2003) which could slow individual’s adoption of the technology.

1.1. What risk does it reduce?
Multifactor authentication prevents attackers from gaining access to systems if

they are able to steal the user’s passwords. Collecting passwords is very easy for

! 3
(

Author(Name,(email@address(((

advanced attackers and sixty percent of people are likely to fall for a well crafted

phishing email (Sixty percent will fall to a phishing attack that might herald an APT,

2013). Adding another piece of information the attacker needs to access the systems

makes the attack more complicated.

In the NIST Special Publication 800-63-1 pg. 45, many types of threats and

mitigation strategies are covered in section 6.2 (National Institute of Standards and

Techonology, 2011). Two of the more common threats are theft and revealing the token

using social engineering. To reduce the effectiveness of theft, you can use a token that

requires a pin before presenting the OTP. For a social engineering attack, making sure

that token entropy is high enough to prevent guessing future values based on a single

known one.

1.2. Google Authenticator OTP
There are two main type of OTP supported by Google Authenticator. One based

on time (TOTP) discussed in RFC 6238 (M'Raihi, Machani, Pei, & Rydell, 2011) and one

based on an event HMAC one time password (HOTP) discussed in RFC 4226 (M'Raihi,

Bellare, Hoornaert, Naccache, & Ranen, 2005).

Time-based tokens are the most common, but you can also implement HOTP with

this configuration. Changing what type of token you generate during the initial

enrollment process will allow HOTP.

2. Architecture
The system design described in this paper uses Redhat EL 6 as a starting point,

but can be easily ported to CentOS for individuals who do not use Redhat. Kerberos is

used to authenticate to Microsoft Active Directory (AD) and FreeRADIUS will use the

Pluggable Authentication Module (PAM) for Googles TOTP. Authorization in this

design should occur at the application level due to this system authenticating a large

number of different services. If you want to do authorization from RADIUS, get more

information on LDAP authorization at their website1.

((
1(http://wiki.freeradius.org/modules/rlm_ldap(

! 4
(

Author(Name,(email@address(((

To setup a system or service to use multifactor, in this design, it must support

RADIUS protocol for authentication. Each service that you wish to add should have a

separate RADIUS secret key to prevent others from reading authentication traffic. The

RADIUS shared secret is susceptible to offline dictionary attacks (Aboba, 2005). Each

key length should be a minimum length of 25 characters to make brute forcing the secret

a less attractive option for attackers. If authentication is occurring over untrusted

networks, use IPSEC to provide more robust encryption to the protocol.

Figure 1 displays the process of a SSH service setup to use RADIUS as

authentication. When the user enters his credentials, the SSH service passes the

information to the RADIUS server.

(
Figure'1.(Radius(Authentication(using(Kerberos(and(Google(Authenticator.((
(

When authenticating, users will need to combine both their AD credential and

TOTP password into one word. If your password is bob and your token is 987654 then,

when prompted, you will “smash” them together (e.g. bob987654). Appendix A covers

the must have security considerations when implementing this architecture.

! 5
(

Author(Name,(email@address(((

Request'for'
New'Enrollment

Generate'Google'
auth'key

API'Key'valid? Terminate'with'
error

Create'Local'user

User'Already'
Exists?

Terminate'with'
error

No

Yes

Yes

Pass'Information
To'Portal

Complete

3. Enrollment
Most large organizations already have a portal for their users to perform self-

service functions. A web API will be used to allow self-enrollment into the system.

When the user initiates the enrollment, a local user is created on the RADIUS

system. The user must have a local account, as this is a way to track enrollment and

create the secret key for creating the OTP. Once the local user is created, a secret seed

key is created in /var/Google-auth/userid. The secret key will be sent to the

web service that requested the creation via a QRCode. This code should be strictly

protected. If attacker gets access to this code, they will be able to create OTP for that

user. The attacker will still need to have the users AD credential, but they will have a

critical piece of data to perform an attack.

'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
Figure'2.'Logic(of(Enrollment(API.(

! 6
(

Author(Name,(email@address(((

4. Disenrollment
To remove a user from the multifactor system, you should delete their local user

along with the OTP secret seed. If you disable the users in Active Directory, they will no

longer be able to authenticate using the RADIUS server. To make sure that users do not

linger, this system should also be part of your HR off-boarding process.

Delete%Existing%
User

Remove%User%and%
Key

User%Already%
Exists?

Terminate%with%
errorNo

Complete

Send%email

Figure'3.'(Logic(of(disenrollment(process.(

5. Configuration
Software Installation
(
>sudo yum install ntp pam_krb5 krb5-workstation
freeradius-utils.x86_64 make gcc bzip2 gcc++ pam-devel
libpng libpng-devel freeradius
(

! 7
(

Author(Name,(email@address(((

Install the latest software for QRcodes from the libqrencode web site2 by

downloading and compiling it. This is used to create the QRcode for the secret seed key

during enrollment process to prevent users from mistyping the key.

>tar –zxvf qrencode
>cd qrencode*
>./configure
>make;make install(
(

5.1. NTP
When using TOTP, having time synchronization on the server and your token

device is critical. The Network Time Protocol (NTP) is used to keep time synchronized.

Have it run at startup using the following commands:

> chkconfig ntpd on(
(

On the server, you will need to edit the /etc/ntp.conf and add your primary

time server. Comment any default servers, unless these are your primary time servers.

The file format is “server <ip address>”.

(
server 1.2.3.4(
(

Next, you should start the NTP daemon and check to make sure the time sync is

working appropriately.

>sudo service ntpd start
>ntpq –p -n(
(

The ntpq results should resemble the output in figure 4. The most important

columns to check for are the last time it polled and offset. These numbers are in

milliseconds, but the values should not be very high.

(
((
2(http://fukuchi.org/works/qrencode(

! 8
(

Author(Name,(email@address(((

Figure 4. Typical ntpq results.(

5.2. Kerberos
Using Kerberos to authenticate to Active Directory is easy. By following the

basic steps on the Indiana University site (In Red Hat Enterprise Linux, how do I

authenticate to ADS.IU.EDU using Kerberos?, 2013) we will configure our systems.

(

(
Figure 5. Authconfig-tui interface.
(

(
Figure 6. Kerberos Configuration page from Authconfig-tui.
(

In this configuration, we are not going to use LDAP for user information. Users

will be added to this box to confirm they have enrolled in the multifactor system. Fill in

the appropriate setting for Active Directory environment as seen in Figure 3.

> /usr/sbin/authconfig-tui
* Use Kerberos(

! 9
(

Author(Name,(email@address(((

5.3. PAM
With the PAM RADIUS module, we are setting up how PAM should authenticate

anyone who uses this service. Setup each user with his own token in a custom location

for Google Authenticator to store the keys. In this case, place the keys into

/var/Google-auth folder and we name the file with the user name. With the

configuration below, both the Google Authenticator and Kerberos password to be correct

before access is granted by RADIUS.

(
/etc/pam.d/radiusd
Use the right 6 digits for google-authenticator
(forward_pass)
auth requisite pam_google_authenticator.so user=root
secret=/var/Google-auth/${USER}_google_auth forward_pass
auth required pam_krb5.so use_first_pass
account sufficient pam_localuser.so
(
(

5.4. Google Authenticator
Download the latest Google authenticator PAM module at its home page.3Follow

the instructions from the README file, but should be your traditional gcc compile

instructions. Once you are done compiling, remove gcc. This will make it more difficult

for attackers, who gain access to your system, to install additional tools.

(
>bzip2 –d libpam-google-authenticator-<VERSION>-
source.tar.bz2;tar –zvf libpam-google-authenticator-
<version>-source.tar.bz2
>cd libpam*
>make install
>sudo yum erase gcc pam-devel
(

5.5. FreeRADIUS
FreeRADIUS has been around for a while and it has many features. These

instructions cover version 2.2 for installation. FreeRADIUS has released version 3.0 but

((
3(https://code.Google.com/p/GoogleUauthenticator/downloads/list.(

! 1
0 (

Author(Name,(email@address(((

is not considered stable at this time. One of the main security features it now supports is

RadSec or TLS encryption.

Unfortunately, due to FreeRADIUS needing PAM, it has to run as the root user.

To help reduce the attack profile, SELinux should be enabled on your system, which is

default. Additionally, limit access to UDP port 1812 to only system that will be

authenticating to the system. Make the following changes to the RADIUS configuration

file below.

>vi /etc/raddb/radius.conf

user=root
group=radiusd
(
(destination = syslog
 stripped_names = yes
 auth = yes
(
(

Setup the default auth method for RADIUS to PAM. Add the settings below to

the /etc/raddb/users file. Additionally, in the file /etc/raddb/sites-

enabled/default, enable PAM under the authenticate section.

>vi /etc/raddb/users
DEFAULT Auth-Type := PAM

>vi /etc/raddb/sites-enabled/default
pam #Remove the # sign in front(
(

Finally, make sure that the appropriate permissions are set on the folders to

prevent others from accessing them. The most critical folder is the Google auth secret

seed codes, makes sure no one can access this folder to prevent someone from

duplicating a key and impersonating an authorized user

> chown radius:radiusd /var/google-auth/
> chmod 400 /var/Google-auth/
> chcon -v --type=radiusd_t /var/google-auth/
(
(
(

! 1
1 (

Author(Name,(email@address(((

5.6. Enrollment API
When designing the enrollment code, it’s critical to keep security in mind. This

process will create the secret key and send the QRcode to your portal. If attackers gain

access to this system, they could steal a key or even create a key for themselves.

As this is a simple service for creating secret keys, a REST API will be great for

this. According to Rodriguez, REST APIs use HTTP methods explicitly, are stateless

and expose directory structure-like URIs (2008). In cases where information is read from

the API, a get request with the desired query should be used. A post request will create

the users.

All traffic must be encrypted between the portal and enrollment API. This is a

web service, and SSL is the best way to do this. Any system that will request a user

enrollment should have its own unique API. This key acts as additional authentication for

the request and helps keep track of different servers that are using the API. Access to the

API should be limited via local or network firewall to only allow your portal IP’s to

access it.

To prevent injection into the API, we need to make sure we create a whitelist of

approved input values and encode responses output to stop other possible attack vectors.

The API should keep detailed log information about all requests made. The web service

making these requests should have limited permissions to prevent the possibilities of

being used to escalate privileges. An example API will be made available at my github

site.4.

6. Service Integration
Integration with systems can be complicated and cumbersome. The key to rolling

out multifactor is to determine what system, based on your data classification, should be

required to have strong authentication. By rolling out per service, you can target

communications and have a methodical approach to help make the deployment a success.

((
4(https://github.com/tcw3bb/googleUauthUapi(

! 1
2 (

Author(Name,(email@address(((

6.1. VPN
Many mature products support RADIUS as an authentication method. One of the

most common items to implement multifactor authentication is VPN. Juniper SSL, Cisco

ASA and OpenVPN all support this method. Authorization is critical to limit only

approved individuals to use the VPN. Remote access and Email are the most targeted

services for stolen credentials. Multifactor deployment for these services is the most

common for this reason.

6.2. Web
Integrating Apache directly with RADIUS is easy using mod_auth_radius.

To protect specific web directories with multifactor add them to the apache.conf file.

This is an easy way to retrofit a website without modifying the code at all. The

FreeRADIUS website5.has a great article on proper setup. You can setup the user login

form to directly integrate with your RADIUS. However, a better architecture is setting up

an enterprise web single sign on (SSO) using Shibboleth or another CAS system.

6.3. SSH
SSH configuration is done through the PAM sshd plugin. With this setup you

will allow multifactor auth for remote connections, but local authentication will still use

the local user’s password. You may use your AD credentials for sudo or require and

additional TOTP, but this is may be covered in a later paper.

(
Test%connectivity%

Before you setup SSH for RADIUS, you want to make sure that the server can

communicate to RADIUS to prevent being locked out of the server. Additionally, keep an

additional SSH session open to the server while testing to limit the chance of loss of

access to the system. You should see traffic on the RADIUS servers tcpdump output. If

you do not, then you have a local or network firewall issue that needs to be resolved

before moving on.

%
%

((
5(http://freeradius.org/mod_auth_radius/(

! 1
3 (

Author(Name,(email@address(((

From the RADIUS Server
>sudo tcpdump -nnvi eth0 host <New Server IP> and not port
22
(
(
From the new SSH Server
>nc -u <radius IP> 1812
(
(
On the RADIUS SERVER

Once connectivity has been confirmed, setup the client to authenticate to the

server. Make sure to setup a unique secret for each client for the maximum security. This

will prevent someone who has brute forced one key from sniffing all passwords being

used for authentications.

%
>vi /etc/raddb/clients.conf
(
client(NAME({(
((ipaddr(=(<SSH(Server(IP>(
((secret(=(SECRET(
}(
(
(
On%the%SSH%Server%

Download the latest version of PAM RADIUS module from the FreeRadius site6.

You will also need to install a couple additional packages to compile the software.

>yum install pam-devel
>tar –zxvf pam*; cd pam*;./configure;make
>sudo make install

(
To setup the new authentication against the RADIUS server, edit the

pam_radius_auth.conf file and setup the shared secret and IP of the system. The

file format is IP, shared secret and timeout.

>sudo vi /etc/pam_radius_auth.conf

#Place a # in front of the line with 127.0.0.1
1.1.1.1 shared_secret 3
(

((
6(http://freeradius.org/pam_radius_auth(

! 1
4 (

Author(Name,(email@address(((

(
The last piece is to setup PAM to use the RADIUS module for authentication.

We are going to require RADIUS to log into the system. Place the change at the top of

the file and restart the SSH deamon.

(
>sudo vi /etc/pam.d/sshd
auth required /lib/security/pam_radius_auth.so #place at top
of file

>sudo service ssh restart
(

7. Conclusion
While the technology seems to be the most cost prohibited portion of multifactor

authentication, user awareness and education on enrollment and preparing your helpdesk

on how to prepare for the onslaught of calls during the initial rollout is critical to the

success of the deployment.

Targeting user’s credentials is the easiest way to gain access to systems and

attackers are going to continue to exploit this vulnerability until another attack vector

becomes more effective. While using some custom code for enrollment and leveraging

smart phones will allow for a low cost alternative for multifactor authentication.

(

! 1
5 (

Author(Name,(email@address(((

8. References
Aboba,(B.((2005).(RADIUS(Security(Issues.(
Bishop,(M.((2004).(Introduction(to(Computer(Security.(In(Authenication.(Boston,(MA:(

AddisonUWesley(Professional.(
In'Red'Hat'Enterprise'Linux,'how'do'I'authenticate'to'ADS.IU.EDU'using'Kerberos?(

(2013,(June(19).(Retrieved(from(Indiana(University(Information(Technology(
Services:(http://kb.iu.edu/data/akoo.html(

Kosner,(A.(W.((2013,(10(15).(iPhone'5S'Touch'ID'Fingerprint'Scanner'Is'A'Fail'For'
20%'Of'Users,'Here's'What'To'Do.(Retrieved(from(Forbes:(
http://www.forbes.com/sites/anthonykosner/2013/10/15/iphoneU5sU
touchUidUfingerprintUscannerUisUaUfailUforU20UofUusersUheresUwhatUtoUdo/(

M'Raihi,(D.,(Bellare,(M.,(Hoornaert,(F.,(Naccache,(D.,(&(Ranen,(O.((2005,(December).(
RFC(4226.(Retrieved(from(https://tools.ietf.org/html/rfc4226(

M'Raihi,(D.,(Machani,(S.,(Pei,(M.,(&(Rydell,(J.((2011).(RFC(6238.(Retrieved(from(
https://tools.ietf.org/html/rfc6238(

National(Institute(of(Standards(and(Techonology.((2011).(Electronic(Authentication(
Guidelines.(

Prabhakar,(S.,(Pankanti,(S.,(&(Jain,(A.((2003).(Biometric(Recognition:Security(and(
Privacy(Concerns.(IEEE'SECURITY'&'PRIVACY,(33U42.(

Rodriguez,(A.((2008,(November(6).(RESTful'Web'services:'The'basics.(Retrieved(from(
IBM:(http://www.ibm.com/developerworks/webservices/library/wsU
restful/(

Sixty'percent'will'fall'to'a'phishing'attack'that'might'herald'an'APT.((2013,(January(
15).(Retrieved(from(InfosecurityUmagazine:(http://www.infosecurityU
magazine.com/view/30220/sixtyUpercentUwillUfallUtoUaUphishingUattackUthatU
mightUheraldUanUapt/(

(
(

(

! 1
6 (

Author(Name,(email@address(((

Appendix A (Checklist)
(
REST'API'

• SSL

• Logging

• Limited service permissions

• Input Validation

• Encode responses

• Pass secret or QRcode to portal.

• API Key per request system

Radius'Security'
• SELinux

• Kerberos AD authentication

• IPsec across untrusted networks

• NTP

• Syslog to another system

• File permissions on the secret key folder

• IPTables for only allowed hosts to make API requests

(
(

