
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

A Real Vulnerability: Rogue System Libraries and Binaries
Manny D. Peterson
December 14, 2000

The goal of this paper is to heighten the awareness regarding a real vulnerability. The vulnerability will be described
through three examples of how the vulnerability could be exploited by an attacker. This paper does not attempt to
suggest a solution nor does it examine all of the possible attacks that may be mounted as a result of this vulnerability
as they are both beyond the scope of this paper. It is the responsibility of the reader to investigate what measures
should be taken to protect his or her respective environments.

First Example: An Introduction

Imagine this scenario. Some early Monday morning a system administrator arrives at work, boots his computer and
steps away to fetch his morning mug of java. With mug in hand, he returns to his computer to be greeted by a screen
very familiar to all of us, the Microsoft Windows sign-on screen. Almost reflex like, he enters his user account
credentials (username and password) only to be presented with a dialog box stating, "No domain server was available
to validate your password." Immediately, the system administrator tries to enter his user account credentials again
with no improvement. After several tries and verifying the availability of the domain controller with his peers, the
frustrated system administrator resorts to reloading Windows or using another computer. What our friendly system
administrator may never learn of is the fact that he has just supplied his user account credentials to a rogue sign-on
screen, which possibly either stored or forwarded his user account credentials off to some remote location. In fact, not
only were his user account credentials captured, the user account credentials of his peers were also captured while
attempting to help the system administrator by offering to try their user account credentials.

Second Example

Our first example describes a fictitious, yet possible, scenario where system binaries were manipulated to display a
rogue sign-on screen for the purpose of capturing the user account credentials of a privileged user. In this example
we will introduce a different method of gaining privileged access through the manipulation of system libraries.
Although the attack used in this example is quite aged, it was very successful due to its simplicity.

Thanks to a concept in the field of computer sciences known as code reuse, this particular form of attack is possible.
Code reuse is a concept employed by programmers to reduce program development time and storage requirements.
Code reuse is implemented in the form of shared code. When one or more programs share code that serves a similar
function it is often placed in a library. In Unix and Unix like operating systems these libraries are referred to as shared
objects (.so). In Windows based operating systems they go by a different name, dynamic link libraries (.dll). When a
program is executed and makes a call to shared code, the library is loaded and linked to the program in real time
(runtime). Once the library is loaded and linked to the program, the call can be completed and control returns to the
caller. Under normal circumstances, this is how things occur. However, what if we change the circumstances and tell
the program to look elsewhere for its library or simply replace the library all together? This is where our next example
comes in.

First we need a rogue library to stand-in for our legitimate system library. To do this, we write and compile our own.
In this example we wrote a library that replaces a standard C library function, getpass(). The getpass() function under
normal conditions writes a small message to the screen prompting the user to provide a password then reads the
password the user supplies and returns it to the caller. However, our rogue getpass() function will do nothing of the
sort. Looking at figure 1, you will notice when called, our rogue getpass() function simply writes a small cute message
to the screen, flushes the IO stream and invokes shell (/bin/sh) as a privileged user (root).

Figure 1

#include char *getpass(const char *prompt) {
 printf("Welcome to the promised land!\n");
 fflush(stdout);
 system("/bin/sh");
}

Next, we need to get our rogue library onto the target system. This can be approached two ways. If you have an
account on the system already simply dump the rogue library in a temporary directory such as /tmp or if you do not
have an account on the target system FTP the rogue library into the FTP incoming directory.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Now we have a rogue library and it is in place on the target system. Next we need some privileged process to call it.
To do that we must first convince the system to load our rogue library instead of the legitimate one, which can be
done with the help of an environment variable used by the linker loader ld.so, LD_PRELOAD. If we have an account
on the target system we can simply start the telnet client, set the LD_PRELOAD variable to point to the location of
our rogue library (/tmp) and open a session to localhost. If we do not have an account on the target system, it is just
as easy as if we did. Start the telnet client, set the LD_PRELOAD variable to point to the location of our rogue library
on the target system (ftp/incoming) and open a session to the target host. Once you are connected you will be
presented with a short message and given a shell prompt. You will have only 30 to 60 seconds before the telnet
daemon times out, just long enough to setup camp.

Third Example

Up to this point we have introduced two methods for manipulating system libraries and binaries for the purpose of
gaining privileged user access. In the next example will reinforce what has been intruded in the previous example by
describing a similar method of manipulating system libraries, which applies to the Microsoft Windows NT Operating
System.

As a measure to improve the performance of applications when calling system libraries in the Microsoft Windows NT
Operating System, Windows NT preloads the system libraries into a cache of file-mapping objects within the internal
object namespace upon startup. Thus, when an application needs to call a function located with a system library,
Windows NT does not need to read the location of the library from disk. Now, backing up briefly, Windows NT
appropriately controls access to system libraries residing on disk. That is, with the help of properly configured NTFS
access control lists. However, when Windows NT preloads the system library file-mapping objects into its internal
object namespace it does something quite unexpected. Windows NT grants the Everyone group full control of the
system library file-mapping objects cached within the internal object namespace. Thus, allowing an attacker to
manipulate the file-mapping objects of system libraries. How is this done? Simple if you are familiar with the details of
coding Win32 dynamic link libraries.

First, we need a rogue library to stand-in for the legitimate system library. The rogue library only needs to contain a
function commonly called by Windows NT processes and hopefully, processes running as a privileged user. In the
advisory published by L0pht, the function used is DllMain, a function common to all Windows NT libraries. A unique
property of the L0pht’s rogue library called eggdrop.dll is that it also acts as a DLL wrapper. Simply put, when the
rogue library is called it forwards the call to the legitimate system library. Once the forwarded call to the legitimate
system library returns, the rogue library completes the additional tasks necessary to achieve its goal, privileged
access. Below, figure 2 details the flow of a legitimate function call and a function call where a rogue library has been
introduced.

Figure 2

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Next, we need a small injector program to remove the legitimate system library file-mapping object from the cache
and replace it with the rogue library. The L0pt uniquely calls this process poisoning the DLL cache.

With the rogue library and injector program in hand, providing all files are in place on the target system, we are
ready. We first run our injector program to delete the legitimate system library file-mapping object from the cache and
load our rogue library in its place. Now, all we need is a privileged process to call our rogue library. Say hello to
PSXSS.EXE, our friendly POSIX subsystem (the OS/2 subsystem will work just as well). Everytime a subsystem is
launched it runs as the local system account (NT AUTHORITY\SYSTEM). Immediately upon launch the POSIX
subsystem calls our rogue library, which in turn calls the legitimate library. The legitimate library returns and leaves
us with a shell (CMD.EXE) running as the local system account.

Summary

This paper described three methods for manipulating system libraries and binaries for the purpose of gaining
privileged user access to a system. Two of the examples are real and were not included to hone your hacking skills.
Rather, while reading through the examples given -- hopefully you have become more aware as to the ways an
attacker could use similar methods to attack your system. I would highly recommend contacting the vendor of your
system to find out ways you can safeguard critical system files and prevent their manipulation.

Lance J. Hoffman, "Rogue programs: viruses, worms, and Trojan" Wiley, John & Sons, Incorporated, November 1990
(12 December 2000)

"Telnetd Environmental Variable Passing Problem." (10 October 2000) URL:
http://www.insecure.org/sploits/telnetd.LD_PRELOAD.enviropassing.html (12 December 2000)

"l0pht Security Advisory." (18 February 1999) URL: http://www.l0pht.com/advisories/dll_advisory.txt (12
December 2000)

"Somarsoft – Windows NT Security Issues." URL: http://escert.upc.es/cert/tech_tips/security.thml (12
December 2000)

"Telnetd Vulnerability." URL: http://www.outpost9.com/exploits/telnetdvuln.html (12 December 2000)

