
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Case Study:
LDAP Authentication and Authorization for Open Source Web Applications

Justin B. Alcorn
9/29/2003

SANS Security Essentials
GSEC Practical Assignment

Version 1.4b – Option 2

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Abstract

Many open source web applications use relational databases to hold identifying
user information. This model works well for stand-alone Internet applications
where the user population is self-chosen and is willing to sign up for and maintain
an independent identity for the application. When writing applications for a
corporate environment, however, the user population is no longer self-selected. I
had some specific challenges that I wanted to solve including an IT Security
intranet, tracking of audit issues, and monitoring of corporate email systems
where open-source tools could be used to quickly and easily put the information
into a HTML format. The information, however, had various levels of
classification, and users had to be authenticated and authorized to see the
specific applications.

I found a significant number of different examples of using a back-end database
to hold the authentication information. However, this simply exacerbated an
already existing problem – namely, that corporate environments often have many
disparate systems, all with different authentication information. A centralized
directory service, such as LDAP, is used by many corporations to unify
authentication and authorization and to gain administrative control of
provisioning. As part of my job, I am involved in unifying all these different
authentication mechanisms and building a central authentication and
authorization directory. In this paper, I describe the method I used to solve this
problem for the open source PHP applications. I present the actual code and a
directory model that can be extended for use as a central coporate directory. I
implemented the code on my home intranet as a prototype, and that code is the
code presented here.

The Problem - Before

High end Open Source web applications, such as Content Management or
Groupware systems, depend upon user authentication to handle security. Most
have moved to a session-based model rather than using the web server security
available in HTTP Basic and Digest authentication. A form is presented to the
user, and the posted information is compared to the user information stored to
determine access rights.

Most of these Open Source applications store the user authentication in a
relational database, usually because the database is used for other purposes.
Each application includes installation of user tables with the attributes needed for
that application. Installation of another application will install another set of
tables. Users will need to be set up in both applications, and maintained
separately. Examples of these applications include geeklog
(http://www.geeklog.net) , PostNuke (http://www.postnuke.org), typo3
(http://typo3.com) and Mambo Open Source (http://www.mamboserver.com) .
Each of these applications includes administrative tools and unique tables for

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

maintaining users. Although useful in a isolated context, these tools do not fit in
an environment where many different applications are running that need common
authentication credentials.

I also built some specific applications for my own use, both on my home network
and for my corporate responsibilities. Home applications included photo galleries
for organizing pictures of the family, online address books, and journals of my
children’s activites. For work I built a security issues tracking database, a
database for monitoring the logs on our email content filters, web sites that
monitored various network devices using tools such as MRTG
(http://www.mrtg.com) and Nagios (http://www.nagios.org). I also had some
straight HTML pages that I wanted to have varying levels of classification. Giving
people various levels of access to each of these applications meant maintaining
user information, and although I wrote many of the applications to take
advantage of specific user tables, I still wasn’t taking advantage of any central
provisioning available in the corporate infrastructure. The default answer was to
use Microsoft IIS servers and HTTP authentication to specific directories,
allowing the users to use their Windows Network logons to access information.
The addition of each Windows Server/SQL Server application increased costs to
the enterprise, and the “locking in” of one technology limited our ability to
creatively solve problems. I needed to find a way to authenticate users and
classify information while still using the open source tools that gave me the
flexibility to creatively solve problems.

What I needed was a standards-based way to authenticate users and classify
data that would work with any technology.

Putting It Together - During

One of my central responsibilities at my job is to begin to solve this issue of “silos
of authentication”. Windows networks, email systems, ERP systems, Unix
accounts, Web applications, HR systems, and one-off applications are scattered
around any enterprise, and provisioning and maintaining these accounts takes a
significant amount of effort and resources.

Many of these systems are, to one degree or another, moving to support LDAP
authentication mechanisms. A decision had already been made based upon
some committments made and software purchased that a corporate LDAP
directory would be used. The specific software used for this directory, however,
was in the decision process. I decided to go ahead and prototype the
authentication mechanisms I would need using freely-available tools, and make
sure that I would be able to use any of the commercial directories as needed
when final implementation was done.

Decision - Why Sessions?

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Apache, the most popular web server in use today1, has a module available for
LDAP authentication of HTTP connections. This implementation, however, did
not meet my needs because I require session based authentication. Some of the
reasons for using session based authentication instead of HTTP based
authentication include the following:

? Session Variables – Sessions can store information about the
current state of the transactions and retrieve that information
between submissions. Session variables allow stateful applications
to be built on the stateless HTTP protocol.

? Session Control – Sessions can be destroyed as well as created,
allowing a user to actually log out of an application. HTTP
authentication is persistent until the browser is closed. In
addition, cookies can be timed out so that idle sessions are
automatically logged off.

? Encryption – Although HTTP authentication has a hashed Digest
option available2, most HTTP authenticated sites use only basic
authentication. Sites mainly choose this limited method for ease of
use, but many assume a common misconception that because the
password field is obscured, the password must be encrypted in
transit. This is incorrect – the password field in Basic
authentication is sent in the clear. However, for session based
authentication, if the server is SSL encrypted and the form is
submitted with a https:// URL, the authentication credentials are
also encrypted.

Decision - Why Directories?

A directory server is essentially an information store that is optimized for reads.
The Domain Name System (DNS) is a type of directory server that is optimized
for both reads and for the type of information it maintains. A generalized
directory server, on the other hand, can store information about people,
locations, groups, applications, network devices, and anything else for which
there is a need for fast retrieval of information that does not change very often.
Directory servers should be stable, extensible and distributed, to allow for
redundancy and local administration of the information. The DNS system is fast,
stable and distributed, but is not very extensible, and so is not a general directory
server.

Directory servers are often seen as lightweight databases, and there is some
misunderstanding of the use of directory servers. Although a directory server
may be implemented with a database on the back-end, a directory server would

1 Netcraft Survey, July 2003 © Netcraft, Ltd.
http://news.netcraft.com/archives/web_server_survey.html
2 HTTP Authentication: Basic and Digest Access Authentication http://www.ietf.org/rfc/rfc2617.txt

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

be a very bad choice for any system that requires any kind of transactional
capability. As a matter of fact, directory servers are usually set up to limit
updates to a few specific roles, and possibly to allow people to update their own
information.

Directory servers allow large organizations to delegate administration of users,
networks, names and devices to local administrators, while maintaining a single
way of accessing that information from anywhere. Directory servers provide
“white pages” functionality, and can bring information in from disparate sources
for ease of access, for example updating a person’s name, address, and
employee information from an HR system while taking their office assignment
from an administrative database and the phone number from the PBX system. A
network-focused directory server can provide benefits to an enterprise by:

• Facilitating distributed networking by bringing in information from different
network resources into a central location. Directory servers are highly
scalable and integrate disparate systems using Internet standards.

• Easing network administration by providing a central store of information
for provisioning systems.

• Enhancing network reliability and performance by providing a distributed,
redundant core of information.

• Unifying access to those distributed resources, with the ability to use
aliases to locate network resources which may move locations of even
NOS connections, single network logons across sytems, and centralized
naming standards.

• Improving security by providing distributed provisioning with central control
and providing directory object security through a unified standard.3

Decision - Why LDAP?

LDAPv3, the core of which is defined in RFCs 2251 through 2256, is a
“lightweight’ implementation of the X.500 Directory Services standard. X.500 is
considered “heavyweight” because it requires implementations to be written
using the seven layer OSI model. LDAP, on the other hand, is implemented
using the TCP/IP stack, which is considerably easier to use. There is nothing
“lightweight” about the directories themselves – a LDAP implementation can use
the same heavy-duty directory data stores used by X.500 implementations.
“Lightweight” refers to the ease of access through the TCP/IP protocols.

LDAP is being adopted as the defacto standard for directory access by many
organizations and applications. Microsoft’s Active Directory, Lotus’ Domino
Server, Sun/Netscape, Novell, Computer Associates, IBM and many others offer

3 Sheresh and Sheresh, Undertanding Directory Services, pp. 8-15

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

implementations of LDAP that differ widely in administration, implementation and
data storage, but all can be accessed via an LDAP client and all implement the
concept of a directory schema.

Classification Of Data

An important decision in the implementation of any data security scheme is the
classification of the data – how will the authorization work? We are moving to a
Role-Based Security model, and the design of the LDAP authentication supports
that model. In a Role-based model, data is classified according to the roles of
the users who will have access to the data. Roles are implemented by including
users in groups set up to define each role. So, for example, we have a
‘anonymous’ group that defines the role of someone whose identity is currently
unknown to the application, and an ‘allusers’ role which is composed of anyone
who has a valid logon and is currently logged on. Note that these are both
different from the ‘all’ role, which is everyone, whether logged on or not.

Other roles/groups can be defined by who you are – a ‘family’ role on a home
intranet, a ‘it security’ group – or a function of your job, for example a ‘mail
admins’ role. Again, your role is defined by including you in the appropriate
groups. Data is then classified and secured by making it an ‘app’ in the LDAP
directory. As an example, this paper is classified for authenticated users by
including the following entry in the directory:

gsecpaper, app, jalcorn.net
dn: cn=gsecpaper,ou=app,o=jalcorn.net
cn: gsecpaper
member: cn=allusers,ou=group,o=jalcorn.net
labeledURI: http://jalcorn.net/gsecpaper/index.php
~gsecpaper/index.php~~GSEC
 Paper Online~
objectClass: groupofnames
objectClass: labeleduriobject
objectClass: top

(Note that there is some extra code in the labeledURI attribute used to modify
how the menu is displayed). The ‘gsecpaper’ application will now be available to
any authenticated user of the website, but an authenticated user will be denied
access. The data is then secured by changing the HTML file to a PHP file and
including the following code at the beginning:

1. <?php
2. $appname=’gsecpaper’;
3. $needauth=1;
4. require_once “secure.php”;
5. ?>

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Implementation

I used an implementation example of Session-based authentication as a starting
point found at http://martin.f2o.org/php/login. This implementation focused on
securing sessions and used the PHP PEAR Database libraries available at
http://pear.php.net. Although the PEAR Database module contains a LDAP
implementation, I found that the code was poorly documented and difficult to use,
so I used the direct LDAP PHP calls documented at http://php.net.

System Software

For the example implementation, I have used the following software:

• OpenLDAP v 2.1.22
• BerkeleyDB v 4.1.25 (Required for OpenLDAP)
• Apache v 1.3.27
• PHP v 4.3.2 (compiled –with-ldap)
• RedHat Linux 8

All software (except the operating system) was compiled from source from the
latest releases. Examples are written in PHP, but could also have been written in
other languages such as C/C++ or Perl.

LDAP configuration

One of the security concerns with using a relational database to authenticate
users is that the application must store and pass its credentials for accessing the
database. LDAP on the other hand allows anonymous binding for accessing the
directory, allowing us to implement the authentication routines without the need
for any password storing. However, the access controls must be set correctly to
allow searching the directory data. The access controls set for this example are:

access to dn.base="cn=Subschema" by * read
access to attrs=userPassword
 by self write
 by * auth
access to attrs=uid,entry
 by * read
access to dn.children="ou=app,o=jalcorn.net" by * read
access to dn.children="ou=group,o=jalcorn.net" by * read
access to *
 by self write
 by users read
 by anonymous auth

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

This access list allows authentication to the LDAP server with an anonymous
bind, and allows the anonymous user to search the ‘app’ and ‘group’
organizational units, plus search the person ou and see the uids. Complete
LDAP configuration information is beyond the scope of this paper but can be
found at the OpenLDAP page (http://www.openldap.com) and more LDAP
information can be found at the LDAP Zone (http://www.ldapzone.com) .

Directory Design

To accomplish our goals of authentication and authorization using LDAP
directory services, we are going to store three kinds of information in the
directory. First, user information including a unique ID and password, along with
name and other information. Authorized users will be stored in the organizational
unit ou=person and will use the inetOrgPerson object class defined in RFC
27984. The DN for users will be constructed from the uid, rather than the
common name (cn), to ensure uniqueness and make logons easier.

Application information will be stored in ou=app. Application objects will be
contructed of objectClass groupOfNames (RFC 2256) 5and labeledURIObject
(RFC 2079)6. The groupOfNames gives us a ‘member’ attribute which is a DN of
another object (in this case, groups) while the labeledURI attribute will contain a
URL and some text describing the application.

Group information will be used to tie the applications and users together, and will
be stored in ou=group. Groups are build from the objectClass groupofNames
and the ‘member’ attributes are the DNs of users or of other groups.

4 Definition of the inetOrgPerson LDAP Object Class http://www.ietf.org/rfc/rfc2798.txt
5 A Summary of the X.500(96) User Schema for use with LDAPv3
http://www.ietf.org/rfc/rfc2256.txt
6 Definition of an X.500 Attribute Type and an Object Class to Hold Uniform Resource Identifiers
(URIs) http://www.ietf.org/rfc/rfc2079.txt

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 1 - LDAP Organization

Object Code

The code to implement LDAP integration is contained in 2 PHP classes. The
ldapDB is a class representing a LDAP directory connection. The class file
ldapDB.php is stored on the web server in a directory specified in the PHP
search path. 7

6. <?php
7. class ldapDB {
8. //
9. // ldapUser.php (c) 2003 Justin B. Alcorn
10. /*
11. * This script is free software;
12. * you can redistribute it and/or modify
13. * it under the terms of the GNU General
14. * Public License as published by
15. * the Free Software Foundation;
16. * either version 2 of the License, or
17. * (at your option) any later version.
18. *
19. * The GNU General Public License can be found at
20. * http://www.gnu.org/copyleft/gpl.html.

7 For information on configuring PHP, see http://www.php.net

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

21. *
22. * This script is distributed in the hope
23. * that it will be useful,
24. * but WITHOUT ANY WARRANTY; without even
25. * the implied warranty of
26. * MERCHANTABILITY or FITNESS FOR A PARTICULAR
27. * PURPOSE. See the
28. * GNU General Public License for more details.
29. */
30. //
31. // Based on an idea from http://martin.f2o.org/php/login
32. //
33. var $conn = null; // LDAP Connection Object
34. var $bound = 0;
35. var $anon = 0; // Anonymous Connection
36. var $binddn = null; //
37. // basedn for all searches
38. var $base = null;
39. var $host = null;
40.
41. function ldapDB($host,$base,$uid="", $pwd="") {
42. $this->host = $host;
43. $this->base = $base;
44. $this->conn = ldap_connect($host) or die("Cannot connect

to LDAP $host\n");
45. // We always start with an anonymous bind
46. ldap_bind($this->conn) or die("Anonymous bind

failed\n");
47. $this->bound = 1;
48. $this->anon = 1;
49. $this->binddn = null;
50. if ($uid) {
51. // Make sure that attempts with NULL passwords do not

succeed
52. if (! $pwd) {
53. $pwd = crypt(microtime());
54. }
55. $filter = "(cn=$uid*|uid=$uid*)";
56. $res = ldap_search($this->conn,$this->base,$filter);
57. $cnt = ldap_count_entries($this->conn,$res);
58. if ($cnt == 1) {
59. $entry = ldap_first_entry($this->conn,$res);
60. if ($entry) {
61. $bdn = ldap_get_dn($this->conn,$entry);
62. if ($bdn) {
63. if (@ldap_bind($this->conn, $bdn, $pwd)) {
64. $this->anon = 0;
65. $this->binddn = $bdn;
66. }
67. }
68. }
69. } else {
70. if ($cnt == 0) {
71. } else if ($cnt > 1) {
72. } else {
73. }
74. }

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

75. }
76. } // function ldapDB
77.
78. function isConn() {
79. if ($this->conn) {
80. return TRUE;
81. }
82. return FALSE;
83. }
84.
85. function isBound() {
86. if ($this->bound) {
87. return TRUE;
88. }
89. return FALSE;
90. }
91.
92. function isAuthUser() {
93. if ($this->binddn) {
94. return TRUE;
95. }
96. return FALSE;
97. }
98.
99. function isAnon() {
100. if ($this->anon) {
101. return TRUE;
102. }
103. return FALSE;
104. }
105. } // class ldapDB

The class’ constructor takes the hostname and a basedn as required
arguements. It first attempts an anonymous bind to the server, and searches for
the user’s UID. This allows the directory to be set up hierarchically - the user
doesn’t need to authenticate with their complete Distinguished Name (i.e.
uid=jalcorn,ou=itsecurity,ou=person,o=jalcorn.net) but only needs to use their
Unique ID (jalcorn).8 Note that we allow the uid to be a ‘cn’ also, this is to allow
the rootdn to also authenticate, as the rootdn is usually implemented as a
organizationalRole, which has no uid attribute. Once the anonymous bind is
successful, the user’s dn is found, and a bind is attempted with the supplied
password. If the bind is successful, the user has successfully authenticated.

Methods in this class simply allow for human-readable implementations of
information needed from the class, for example ‘is this user authenticated?’.

The class that implements the methods needed for session authentication and

8 Note that the code could allow uids to clash, but this code is not implemented in this example.
The code would loop through all found dn’s until it found one that was able to bind with the
supplied password. A glitch in the design would create an issue if two people had the same uid
and same password – an argument for making uid unique throughout the directory.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

authorization is the ldapUser class, implemented in the file ldapUser.php.

106. <?php
107. class ldapUser {
108. //
109. // Copyright © 2003 Justin B. Alcorn
110. // All Rights Reserved
111. /*
112. * This script is free software;
113. * you can redistribute it and/or modify
114. * it under the terms of the GNU General
115. * Public License as published by
116. * the Free Software Foundation;
117. * either version 2 of the License, or
118. * (at your option) any later version.
119. *
120. * The GNU General Public License can be found at
121. * http://www.gnu.org/copyleft/gpl.html.
122. *
123. * This script is distributed in the hope
124. * that it will be useful,
125. * but WITHOUT ANY WARRANTY; without even
126. * the implied warranty of
127. * MERCHANTABILITY or FITNESS FOR A PARTICULAR
128. * PURPOSE. See the
129. * GNU General Public License for more details.
130. */
131. //
132. // Based on an idea from http://martin.f2o.org/php/login
133. //
134. var $ldadb = null; // ldapDB pointer
135. var $failed = false; // failed login attempt
136. var $date; // current date GMT
137. var $dn = null;
138. var $logged = 0;
139. var $attrs = array();
140.
141. function ldapUser(&$ldapdb) {
142. $this->ldapdb = $ldapdb;
143. $this->date = $GLOBALS['date'];
144. // Does the user have an existing session?
145. if ($_SESSION['logged'] & $_COOKIE['ldapUserTimeout']) {
146. $this->_checkSession();
147. }
148. return $this;
149. }
150.
151. // checkLogin
152. // authenticates the user against the LDAP server
153. //
154. function checkLogin($username, $password) {
155. $newdb = new ldapDB($this->ldapdb->host,
156. this->ldapdb->base,
157. $username,$password);
158. if ($newdb->isAuthUser()) {
159. error_log("We have a good logon",0);

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

160. $this->ldapdb = $newdb;
161. $this->dn = $newdb->binddn;
162. $this->logged = 1;
163. if ($res = ldap_search($newdb->conn,
164. $newdb->base,
165. "(uid=".$username."*)",
166. array("uid","cn","sn","givenName","title")))

{
167. if ($entry = ldap_first_entry($newdb->conn,$res)) {
168. $this->attrs =
169. ldap_get_attributes($newdb->conn,$entry);
170. } else {
171. $this->attrs = array();
172. }
173. $saveattrs = serialize($this->attrs);
174. $_SESSION['attrs'] = $saveattrs;
175. $_SESSION['dn'] = $this->dn;
176. $_SESSION['logged'] = true;
177.
178. $this->_updateCookie();
179. return true;
180. } else {
181. error_log("LDAP err".ldap_error($this->ldapdb-

>conn),0);
182. }
183. } else {
184. error_log("Failed LDAP Bind for $username $password",0);
185. $this->failed = true;
186. $this->logout();
187. return false;
188. }
189. } // checkLogin
190.
191. //
192. // inGroup – return true if $this->dn is a member of $group,
193. // or a member of any group within $group.
194. // Function is recursive.
195. //
196. function inGroup($group) {
197. $dnparts = ldap_explode_dn($group,0);
198. // all is a pseudo-group. All, including anonymous,
199. // are in this group.
200. // Make sure cn=all,ou=group,o=<org> is in the dir.
201. if ($dnparts[0] == "cn=all") {
202. return true;
203. }
204. //allusers is a pseudo-group that includes anyone logged in.
205. // make sure cn=allusers,ou=group,o=<org> is in the dir
206. if ($this->logged && $dnparts[0] == "cn=allusers") {
207. return true;
208. }
209. // users who are not logged in.
210. // again, create the pseudo-group
211. if ($dnparts[0] == "cn=anonymous") {
212. if ($this->logged) {
213. return false;
214. } else {

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

215. return true;
216. }
217. }
218. if ($this->dn) {
219. $srch = "objectclass=*";
220. if ($res = @ldap_read($this->ldapdb->conn,$group,$srch))
221. {
222. if ($e = @ldap_get_entries($this->ldapdb->conn,$res))
223. {
224. $entry = $e[0];
225. if (in_array('groupofnames',
226. $entry['objectclass'])) {
227. $i = 0;
228. while ($i < $entry['member']['count']) {
229. if ($this->dn == $entry['member'][$i]) {
230. return true;
231. } else {
232. if ($this->inGroup($entry['member'][$i]))

{
233. return true;
234. }
235. }
236. $i++;
237. }
238. }
239. }
240. }
241. if (ldap_errno($this->ldapdb->conn)) {
242. error_log("inGroup:".$group.":".ldap_error($this-

>ldapdb->conn),0);
243. }
244. }
245. return false;
246. } // inGroup
247.
248. //
249. // appPerm – return true if $this->dn a part of any
250. // group listed in the members of the $app object
251. //
252. function appPerm($app) {
253. if (!$app) {
254. return false;
255. }
256. $srch = "objectclass=*";
257. $sbase = "cn=".$app.",ou=Apps,".$this->ldapdb->base;
258. if ($res = @ldap_read($this->ldapdb->conn,$sbase,$srch)) {
259. if ($e = @ldap_first_entry($this->ldapdb->conn,$res)) {
260. $entry = @ldap_get_attributes(

$this->ldapdb->conn,$e);
261. $j = 0;
262. while ($j < $entry['member']['count']) {
263. if ($this->inGroup($entry['member'][$j])) {
264. return $entry['labeledURI'][0];
265. }
266. $j++;
267. }
268. }

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

269. }
270. if (ldap_errno($this->ldapdb->conn)) {
271. error_log("appPerm:".$app.":".ldap_error($this->ldapdb-

>conn),0);
272. }
273. return false;
274. } // appPerm
275.
276. //
277. // listApps – return a list of apps that the user is
278. // allowed to access. Useful for building a dynamic
279. // menu
280. //
281. function listApps() {
282. $srch = "(objectClass=labeledURIObject)";
283. $sbase = "ou=Apps,".$this->ldapdb->base;
284. if ($res = @ldap_search($this->ldapdb->conn,$sbase,$srch,

array("cn","labeledURI"))) {
285. if ($entries = @ldap_get_entries(

$this->ldapdb->conn,$res)) {
286. $i = 0;
287. while ($i < $entries['count']) {
288. if ($this->appPerm($entries[$i]['cn'][0])) {
289. $apps[] = $entries[$i]['labeleduri'][0];
290. }
291. $i++;
292. }
293. }
294. }
295. if (ldap_errno($this->ldapdb->conn)) {
296. error_log("listApps:".ldap_error($this->ldapdb-

>conn),0);
297. }
298. return $apps;
299. } // listApps
300.
301. //
302. // logout – destroy the session, set all variables to defaults
303. //
304. function logout() {
305. $_SESSION['logged'] = false;
306. $_SESSION['dn'] = null;
307. $this->logged = 0;
308. setcookie('ldapUserTimeout',0,time()-86400);
309. } // logout
310.
311. //
312. // _updateCookie – utility that sets the timeout cookie
313. //
314. function _updateCookie() {
315. setcookie('ldapUserTimeout',1,time()+(60*30),'/');
316. } // _updateCookie

317. //
318. // _checkSession – make sure the session has not been hijacked
319. //
320. function _checkSession() {

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

321. // This is where a session can be 2xchecked.
322. // For these purposes, if the session exists, we're logged

in
323. if (TRUE) {
324. $this->dn = $_SESSION['dn'];
325. $this->logged = 1;
326. $this->attrs = unserialize($_SESSION['attrs']);
327. $this->_updateCookie();
328. } else {
329. $this->logout();
330. }
331. } // _checkSession
332. }
333.
334. ?>

The constructor for ldapUser takes as a parameter an existing ldapDB object,
and checks to see if the user has an existing session. If there is no session, the
object is created and returned. Otherwise, the session is checked. In this
example implementation, we assume that if the session exists it is valid. Note,
however, that PHP session hijacking is a known possibility, and any production
implementation should have code in the _checkSession utility function that would
double check the validity of the existing session. The cookie used is a idle
timeout, and is updated with each call to the object. Absolute timeouts can also
be implemented by setting a time-limited cookie at login and checking for it’s
existence.

New logins are handled by the checkLogin method. We create a new ldapDB
object using the authentication parameters. If the ldapDB object returns as a
authenticated user, the user is now logged on and we store the relevant
information about the user in the ldapUser object. We also save certain
attributes useful to applications in the PHP session variables. If the website
wants to use a ‘remember me’ option for logins, a third parameter should be
implemented here and some information should be saved in a persistent store,
allowing a permanent cookie to authenticate a user. The constructor method can
then check for this cookie. This should not be implemented for any site where
the authetication and authorization is used for sensitive information.

The other methods implemented in ldapUser are used for the authorization
function of the class. The inGroup() method is used to determine if the current
user is a member of the named LDAP group. The function is recursive, so if the
user is a member of any subgroups, the method will return true. Method
appPerm() is used to determine if the current user has authorization to use the
named application, as listed in the ou=app LDAP subtree. The app’s ‘member’
attribute contains the distinguished names of each group that has authorization
to use that application. appPerm() uses the inGroup() method to determine if the
user should be allowed to use the application.

The method listApps() uses appPerm() to check each listed application and

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

return a list of applications that the current user is authorized to use. This
method is useful to build a dynamic menu of usable applications.

Using the class objects

To simplify securing any PHP applications on a web server, a PHP include file
can be used. As an example, the following file, ‘secure.php’, can be placed in
the PHP include path:

1. <?php
2. //
3. // based on an idea from http://martin.f2o.org/php/login
4. //
5. require_once "ldapDB.php";
6. require_once "ldapUser.php";
7.
8. $LOGIN_PAGE = "/index.php";
9.
10. // Start the session
11. session_start();
12. session_register();
13.
14. $date = gmdate("'Y-m-d'");
15. $ldapdb = new ldapDB("localhost","o=jalcorn.net");
16. $user = new ldapUser($ldapdb);
17.
18. if (! $user->logged) {
19. session_defaults();
20. if (! $noredirect == 1) {
21. header ("Location: ".$LOGIN_PAGE);
22. exit;
23. }
24. }
25. if ($needauth && (! $appname || ! $user->appPerm($appname))) {
26. header("Location: ".$LOGIN_PAGE);
27. exit;
28. }
29.
30. function session_defaults() {
31. $_SESSION['logged'] = false;
32. $_SESSION['dn'] = '';
33. $_SESSION['cookie'] = 0;
34. }
35.
36. ?>

The code here starts the PHP session, creates the anonymous bind to the ldap
server, and instantiates the ldapUser object. If the user has an authenticated
PHP session, the ldapUser object will have the user’s information, with an
anonymous bind to the LDAP server.

If the user is not logged on, any session parameters related to the authentication
are set to the defaults, and the user is redirected to the page to login, unless an

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

$noredirect parameter is set. If the user is required to be authorized to use the
application, as signaled by the $needauth variable, and is not authorized, the
user is redirected again. The login page need not be secured, but if can be with
the following code snippet:

1. <?php
2. $noredirect = 1;
3. $appname = “loginform”;
4. require_once "secure.php";
5.
6. if (! $user->logged) {
7. // display login form for non-authenticated users
8. exit;
9. }
10. if (! $user->appPerm($appname)) {
11. //code For authenticated, but not authorized users
12. } else {
13. // Code for authorized users
14. }
15. .. . remainder of code, for all authenticated users

Line 2 tells the application not to redirect if the user is not logged on. The
secure.php then setus up the user information, but does not redirect when the
user is not logged on. Then the application checks to see if the user is a logged
on user, and if not displays the correct form and exits. Line 10 then checks to
see if the current user is authorized. If not, some code is executed that could
display an error message, redirect the user, reset the session, or provide some
other information.

For regular, secured applications, the $noredirect parameter is not set. Users
who attempt to execute the application without authenticating will be redirected to
the login form by the ‘secure.php’ include file. For example:

1. <?php
2. $appname = “myapp”;
3. $needauth = 1;
4. require_once “secure.php”;
5.
6. … application code

Note that the application need not do anything about authentication or
authorization. It is all handled by the ‘secure.php’ include file and the objects.

The Results - After

This code has been implemented as a prototype and example at
http://jalcorn.net. Authentication and authorization is used to provide access to
Family photos, personal blogs, calendars, a contacts directory, and

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

administrative tools. Upon accessing the webpage as an unauthenticated user, a
login screen is presented:

This paper was made available to authenticated users by saving it as html,
renaming it ‘index.php’, and adding the following code to the top:

1. <?php
2. $appname=’gsecpaper’;
3. $needauth=1;
4. require_once “secure.php”;
5. ?>

The app ‘gsecpaper’ has been included in the directory with authorization
allowed for ‘allusers’. A user has been set up with username ‘example’ password
‘example’. (Note that the Change Your Password application has a some
hardcoded code that disables it’s functionality for the example user). Note that
the menu of applications, built with the listApp() method, changes on login.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

ToDos

The classes presented here are usable in their present form, but should have
more checks to counteract the possibility of session hijacking and other
application attacks. Absolute timeouts, ‘remember me’ functionality, and IP
address checking are all ideas that can be incorporated into these classes.
Some of these changes have been made in the live code running on the
prototype systems.

Impact

After prototyping the code, it was implemented on development systems in a
coporate environment with the same tools. The applications that were written for
the MySQL database were changed to implement the LDAUser class. Static
webpages were secured by changing them to PHP code, as the GSEC paper
was, and other applications were rewritten or front-ended with PHP code. All of

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

these ad-hoc applications, which had previously been running on various
machines scattered around the department, were now brought together, along
with public security weblogs and virus warning applications, into a IT Security
intranet. Communications with the end user population has significantly
improved with this tool, and other IT personnel, including the Help Desk, can use
some of the applications to find information and build new resources.

During the process of testing different commercial LDAP servers, we imported
the authentication information and pointed our IT Security intranet’s
authentication information to the test servers. In most cases, The LDAP
authentication worked with the commercial products as easily as with the
OpenLDAP implementation. When we ran into problems with the
implementation, it pointed out some places where the directory’s implementation
of the LDAP protocol may have been somewhat non-standard, and this
information was documented and used as part of the decision-making process.

The use of open source tools has allowed us to solve problems in creative ways,
and it’s adherence to what will soon be corporate standards allows us to expand
our possible toolset to solve any future problems to include open source tools.
Management, which had orignally never considered open source tools for
applications building, is now willing to look at open source alternatives when
making buying decisions. This project, originally undertaken as a quick proof of
concept, has opened the doors to new ways of solving problems.

Conclusion

Using an LDAP server and these objects provides a way for PHP application
developers to write secured applications that can used centralized, LDAP
provisioned usernames and passwords. In this way, corporations can begin to
leverage the flexibility and availability of PHP source code without losing
centralized provisioning and strength of a corporate directory server. These
PHP examples can easily extended to Perl, Java, C++ and other languages, and
corporations can then build applications in the languages best suited to the task.

References

Sheresh, Beth and Sheresh, Doug. Understanding Directory Services 2000 New
Riders Publishing

Wilcox, Mark Implementing LDAP 1999 Wrox Press

Carter, Gerald LDAP System Administration 2003 O’Reilly & Associates

JasonSmith, Michael P. “LDAP Authentication and Session HOWTO”
http://ldots.org/ldap/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

M. Smith “Definition of an X.500 Attribute Type and an Object Class to Hold
Uniform Resource Identifiers (URIs)” http://www.ietf.org/rfc/rfc2079.txt

M. Wahl, T. Howes, and Kille, S. “Lightweight Directory Access Protocol (v3)”
http://www.ietf.org/rfc/rfc2251.txt

M. Wahl “A Summary of the X.500(96) User Schema for use with LDAPv3”
http://www.ietf.org/rfc/rfc2256.txt

J. Franks, P. Hallam-Baker, et. al. “HTTP Authentication: Basic and Digest
Access Authentication” http://www.ietf.org/rfc/rfc2617.txt

Martin Tsachev “Creating a Secure PHP Login Script “
http://martin.f2o.org/php/login

John Coggeshall “Session Authentication”
http://www.zend.com/zend/spotlight/sessionauth7may.php

Mark Burnett “Auditing Web Site Authentication, Part Two”
http://www.securityfocus.com/infocus/1691

O’Reilly & Associates “Web Database Applications with PHP & MySQL”
http://www.wdvl.com/Authoring/Languages/PHP/WebDBApps/

Netcraft, Ltd, “Netcraft” http://news.netcraft.com

