
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Audit Log Consolidation in a Windows Environment

Bennett Schneider
GSEC Certification
Option 1
Version 1.4b
August 26, 2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Abstract
Logging in Windows has some severe shortcomings. It is limited to the

Windows event log and its interface, the Event Viewer. Here we present its
inadequacies and solutions to them. This paper serves as an introduction to
logging options available in either a mixed Windows environment or a pure
Windows environment. It also focuses on the many alternatives that users have
for converting the Event Log into plaintext for easy reading and log parsing. It
also covers many tools that allow for easy conversion of event log information
into syslog format. Furthermore, it provides an overview of syslog server
implementations that run under Windows and their benefits over other log
consolidation implementations. In addition, it also provides an overview of some
of the log analysis options that are open to people, using either freeware or
commercial software.

When an incident occurs on a system, the first tool to turn to is the system
log. It provides valuable insight into an intrusion or even a simple malfunction
and can be one of the most important tools at a system administrator’s disposal.
System logs are very simple in a Unix environment. Many tools come with the
operating system to make the job much simpler. They provide much of the
functionality for a complete centralized logging architecture. In the Windows
universe, life is not so simple. The only tool that Windows provides is the event
log, which has several important limitations.

The Windows Event Log
The event log can be viewed through an application known as the Event

Viewer. The Event Viewer is located in the Administrative Tools. Information in
the event log is categorized into three different folders on a normal workstation.
The Application folder stores any messages from user applications, like errors or
informational messages. The System folder stores messages relevant to system
services and components, such as networking or hardware issues. The Security
folder stores the information that is most useful to the auditor. It stores all
information about logons, logoffs, accesses to security relevant information and
more. Servers may have several other folders related to the various services
that have been configured to run. In addition, the user may define custom log
folders.

Before the Security folder stores any logs at all, it must first be set up.
There are two ways to accomplish this. If a domain controller is being run, it can
all be configured through group policy. If this is not the case, it can be done
through the Local Security Policy area of Administrative Tools. Under Local
Policies is located the Audit Policy. This is where the contents of the Event Log
Security folder are configured. For any of the listed items, Success, Failure or
both can be logged. Below is a table of recommended settings for Windows
2000 taken from the NSA’s guide to securing Windows 2000.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Audit Category Recommended Setting
Audit account logon events Success, Failure
Audit account management Success, Failure
Audit directory service access No auditing
Audit logon events Success, Failure
Audit object access Failure
Audit policy change Success, Failure
Audit privilege use Failure
Audit process tracking No auditing
Audit system events Success, Failure

1

Extracting the Event Log
As stated before, the Event Viewer does have several limiting problems. It

only allows very restricted viewing of the data. It incorporates no search
capability and only allows sorting based on the fields it displays. This makes it
very tedious to search through the logs manually. In addition, it stores all of its
information in a binary format. This proprietary format limits its accessibility. It
restricts administrators to tools which handle only its encoded format and renders
all plaintext based tools useless. Fortunately, it does allow the event log to be
output in a tab delimited format and even allows this to be done on remote
computers. The downside is that this task cannot be automated. Since it is done
through the Event Viewer’s graphical user interface, it cannot be done through
the use of a script.

While posing a small problem, this problem can be bypassed. One utility
available is the Win32::EventLog Perl module. It can be easily integrated into a
perl script that will allow the extraction of the Windows event logs and even
incorporate any filtering or processing that is desired to limit the size of the log
files.

An alternative to writing a Perl script is to use the tool Dumpel from the
Windows Resource Kit. It allows command line access to the event log. Another
method of doing this would be to use a utility from Somarsoft called DumpEvt
This free utility allows you to extract the Windows Event logs into a plain text
format. It is a much better alternative to the Dumpel utility because DumpEvt
allows one to extract only those logs that have been added since the last time it
was run. This is its default behavior and does not require any additional
command line parameters to do this.

Dumpel, DumpEvt, or a script using Win32::EventLog can all be queued to
run at a certain time daily using the Scheduled Task utility. Dumpel and
DumpEvt also allow extraction of the event logs of remote machines. For
Dumpel, this is done through the –s computer option. For DumpEvt, this is done
through the /computer=computer option. This solves another of the event log’s
limitations. Without a centralized log repository, a clever hacker will go

1 J. Haney, p. 30

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

undetected. It is quite easy for a hacker to sanitize the logs of the compromised
machine. This could allow the break in to go unnoticed for quite a while. If the
logs are being sent to a remote machine, the hacker must now compromise
another machine in order to cover up his tracks. This makes his job much
harder. The extra time that must be spent in the system makes it that much
more likely that his activities will be noticed and that the attacker will be
contained.

Using Dumpel or DumpEvt to store to a remote server does solve many of
the problems. They are still somewhat flawed, unfortunately. Since they are only
run daily, they do create a window of about a day in which someone could break
in to a system and cover their tracks. If they were able to do so in that time
frame, all record of their intrusion would be lost. The solution is to send our logs
in real time. Any batch job will either provide a window or become so taxing on a
system that it will be unable to do anything else. To see the second problem,
one has to consider the network as a whole. If there are Unix machines, how will
those logs be consolidated if we are using Windows exclusive tools? What if we
have hardware devices, like routers, and we want to consolidate those logs as
well? It would be quite difficult to have to develop a separate logging system for
every environment. One the other hand, how should we decide to send our logs
over the network? What standard should we adopt? Fortunately, we do not
have to decide. A network logging standard has existed in the Unix world for
many years. Its usage is universal in all flavors of Unix and it is utilized by many
hardware devices as well. This standard is known as syslog and it is quite easy
to understand.

The Syslog Format
The syslog format is a simple means of sending logs over the network and

was defined in RFC 3164. It runs over UDP on port 514. UDP was originally
chosen for its ease of implementation. Although UDP does not guarantee
delivery, in practice very few, if any, logs are lost. In addition, the logs could
arrive out of order, so careful attention must be paid to the timestamps. The
possibility does exist for a denial of service attack on the log server. A malicious
user could flood the log server with useless messages, blocking out relevant
messages. These messages could also be faked, as the syslog protocol does
not define any kind of authentication procedures. A flood attack would almost
certainly be noticed due to the large amounts of network traffic that would be
generated, but it might disguise exactly what the hacker was attempting to do.
Despite the unlikelihood of this attack, it is a weakness of the system and
because of this it should be understood by any implementer.

The format of the messages is very simple and straightforward. They
consist of a priority, a timestamp, the originator’s hostname, and a message.
The message portion is a simple plaintext description of the log. The priority is a
number made up of two factors. The first is the facility. This is a number
between 0 and 23 which designates where the message came from. In a Unix
environment, 0-15 are reserved for specific operating system uses. The
numbers 16-23 are specifically reserved for custom user purposes and are

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

defined as local0 through local7. Since we will be sending in a Windows
environment, we may use either since the reserved numbers will not be used by
the operating system.

The other portion of the priority is the severity. It is a number from 0 to 7
and indicates how the message will impact the system. They range from debug
level (7) to emergency level (0). To calculate the priority, multiply the facility by 8
and add the severity. This number is then used by the syslog server to decide
where to route the incoming logs. It is important to note that in the syslog.conf
file in Unix based systems, the severity will match it’s own level, and all levels
below it. For example, if an emergency level message is received, it will do the
steps for all levels of that facility.

Outputting the Event Log in Syslog Format
We now need a means of converting the Windows event log into syslog

format. Several options exist for this purpose, each with their own benefits and
limitations.

Event Reporter is a one of the tools that allows us to convert our event log
messages into syslog format. It is not freeware but it does have one feature that
others lack. It gives users the ability to send out email messages for particularly
important messages that occur. This is a nice feature, but is not absolutely
necessary for the client to do this. If this is an important consideration, this can
be done in the server portion of the syslog setup. Commercial software for the
workstation can get quite expensive, since it must be licensed for every machine
that you wish to extract logs from. Fortunately, there are freeware alternatives
that provide plenty of features.

One of these is called SNARE for Windows. It consists of two
executables, SNARECore and SNARE. SNARECore is all that is required to
send syslog messages. It allows for a web-based configuration interface, which
is best to disable. This is an unnecessary port to open on a machine and it is
better to be safe than sorry. SNARE can be configured to output plaintext
messages but its default behaviour is to add the syslog header and output these
syslog messages on port 514. Syslog is the format that is desired so it is
important to verify that this header is being added. Without it, many syslog
servers will discard the messages.

Another simpler freeware alternative is known as NTSyslog. It runs as a
Windows service, as all of these do. A Windows service is the equivalent of a
Unix daemon and is a program which runs in the background. NTSyslog comes
with the source code, and can be compiled using Visual C++. Configuration is
done either through a separate executable called NTSyslogCtrl that provides a
graphical interface or through modifying several registry entries. The registry
folder that it uses is located at [HKEY Local Machine\SOFTWARE\SaberNet]. It
allows for two syslog servers to be specified for redundancy. SNARE does not
provide this, but it is also not an absolutely essential feature. It can also specify
exactly which entries to send messages for and which to ignore. This feature
helps cut down on the sending of unnecessary log messages, which take up
space and network traffic. It also allows for different messages to be sent on

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

different priorities, which helps in categorizing the messages once they get to the
syslog server. SNARE does not provide users with this freedom. Configuration
through the registry is easy and a VB script can easily be configured to write
these registry values for deployment of NTSyslog through group policy, which
eases installation for a large number of workstations.

Outputting our logs in syslog format is very useful if we have a Unix
machine handy. We would already have our syslog server and life would be
good. If we have an exclusively Windows environment, life gets a little trickier.
Fortunately, a number of solutions exist to fill this void and provide us with a
syslog server that runs under Windows.

Syslog Servers for Windows
One possible syslog server is the Kiwi Syslog Daemon. It comes in both a

commercial and freeware version. The freeware version has enough
functionality to suffice as a barebones syslog server, but the commercial version
provides many nice features. In addition to syslog messages, it can also receive
SNMP traps, which are sent by some hardware devices. It will display graphs of
syslog activity and send email messages when certain messages show up. It
also handles all log archival automatically. These features are quite useful, but
other freeware alternatives do exist.

One of these is provided by 3com and is called WSyslogD. It is very basic
but provides some nice features. It can be set to separate the logs based on IP
address, but not based on facility. This is its major drawback, and it might keep
some from using it. It also does incorporate log rotation, which is important to
keep log files at a manageable size.

Another freeware version is SL4NT. It comes in both commercial and
freeware versions. The freeware is very basic, but does provide all of the
features expected of a syslog server daemon. The commercial version
integrates many features such as email notification, routing based on source IP
address and logging to an ODBC database.

It is even possible to run the Unix syslog server in Windows using Cygwin.
It requires the base cygwin package and several additional packages. These
include the cygrunsrv (Admin), gcc, make,(Development) and inetutils (Net)
packages. For inetutils, the source is necessary since a compiled version of
syslogd is no longer included with the binaries. The rest only require the
binaries. Gcc, make, and their related packages are required to build the syslogd
binaries. Cygrunsrv is a program that allows any cygwin executable to become a
Windows service. A service is the Windows equivalent to a Unix daemon. The
only requirement cygrunsrv makes of a program is that it must not behave like a
normal Unix daemon. Normal Unix daemons exit after forking a child process.
This behavior will not yield the results that we want. Syslogd does not come with
a command line switch to prevent forking, so a slight source code modification is
required.

Upon opening the /usr/src/inetutils-xxxx/syslogd/syslog.c file, the line that
reads:

if (!Debug)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

(void)daemon(0, 0);
else
{

must be changed to:
if (!Debug)
{}

// (void)daemon(0, 0);
else
{

After making this minor change, change to the /usr/src/inetutils-xxxx/ directory.
Execute the ./configure script to configure the various inet make files. Now type
make in the /usr/src/inetutils-xxxx/ directory. This will compile some necessary
libaries, but will exit with an error. This is OK. Make can now be run in the
/usr/src/inetutils-xxxx/syslogd/ directory to get the modified syslogd executable
that we want.

A syslog.conf file must now be created. This should be in the same format
as the Unix syslog.conf with one exception. When sending to files, the
directories must be specified as /cygdrive/c/my.log if you were sending them to
c:\my.log. The reason for this is that syslogd expects files to start with a leading
forward slash. Copy both the syslog.conf and syslogd.exe to the c:\syslog
directory. All log files that you specified in the syslog.conf must be created prior
to starting syslogd, just as you would have to in Unix.

Installing the service is quite easy now. Execute the following command
through cygwin:
cygrunsrv -I SyslogDaemon -p c:/syslog/syslogd -a "-f
c:/syslog/syslog.conf -p c:/syslog/log" -1
c:/syslog/daemon.log -2 c:/syslog/daemon.log

The –I option specifies that this is an installation. The –p specifies the
working path. The –a specifies what arguments are to be passed to the
application when it starts. The –f option being passed to syslogd specifies where
the configuration file is located and the –p specifies the location of the log device.
The –1 is used to redirect stdout to a file and the –2 is used to redirect stderr. In
this case, both are being sent to the c:\syslog\daemon.log file. The forward
slashes are necessary for cygwin to interpret the file paths correctly. The service
will need to be started this time, but by default it is installed in auto mode. This
means that it will start whenever the system loads. To load it now without
rebooting, execute another switch of cygrunsrv:
cygrunsrv –S SyslogDaemon

The –S specifies start. To uninstall the program, simply run the following
line at the commandline:
cygrunsrv –R SyslogDaemon
and the SyslogDaemon program will be stopped and removed from the list of
services.

One additional step that is nice is to set up log rotation. This can be
accomplished through a scheduled task that runs nightly. The batch file must
move the old task to another location (possibly add the date as a suffix to the file
name) and also stop and restart the server. These two can be done using the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

commands net stop SyslogDaemon and net start SyslogDaemon
respectively.

This setup has the benefit of running a completely familiar syslog server.
It maintains the full flexibility of Unix syslog and does not force people to learn a
new standard. The syslog.conf file is something that most people familiar with
Unix or Linux will not have a problem configuring. Furthermore, cygrunsrv using
a similar setup can be used to run many other traditionally Unix only applications.
One example that is very useful from a security standpoint and has no Windows
equivalent is OpenSSH. This package allows one to log in to a machine
remotely like telnet, but supports a variety of encryption technologies to make
sure that the session is not intercepted.

Examining the Logs
Now that the logs have been routed to a central location, they should be

regularly reviewed. While this can be done manually, this task becomes nearly
impossible for all but the smallest of networks. The log files for a single
workstation can easily grow to hundreds of lines in one day while the log files of a
busy domain computer can go into the megabytes. For people with lots of extra
time and a penchant for the boring and repetitive, this might be heaven. For
everyone else, it is a perfect opportunity for automation.

The registered version of the Kiwi Syslog Daemon provides a very nice
solution to this problem. It allows the user to implement filters based on priority,
time of day, IP address, hostname, and message contents. When examining the
message contents, it allows for full regular expression support. These filters can
all be combined to provide a very powerful screen that will catch the majority of
all intrusion attempts. One example might be to combine a time filter made up of
after work hours with message filter for administrative account logins. This
situation is one of many that are a good indication that something inappropriate is
happening on a network.

The filters work in conjunction with a number of actions that can be
defined. These include running an external executable, executing a script,
emailing an alert, logging to a database, and many others. Many pagers and cell
phones support receiving email, so the email notification can be used to notify
these devices as well for twenty-four hour warning.

As an added feature, Kiwi Syslog Daemon provides some support for
graphing the log activity over the course of one hour or up to one day. The log
graphs are nice, but do not afford much functionality over the regular expression
support.

For those that want a freeware solution, one of the best log monitoring
tools for Unix can be made to work under Windows. Swatch was originally
designed to monitor Unix syslog logs and is available under the GNU General
Public License. Since we are using the exact same syslog format, Swatch will
work perfectly. Swatch is incredibly versatile as well and can be configured to
look in a log file for any regular expression. Swatch is written using perl, but
depends on some Unix utilities for it to work. Fortunately, it can be made to work
under Windows, but not as a service.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Cygwin requires one more package beyond those used for syslogd. The
perl package, which can be found underneath the Interpreters tree, is necessary.
Once perl is installed, Swatch also requires some additional perl modules in
order to function properly. In particular, it requires the Bit::Vector, Date::Calc,
File::Tail and Date::Parse modules. All of these can be downloaded from
http://www.cpan.org. After downloading, gunziping, and untaring the files, run
the following series of commands in each module’s directory to ensure that they
are properly installed:

perl Makefile.PL
make
make test
make install
make realclean

Swatch is now able to run, but it must be configured. Swatch has the
ability to follow a file as it grows and look for certain regular expression. When it
reaches one, it will perform the task that the user has designated for it. In Unix,
Swatch supports mail notification, echoing to the command line, ringing the
system bell, executing commands, and sending text to users. While running in
Windows, executing a command and echoing are the only usable options.

One of the most useful of the commands to have Swatch or the Kiwi
Syslog Daemon run is the net send command. It allows the user to pop up alert
windows on either the local computer or a remote computer. The default
installation of Windows includes the Messenger service, which is the program
which listens for the net send messages. The proper syntax is net send
<computer> <message> where <computer> is either the IP address or computer
name and <message> is what will appear in the popup.

To get the Swatch daemons running, open cygwin. After entering the
swatch directory, run the following command:
./swatch –c config file -t log file --use-cpan-file-tail –daemon –-
pid-file pid file > /dev/null

This will set up the log parsing daemon for one log file, throwing away all output
from swatch and the commands that are executed by it. The pid file is not
required, but it does make log rotation much easier. Starting these log monitors
can be automated using a script which is loaded with in a user’s Startup folder.
The main problem with this solution is that the script will only work as long as
there is a user logged in. Forcing a user to be logged in constantly is quite a
drawback, even though the screen lock provides basic security.

In addition, every time the logs are rotated, the daemons must be
restarted. The number stored in each swatch instance’s pid file must be passed
to the kill command in a cygwin. After that, the same call that started swatch
maybe be run again.

The configuration file for swatch is relatively easy to create. It consists of
either the word “watchfor” or “ignore” and then a regular expression. On the next
line following the “watchfor” statement is placed the action. For Windows, this

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

will always be “echo” by itself or “exec” followed by the command and the options
that need to be passed to it. To include the message that caused the alert in the
exec command, use a $0. Any other number will include that field of the
message. If “echo” is used with the –t option, it is important to redirect the output
to a legitimate file instead of /dev/null.

An alternative is to run swatch using the –f option instead of the –t. –f tells
it to run through a single pass of a given logfile. For this option, use of the “echo”
command is probably most appropriate. This output can be redirected to a file so
that a manual review can be performed on the filtered logs to make sure that no
malicious activity was underway. This option is much simpler than the –t option,
but it does allow a window of time for a compromise to occur. The command to
start this would be:
./swatch –c config file -f log file > results

Important messages in Windows
Now that the log review tools are in place, the administrator must carefully

consider which regular expressions are important enough to include in the log
monitoring tool. This is a very important decision to make and it can mean the
success or failure of the logging solution. If the regular expressions match too
many legitimate messages, the person in charge will be inundated with logs to
hand review and will be sure to miss a malicious one among all of the false
positives. On the other hand, if the regular expressions are not general enough,
they will miss the important logs that would clue someone in on a compromise.

Below is a listing of events from the Windows logs that are normally
associated with malicious behaviour. They are taken from Counterpane
Securities, one of the leaders in network security.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Event ID Event Descriptor
529 Logon Failure: Reason: Unknown user name or bad password
530 Logon Failure: Reason: Account logon time restriction violation
531 Logon Failure: Reason: Account currently disabled
532 Logon Failure: Reason: The specified user account has expired
533 Logon Failure: Reason: User not allowed to logon at this computer
534 Logon Failure: Reason: The user has not been granted the requested logon type at

this machine
535 Logon Failure: Reason: The specified account's password has expired
537 Logon Failure: Reason: An unexpected error occurred during logon
624 User Account Created
627 Change Password Attempt
630 User Account Deleted
632 Security Enabled Global Group Member Added
636 Security Enabled Local Group Member Added
642 User Account Changed
643 Domain Policy Changed
608 User Right Assigned
609 User Right Removed
610 New Trusted Domain
611 Removing Trusted Domain
612 Audit Policy Changed
614* IPSec policy agent disabled
615* IPSEC Policy Changed
616* IPSec policy agent agent encountered a potentially serious failure.
617* Kerberos Policy Changed
618* Encrypted Data Recovery Policy Changed
620* Trusted Domain Information Modified
512 Windows NT is starting up.
513 Windows NT is shutting down.
516 Internal resources allocated for the queuing of

audit messages have been exhausted, leading to the loss of some audits.
517 The audit log was cleared.

2

The table entries marked with an asterisk are only necessary if IPSec is
being run. In addition, many of these descriptions only apply to Windows NT.
While the descriptions may have changed, the Event IDs still correspond to the
same messages, so it is safe to use the Event Id as the discerning pattern in the
regular expressions. The majority of these should be relatively rare events so
they should not place an extreme burden on a person who is assigned to
manually review them.

With these tools in place, almost any incident on any of the machines can
be easily tracked down. In addition, many incidents will be discovered through
their use. This shows that a consolidated logging setup can be accomplished in
Windows for relatively cheap or even free and that such a setup has a variety of
benefits.

2 Counterpane Securities

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Counterpane: Log Analysis: Windows Logging. 5 December 2001
URL: http://www.counterpane.com/log-windows.html (26 August 2003)

Haney, J. Guide to Securing Microsoft Windows 2000 Group Policy: Security
Configuration Tool Set. Version 1.2. 3 December 2002
URL: http://nsa2.www.conxion.com/win2k/guides/w2k-3.pdf (26 August 2003)

Dougherty, Jesse. Win32::EventLog – Process Win32 Event Logs from Perl
URL:
http://aspn.activestate.com/ASPN/docs/ActivePerl/site/lib/Win32/EventLog.html
(26 August 2003)

Somarsoft Utilities .
URL: http://www.systemtools.com/somarsoft/ (26 August 2003)

Dumpel.exe:Dump Event Log.
URL:
http://www.microsoft.com/windows2000/techinfo/reskit/tools/existing/dumpel-
o.asp (26 August 2003)

Lonvick, C. The BSD syslog Protocol . August 2001
URL: http://www.ietf.org/rfc/rfc3164.txt (26 August 2003)

Event Reporter: The NT Event Monitor
URL: http://www.eventreporter.com/en/ (26 August 2003)

NTSyslog
URL: http://ntsyslog.sourceforge.net/ (26 August 2003)

Syslog Daemon for Windows, Free Syslog Server, Firewall logging, Kiwi Syslog
Daemon
URL: http://www.kiwisyslog.com/products.htm (26 August 2003)

3Com Software Library - Utilities for 32 bit Windows
URL: http://support.3com.com/software/utilities_for_windows_32_bit.htm (26
August 2003)

Krainer, Franz. SL4NT 0.3. 25 July 2003.
URL: http://www.netal.com/sl4nt03.htm (26 August 2003)

SWATCH: The Simple WATCHer of Logfiles
URL: http://swatch.sourceforge.net/ (26 August 2003)

Cygwin Information and Installation
URL: http://www.cygwin.com/ (26 August 2003)

