GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec



http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

An Overview of Remote Operating System
Fingerprinting

Chris Trowbridge
Submitted for SANS GIAC GSEC Practical
Assignment version: 1.4b
16 July 2003

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.



Abstract

Operating System (OS) fingerprinting is the science of determining the
operating system of a remote computer on the Internet. This may be
accomplished passively by sniffing network packets travelling between hosts,
actively by sending carefully crafted packets to the target machine and
analysing the response, or through non-technical means. Itis used by
Security Professionals (known as “White-hats”) and Hackers (“Black-hats”)
alike for mapping remote networks and determining which vulnerabilities
might be present to exploit. This paper presents an overview of the various
approaches to OS fingerprinting, some current tools available on the Internet
together with their features, the underlying techniques they use, and
suggestions for defeating these tools.

‘Classical’ Fingerprinting

Even without resorting to stealth techniques of any kind, hosts will often
announce their OS to anyone making a connection to them through welcome
banners or header information. For example, when connecting to a host via
the standard Telnet protocol the OS version is often sent to the client as part
of a welcome message.

FTP will also often provide this information either as a welcome banner
or if prompted via a SYST command. HTTP can also be used by connecting
to the host and initiating a simple GET / HTTP/1.0\n query.

If the Simple Network Management Protocol (SNMP) service is present
on the machine (UDP/161), it is often left with the default ‘public’ community
name, which will allow remote detailed querying of the service and hence
host.

Other services that send back ‘free’ useful information include IMAP,
POP2, POP3, SMTP, SSH, NNTP and FINGER. This technique is
reasonably reliable even now and automated tools exist to make the process
simple and painless'?.

A slightly more subtle approach is to use the anonymous ftp account (if
supported), download a public binary required for ftp to function (eg /bin/Is)
and examine it to determine what platform it was built for®.

A more primitive approach is to port scan the machine using any of the
common port scanners freely available (eg Nessus, SAINT) and examine the
returned list of listening ports for patterns common to a particular OS. Note
that this approach is only effective against less secure hosts; particularly
earlier Windows servers and those that do not implement accepted basic
computer security concepts as detailed in the SANS GSEC courseware for
example®*.

Finally, it may be possible to determine the OS of a system by a non-
technical solution, such as “social engineering”. Learning about the target
through phone calls, chatting to the System Administrator, or even a public
site tour are all possibilities.

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
2



Active IP Packet Fingerprinting

This is the predominant form of OS fingerprinting, provoking the target
into eliciting a response and analysing it carefully. A huge amount of
information can be gleaned about the response to a carefully crafted network
packet. The three common IP packet types (ICMP, TCP, UDP) are all used in
this technique and various valid (and invalid) packets are sent to the host to
refine the guess of the OS.

The most common techniques in use include the following®:

FIN Probing — here a single packet is sent to a known open port with

the FIN flag set. This flag usually signals the end of a communication

and as such is not expected without a connection being previously
established. The standard behaviour (as defined in RFC 793) is to
simply ignore the packet; however, many stacks send a RST packet
back. This difference is the means to begin creating a fingerprint.

TCP ISN Sampling — TCP uses sequence numbers to keep track of

the number of bytes successfully transferred across a connection.

When an initial connection attempt is made to a host the OS chooses

an initial sequence number to begin the process. This choice can be

anything from a constant value, through random increments of previous
values, algorithms based on the host’s internal clock, to true random
systems. It is important to note that the predictability of this ISN also
has security implications, leaving the host open to attacks similar to the

Mitnick attack®.

ICMP Error Quoting — Various aspects of the structure of ICMP error

packets are useful. ICMP error packets are required to return a small

portion of the original message for identification purposes; however,
some stack implementations return more than expected. This is
especially useful as it allows some basic OS identification of machines
that no listening ports open at all.

ICMP Error Message Echo Integrity — ICMP error message packets

are required to include some of the original ICMP packet that caused

the error. This makes it simple for implementations to use a copy of
the original as a template for constructing the reply packet. Using the
packet space as a ‘scratch’ area can leave telltale spurious data that
identifies the OS that created it.

ICMP Error Message Type of Service (TOS) — Nearly all

implementations return a zero in the TOS field for ICMP port

unreachable messages. Linux, however, currently returns a different
value in this field making it easy to broadly identify.

TCP Options — These are enhancements to the TCP protocol to

improve performance in unreliable or high latency networks’. TCP

Options have been added as TCP RFCs over time as needs dictated

and the patterns of compliance in responses can reveal the underlying

OS. Interestingly it is not just the number of options a stack supports

that can identify it, but also the order in which the options are returned®.

Many other differences also exist and are used to a lesser extent.
These include:

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
3



IPID Sampling — Many OSs utilise a system wide counter for IPID
generation. Other, more advanced implementations either randomise
this number or set it to 0. Information can be gleaned from the choice
of IPID as to the source OS. Again, predictable IPID values can have
important security implications outside of OS fingerprinting, including
completely silent portscanningg.

TCP Timestamp — This is a TCP option (and hence is not supported
by all IP implementations); however, can be used to determine OS
type. It can also be used to determine host uptime if implemented and
the update frequency is known.

ICMP Error Message Limiting — RFC 1812 suggests limiting the rate
at which ICMP error messages are sent. Some IP stacks implement
this suggestion (including Linux, Solaris) whereas Windows hosts do
not'®. This technique is only viable over reliable connections to the
remote host and extends scanning time; so, is generally not
implemented.

Fragmentation Handling — Fragmented packets, particularly the
handling of packets that contain overlapping fragments, are another
source of anomalies. Some stacks retain the first version of the
overlapped data, and some the second.

Nearly all active fingerprinting tools use some or all of the above tests
to obtain data on a host and compare the results with a database of known
OSs. As tools become established the OS fingerprint database becomes
more extensive, enhancing the resolution of the tool. The age and popularity
of a tool is often evidenced by the size of its database. Tools in this category
include the much respected Nmap'?, a very flexible scanner that implements
all of the above techniques and more. Nmap runs on a wide variety of
platforms including various Unices, Linux, Mac OS X, FreeBSD and Windows.
Version 3.30 of this tool is reputed to accurately identify 874 different types
and patch levels of Operating System by conducting 7 tests. Itis widely
acclaimed as the best scanning tool available' and is constantly being
enhanced. Many references to techniques for best using Nmap are to be
found on the Internet, with the Nmap site itself being a good place to start.

QueSO0 is another tool to employ and refine this technology. (Queso is
the Hispanic shortcut for "Que Sistema Operativo?"” which translates into
"which operating system?"?) This tool was again widely acclaimed and used
by “white hats” and “black hats” alike. Sadly, QueSO appears to be no longer
being developed and the original website is now inaccessible. Notably, this
was the first such tool to separate the fingerprint database from the code,
creating a pseudo standard for packet-based fingerprint databases in the
process, including Nmap.

Xprobe 2 demonstrates the most innovative step forward in this
approach'®, one of fuzzy fingerprint matching. Strict fingerprint matching
relies on a ‘best case’ scenario, with no packets being lost or interfered with
while in transit. This is recently not the case as sites scramble to effect
perimeter security, often putting a smart firewall to spoof responses, Network
Address Translation systems that filter/modify packets, or Scrubber systems
that deliberately manipulate packet fields and flags to confuse ID attempts.

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
4



Xprobe 2 utilises a basic fuzzy logic scoring system to provide more
than one guess at the remote OS, along with a probabilistic score. As
discussed in the paper, this approach could even be extended to attempt to
discover the source of any packet manipulation, eg identifying the firewall that
is obfuscating the tests, providing the target OS can be identified.

Xprobe 2 has been designed to be extensible and an API has been
provided to facilitate new test modules being added to the package.

Many, many other tools and “proof of concept” code exists on the
subject of Active IP Packet Fingerprinting. These are easily found on the
Internet, mostly written by hackers and commonly quite rudimentary in
comparison to tools like Nmap and QueSO.

Passive IP Packet Fingerprinting

Passive fingerprinting is where a sniffer is set up on a network and
passively collects/analyses packets in the flow of information between hosts.
This obviously has limited functionality in a switched network; however, may
be useful if attached in a shared network space with a router or well-utilised
network host. The techniques employed to identify the source OS are usually
a subset of those utilised by Active IP packet fingerprinting, as these tools
obviously monitor predominantly legitimate traffic, and hence cannot introduce
anomalous packets. Nevertheless, substantial tools can be built using this
technology.

Ettercap' is a package that is available for most common operating
systems (Windows, Mac OS X, Linux, and FreeBSD) which collects and
dissects packets from a network. It can also take on an active role, injecting
data into the information stream while still maintaining synchronisation.
Ettercap is also extensible to encompass new tests as they become available.
Interestingly it also offers to identify the network card that created the packet,
presumably through the encapsulated MAC address from the Ethernet
header. This appears to be the most supported of these tools, with 1279
fingerprint records available in the current version (0.6.b), nearly double that
of Nmap. However these include many networked devices, rather than only
OS records.

Fingerprinting Through Service (Daemon) Querying
Services that appear on a portscan list can be further queried to
produce identifying information. These techniques are more recent in concept

and the tools still in the early stages of development.

One example involves querying the LPD daemon. The technique
employed by Ipdfp'?, a “proof of concept” tool, involves sending malformed
Control File commands to the daemon and gauging the response. Various
printer daemons respond to error conditions differently allowing a fingerprint to
be built up for comparison with a database of expected results.

Ftpmap'® is another tool still in the early stages of development, which
attempts to fingerprint via an ftp daemon.

Ftpmap then inspired SMTPscan'’, a similar tool attempting to exploit
differences in mail daemons. In this case 15 tests are employed to provoke

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
5



error responses, and the author claims to have correctly identified 77
daemons to date.

More tools exist which build on this technology aiming to generalise the
approach to service identification. One notable tool is Amap'®, which proudly
proclaims to send a trigger packet to an unknown port and again compares
the response to a database of fingerprint packets. It makes little assumptions
as to convention and, as such, claims to be able to detect daemons listening
on non-standard ports. This tool is being actively worked on to develop the
database and even supplies an additional program called ‘amapcrap’ which
the Readme states “sends random crap to a udp, tcp or ssl'ed port, to illicit a
response”, which you can then send in to add to the database.

It is worth noting that this approach relies heavily on a direct match of
the default application daemon to the underlying OS as you are inferring the
nature of the OS rather than specifically testing it. Further, as can be seen by
the SMTPmap example this technology is not as refined or perhaps reliable,
with some 15 tests being required to resolve 77 daemons, compared to
Nmap’s 7 tests, for 500+ OS. This may be due to the fact that daemons
operate at the TCP/IP model application layer and hence part or all of the
code can easily be ported between OS variants, particularly on Unix where
source code is commonly available.

Fingerprinting Through TCP Retransmission Timeouts

The latest technique for OS fingerprinting uses the novel approach of
TCP Retransmission timing. TCP relies on IP for packet transfer over the
Internet. TCP is designed to be connection oriented and reliable. To enforce
these design rules a connection must be requested and acknowledged before
transfer can take place, and every packet must be acknowledged as having
been successfully received. If a packet is not received in a predetermined
period of time, it must be resent. The original RFC 793 defining the TCP
protocol does not explicitly impose an algorithm for the timing of resending
‘lost’ packets, instead only suggesting one. RFC 2988 notes the sensitivity of
TCP to retransmission problems and specifies an algorithm for use when
retransmission should occur. Unfortunately not all IP stacks implement the
latter RFC or interpret the first in different ways.

This then allows for a novel approach to be taken in which a new
connection is requested with a SYN packet, but ignores all SYN-ACK
response packets, instead measuring the timing between successive attempts
to acknowledge the connection and comparing these times to a fingerprint
database. Requesting the TCP timestamp option (when possible) also serves
to mitigate the fact that the Internet itself is prone to timing problems.
Interestingly, the timestamp option is dependent on IP stack implementation,
which further serves to differentiate OS.

An obvious advantage of this method is that only one valid TCP SYN
packet is used to initiate the process. Thus the procedure is firewall friendly’
allowing fingerprinting of hosts behind a firewall with at least one exposed
TCP port.

The initial proof of concept tool, RING (Remote Identification Next
Generation)'® demonstrates this methodology, as implemented in C. RING is
also implemented as an add-on to Nmap, making a very powerful

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
6



combination. The technique was ported to Perl shortly thereafter and named
Snacktime?, independently confirming the concept and increasing portability.

The Final Straw — Chronological Exploits

If all else fails, less tactful attempts at OS identification can be made by
launching known exploits for a given OS type against a target host, in
chronological order. The theory is that exploits are patched as they are
discovered so by starting with the oldest known exploit against a given host
and working forward should yield a point at which an attack succeeds, which
should thereby identify the revision of OS in use. As an example, Microsoft
Windows 95, 98 and NT4 are difficult to distinguish supposedly because the
IP stack code was only marginally revised between OS versions. Starting
with a basic WinNuke attack and moving forward to more complex attacks
such as Teardrop can eventually yield a vulnerability that points to the type
and/or hotfix revision that is missing from the OS, thus indicating the current
patch level®.

Avoiding Fingerprinting

Just as there is a vast plethora of tools and techniques available for
remote OS identification, there are also techniques and tools for OS
obfuscation. Papers on the subject of defeating OS fingerprinting
acknowledge that its use is limited®, not because it is technically infeasible or
particularly performance limiting, but because the majority of exploit attacks
are by ‘script kiddies’ who do no more than download the latest exploit script
from a website and mass-scan the Internet looking for vulnerable hosts. OS
obfuscation tends to be more useful in deterring the more advanced hacker
who is explicitly looking for specific OS types to attack.

It is worth digressing here to reinforce the usual “obscurity is not
security” rule. That is, you should ensure the system you are trying to protect
is fully patched and secured. As discussed above, OS obfuscation is not
something to be relied upon as a security measure.

Nevertheless, steps that could be taken include:

- Altering all public banners on services to something non-committal.

This can range from the simple editing of files (eg issue, issue.net,
motd on Unix) to the more difficult editing of application source code
and recompilation (eg Apache Server type response). This is, of
course, much more difficult if using proprietary software or software
you do not possess the source code to (try changing your IIS
Server type response).

Searching content files for ‘incriminating’ strings that can give away
the OS. Web pages may include comments automatically
generated that identify the authoring tool itself, which in turn is
known to be commonly used for authoring to a particular platform.
Microsoft Frontpage is particularly bad for this. A tool may produce
HTML code that allows inference to the server OS. Microsoft Office
products produce characteristic HTML which is commonly uploaded
to IIS webservers, again identifying a ‘Microsoft shop’. Other
indicators might include scripted webpages with .aspx URL suffixes

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
7



indicating a Microsoft Windows 2000 onwards host, or adopting the
three letter .htm suffix, again a Microsoft convention.

Take stock of the number and types of services you are running on
the machine. Do they resemble the target you are trying to
impersonate? Can these applications be queried further using a
Service Query tool to reveal the nature of the service itself, and
hence infer the underlying OS? Follow standard security practice
and remove any unwanted services. Tools exist to fake ones that
should appear to be there if you wish to impersonate a different OS.
Changing the way your IP stack responds to probe queries. This is
much easier to accomplish on platforms that allow direct
manipulation of incoming packets through kernel mode OS hooks
(code intervention points), or altered network card drivers. Tools
are available for this purpose on some Unix/Linux platforms. Of
note is the netfilter/iptables®’ framework inside the 2.4.x Linux
kernel. This is a firewall package, implemented as a set of OS
hooks. These allow a user routine to be registered as a module
and be called whenever a packet matching some criteria is
encountered. Thus packets can be inspected and ‘mangled’ as
they are received by the host. Berrueta® describes the use of this
technology in conjunction with the “IP Personality”® netfilter module
to make a Linux 2.4.19 based machine appear as a Sega
Dreamcast console. Other kernel level solutions simply look to
detect odd IP packets and silently drop them with or without logging
them for further analysis.

Note that these approaches work well with strict rule-based
fingerprinting, eg Nmap, QueSO. They may be less effective
against the newer ‘fuzzy matching’ techniques of Xprobe 2, or the
‘normal’ packets of RING.

Insulating the host from probe packets via a firewall or packet
‘Scrubber’. Many firewall products now provide this functionality out
of the box. Checkpoint’s Firewall-1 software provides a language
that allows responses to be crafted to particular packets, thus
actively spoofing the target OS. BlackICE PC Protection and
Sygate’s Personal Firewall also proclaim OS fingerprint protection;
however, this appears to be centred around the more usual practice
of dropping strange packets rather than dealing with them.
Insulating the host from probe packets by using Network Address
Translation (NAT) technology. In this scenario the host’s network is
typically given a ‘private’ network designation, eg 10.0.0.0, or
192.168.0.0. An intelligent gateway accepts outgoing packets from
hosts and transparently alters them to make it appear the gateway
node is the source. Upon return the gateway transparently
reinstates the original address and forwards the packet to the
original host. This effectively makes all traffic to or from the network
appear to be coming from the one node, making identification of
hosts on the private network very difficult.

One thing to note through all of this is that your host is presumably on
the Internet for a reason, probably to provide a service. Your OS Fingerprint

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
8



‘hardening’ should not impair the function your host is providing. This may not
be evident in your machine itself failing to function, but perhaps in your
customers not being able to access your services reliably because you are
confusing their client software with strange host ID strings, or dropping
packets from their ‘slightly broken’ IP stack.

The future of OS Fingerprinting

Fingerprinting tools continue to improve, as do the defences against
them. A current focus of software development houses is one of computer
security, with Microsoft launching its “Trustworthy Computing Initiative”* and
many OS vendors initiating an automated patch download/update service.
Examples include Microsoft's Windows Automatic Update service included in
Windows 2000 and onwards, and the Redhat Network service available via
the up2date utility in Redhat Linux. These developments, coupled with the
general improvement in the world’s cyber laws and prosecution rates, are
slowly ‘raising the bar’ on cyber attacks. In this climate, general ‘script kiddy’
mass-scans may prove too dangerous or fruitless to pursue.

One emerging technology is fingerprinting tools that are themselves
automated as part of OS refined attack tools. The first products in this area
are already in existence. One tool of note is Sscan2kpre6?. Sscan2kpre6
represents the current step of evolution in an OS fingerprinting vulnerability
scanner that tests for over 200 exploits and is designed to be incorporated
into the design of an Internet worm. The flexibility of Sscan is demonstrated
in the Sscan-readme file, which states “you can have sscan launch off
programes, initiate tcp connections and have dialogs with hosts that fit certain
criterian [sic], negotiate telnet connections and have sscan log into a host and
execute shell commands (useful in coding internet worms), etc, all via a
simple built in scripting language defined below. %

The attacks of the future may be well directed and customised
according to OS and services running on the target. This may be considered
normal worm activity in the future.

Conclusion

Remote OS Fingerprinting is a recent development on the Internet and
one to watch. The ability to remotely determine, with high accuracy, the
Operating System of a remote host on the Internet is a powerful one. The
implications of this technology are perhaps not yet fully understood; however,
it is seen as enough of a threat that strategies are currently being developed
to prevent and spoof OS Fingerprints.

The most relevant concept to remember is the old adage “Obscurity is
not Security”. The ease with which exploit tools can be scripted and used en
masse to find vulnerable hosts largely trivialises the benefits of OS obscurity
in today’s world. This may change over the coming years as the larger
software companies put an emphasis on network security and more
specialised attacks are required to exploit systems. The general trend
towards increasing penalties for getting caught as the world’s cyber laws
improve may also serve as a driver towards more refined attacks in the future.

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
9



The first developments have already occurred in this area, with OS
fingerprinting worm toolkits being developed to refine attacks.

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
10



! Pfeil, Maik. “Arb-Scan — 0.5.0” 19 March 2003. URL:
http://arbon.elxsi.de/download/arb-scan-0.5.0.tar.gz (8 July 2003)

2 Phish, Mr. “Banshee-3.3” URL: http://www.blakhat.co.uk/code/BH-
banshee/BH-banshee-3.3.tar.gz (8 July 2003)

3 «“SANS Security Essentials V: Windows Security”, The SANS Institute,

2003.

4 “SANS Security Essentials VI: Unix Security”, The SANS Institute,
2003.

® Beck, Rob. “Passive-Aggressive Resistance: OS Fingerprint Evasion”
1 September 2001. URL: http://www.linuxjournal.com/article.php?sid=4750 (8
July 2003)

® Gulker, Chris. “The Kevin Mitnick/Tsutomu Shimomura affair”. 17
September 2001. URL: http://www.gulker.com/ra/hack/ (8 July 2003).

" Hall, Eric A. “Advanced TCP Options” 8 February 1999. URL:
http://www.networkcomputing.com/1003/1003ws1.html (8 July 2003)

® Yarochkin, Fyodor. “Remote OS Detection via TCP/IP Stack
Fingerprinting”. 11 June 2002. URL: http://www.insecure.org/nmap/nmap-
fingerprinting-article.html (8 July 2003)

® Yarochkin, Fyodor. “Idle Scanning and related IPID games”. URL:
http://www.insecure.org/nmap/idlescan.html (8 July 2003)

"% Yarochkin, Fyodor. “Nmap network security scanner man page”.
URL: http://www.insecure.org/nmap/data/nmap_manpage.html (8 July 2003)

" Yarochkin, Fyodor. “Nmap in the News” 13 June 2002. URL:
http://www.insecure.org/nmap/nmap_inthenews.html (8 July 2003)

' “The Internet Operating System Counter” (web page). April 1999.
URL: http://leb.net/hzo/ioscount/ (9 July 2003)

3 Arkin, Fyodor. “Xprobe v2.0 A Fuzzy Approach to Remote Active
Operating System Fingerprinting” August 2002. URL: http://www.sys-
security.com/archive/papers/Xprobe2.pdf (9 July 2003)

' AloR, NaGA. “ettercap-0.6.b”. 10 July 2003. URL:
http://prdownloads.sourceforge.net/ettercap/ettercap-0.6.b.tar.gz?download
(11 Jul}l 2003)

® fObic. “Remote OS Detection using LPD Querying”. 3 March 2001.
URL: http://www.securiteam.com/unixfocus/5PP041F3PY.html (8 July 2003)

'® Denis, Frank. “ftpmap-0.4" 13 November 2002. URL:
ftp://ftp.pureftpd.org/pub/pure-ftpd/ftpmap/ fipmap-0.4.tar.gz (8 July 2003)

' Bordet, Julien. “Remote SMTP Server Detection” 4 September 2002.
URL: http://www.greyhats.org/outils/smtpscan/remote _smtp detect.pdf (8 July
2003)

'® Van Houser, Revmoon, DJ. “amap-2.7” 16 June 2003. URL:
http://www.thc.org/download.php?t=r&d=amap-2.7.tar.gz (8 July 2003)

"9 Veysset, Coutay and Heen. “New Tool and Technique for Remote
Operating System Fingerprinting” Intranode Research Team. April 2002.
URL: http://www.intranode.com/fr/doc/ring-full-paper.pdf (9 July 2003)

%0 Beardsley, Tod. “Snacktime: A Perl Solution for Remote OS
Fingerprinting” Plan B Security. June 2003. URL: http://www.planb-
security.net/wp/snacktime.html (9 July 2003)

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
11



21 “netfilter/iptables - Documentation” URL:

http://www.netfilter.org/documentation/ (9 July 2003)

%2 Berrueta, David B. “A Practical Approach for Defeating Nmap OS-
Fingerprinting” 2003. URL:
http://voodoo.somoslopeor.com/papers/nmap.html (9 July 2003)

3 Gael Roualland and Jean-Marc Saffroy, IP Personality, URL:
http://ippersonality.sourceforge.net/ (9 July 2003)

#t “Trustworthy Computing Initiative”, Microsoft website, 3 July 2003.
URL: http://www.microsoft.com/mscorp/innovation/twc/ (10 July 2003)

%5 Smith, Donald. “Mscan, Sscan and Synscan - The evolution of worm
- enabling vulnerability scanners that span two Millenniums.” 20 May 2000.
URL:
http://www.whitehats.ca/main/publications/external_pubs/scanner_fingerprints
[scanner_fingerprints.html (10 July 2003)

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
12



