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Abstract
Encrypted data, by definition, is obscured data. Most web application
authentication happens over HTTPS, which uses SSL/TLS for encryption. Did you
ever wonder what that authentication exchange looks like in plaintext? What if you
are troubleshooting your HTTPS enabled web application and need to dig deeper
down in the OSI model than Firebug or other web developer tools will allow? This
paper demonstrates how to easily decrypt and dissect a captured web session
without either a proxy middleman or possession of the server’s private key. It will
walk the reader through the simple steps in a TLS connection in an attempt to reveal
the unreasonable mystique surrounding encryption protocols.
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1. Introduction

Secure Sockets Layer (SSL) and Transport Layer Security (TLS) are both
protocols used for the encryption of network data. They use encryption, hash functions
or message digests, and digital signatures to provide confidentiality, integrity and
authentication for data in transit (Rescorla, 2001, pp. 5-7). Wireshark is a feature-rich,
free tool that captures and dissects network traffic (Wireshark Protocol Analyzer, 2013).
When data is encrypted using the SSL or TLS protocol, it normally looks like gibberish
and until fairly recently, Wireshark was not able to decrypt and dissect such traffic unless
it had access to the private key of the web server. If, however, the data is web traffic sent
to a browser and Wireshark has access to the appropriate session keys it now has the
ability to decrypt that data. Current versions of both the Firefox and Chrome browsers
will easily save encryption keys in a file that can then be imported to Wireshark. Since
documentation on how to set this up and utilize this feature of Wireshark is sparse, what
follows are guidelines to help the reader through the process of capturing and analyzing
encrypted web traffic using Wireshark, including a step-by-step reference guide in

Appendix A.

This paper will begin with a quick refresher of symmetric and asymmetric key
encryption. It will be followed with an explanation of how a TLS secure session is setup
between two endpoints and how to capture a TLS session along with its encryption keys
on a Linux system. It will then provide a detailed analysis of the SSL/TLS protocols
using Wireshark to decrypt and dissect an actual TLS data capture. For a very
comprehensive examination of cryptographic protocols and algorithms, the reader is
directed to the book Applied Cryptography: Protocols, Algorithms, and Source Code in
C by Bruce Schneier (Schneier, 1996).

1.1. A Brief History of SSL/TLS

The first publicly released version of SSL was actually SSL 2.0, which was
released in 1995. It was quickly updated and replaced by SSL 3.0 in 1996. This was
considered a complete redesign of the protocol according to one of the leading experts on

the SSL protocol, Eric Rescorla (Rescorla, 2001, p. 49). In 1999, TLS 1.0 was released
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as a successor to SSL. TLS 1.0 was based on SSL 3.0 and is defined in RFC 2246
(Dierks & Allen, 1999). TLS is very closely related to SSL 3.0, though it does not
provide backward compatibility due to changes in some of the algorithms. The name
change to TLS from SSL is political in nature and is beyond the scope of this paper;
however, Eric Rescorla has written a very interesting account of the history of SSL/TLS
through TLS 1.0 (Rescorla, 2001, p. 47). TLS 1.0 was updated to v1.1 in RFC 4346 in
2006 (Dierks & Rescorla, 2006) and again to v1.2 in RFC 5246 in 2008 (Dierks &
Rescorla, 2008). The BEAST attack (Dougherty, 2011) against SSLv3 and TLS v1.0
caused some web servers to force the use of TLS 1.1 or 1.2 that have protection against
the attack (Rescorla, 2011). On the client side, however, most browsers do not yet

support TLS 1.1/1.2 as of this writing (Risti¢, 2013).

Best practice dictates that TLS 1.0 or greater be used wherever possible. SSL 2.0
should no longer be used at all. SSL 2.0 was declared insecure primarily due to its re-use
of encryption keys as well as its lack of integrity checking of the SSL handshake
sequence (Rescorla, 2001, p. 458). Furthermore, a server using TLS 1.0 should also
select cipher RC4 for encryption during the cipher negotiation for HTTPS traffic to
mitigate against the BEAST attack. The above recommendations are based on the Qualys
Best Practice Guide of 2013 (Risti¢, 2013). In addition to the BEAST attack of 2011,
other recent notable attacks against SSL/TLS include CRIME (Constantin, 2012), Lucky
Thirteen (AlFardon & Paterson, 2013) and a new attack against the RC4 symmetric key
cipher (Bernstein, 2013).

The acronyms SSL and TLS are commonly used interchangeably to refer to
encryption at the transport layer. Because TLS is the most current this paper will use the

term TLS unless otherwise specified.

2. TLS

TLS is encryption for data in transit, not data at rest. That means that the end host
or recipient in a TLS connection must be able to decrypt the encrypted traffic sent to it in
order to be processed and/or displayed in the web browser. When you capture your own

data using an Internet browser from a secure connection that you initiated, you are able to
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get at all the pieces involved in this process to examine them regardless of the methods

used for encryption.

Bruce Schneier describes the differences between symmetric and asymmetric
algorithms in his book Applied Cryptography (Schneier, 1996, Section 1.1). Symmetric
algorithms like AES and 3DES use a single key for encryption and decryption. That is,
the same key that encrypts data is used to decrypt it. Asymmetric algorithms like RSA
use two separate keys, one for encryption and the other for decryption. With asymmetric
encryption, the key used to encrypt data cannot be used for decryption. The only
mathematically feasible method of decryption is to use the second key in that key pair.
Symmetric ciphers are computationally much faster than asymmetric ciphers so
symmetric ciphers are preferred over asymmetric ciphers when encrypting/decrypting
large amounts of data. The traditional problem of shared key management, however,
makes using only symmetric ciphers undesirable because it is difficult to securely
transport the key prior to the establishment of an encrypted channel. The method most
often used is a combination of both asymmetric and symmetric ciphers. Asymmetric
ciphers are used to either exchange or generate the keying material from which
symmetric “session” keys are derived. Symmetric keys are often referred to as session
keys because they are used for a single session and then discarded. They are the shared
secrets used for symmetric encryption/decryption of the bulk of the data. This provides a
secure and manageable method for exchanging “secret” keys while also allowing for

computationally faster cryptographic operations (Schneier, 1996, Section 10.2).

2.1. Sharing session keys

As noted above, session keys are computed on each side of the connection;
however, the components used to generate the session keys are passed back and forth in
one of two ways. These are often referred to as “key exchange” and “key generation”
methods, respectively. The key exchange method uses asymmetric encryption to send a
pre-master secret securely to the server. The key generation method is used to exchange
unencrypted components, which both sides will then use to derive symmetric session

keys (Rescorla, 2001, p. 58). A more detailed examination of both methods follows.
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2.1.1. Key exchange method

The RSA and DSA algorithms are commonly used with the key exchange method
(Viega, Messier & Pravir, 2009, ch. 8). The client generates a pre-master secret from
which both sides will generate the actual cryptographic keys used to encrypt/decrypt the
data transferred over this session. This pre-master secret must remain private to protect
the confidentiality of the session. It is the seed from which the final keys will be derived.
If an attacker had access to the pre-master secret and was able to intercept the TLS
handshake the attacker would be able to generate the session keys that would decrypt all
the data from that session (Rescorla, 2001, p.140). To protect the pre-master secret in
transit, the client encrypts it with the server’s public key (one of the keys in an
asymmetric key pair) and sends it to the server. Anyone eavesdropping on the
connection cannot determine the pre-master secret because it can only be decrypted with
the server’s private key. The server uses the parameters exchanged during the TLS
handshake and the decrypted pre-master secret and applies an agreed upon pseudo
random function (PRF) to produce the master secret. The session keys are then derived
from the master secret (Rescorla, 2001, p. 82). After each side has generated the final
session keys, data can be sent back and forth between the client and the server securely

encrypted with these session keys as shown in figure 1.

TLS Client TLS Server

1 12/

O
- Client Asymmetric Send Server
E At e encryptlon encrypted pre- decrypts with
> %naster pt gret using server master secret server private
< public key to server key
Client generates Server generates
master secret from master secret from
pre-master secret pre-master secret
Client generates o Server generates
session keys from session keys from
master secret Secure data exchange master secret
2 using symmetric
g encryption and session
£ keys
>
w

Figure 1. The steps in the RSA key exchange process
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2.1.2. Key generation method

A common algorithm used for the key generation method is Diffie-Hellman (DH)
(Viega et al., 2009, ch. 8). The client and server independently generate a master secret
after an initial exchange of components that are required for that process, all of which can
be public and therefore do not require encryption. In addition, each side adds components
which must remain private in order to protect the confidentiality of the process, therefore,
these are not transmitted across the network but remain private to each side. Intermediate
calculations are done on both sides using the private and public components and the
results of those calculations are exchanged. These intermediate results may also be
public. Similar calculations are done again on each side using the intermediate results.
This produces the master secret, which is ultimately converted to session keys for use in
symmetric encryption (Rescorla, 1999, p. 1). None of the intermediate private
components, the master secret or the final session keys ever travels on the network. They
are generated and remain on each side of the connection. The public components that
have been exchanged cannot by themselves be used to compromise the Diffie-Hellman
key generation process and therefore no encryption is necessary during key generation as
shown in figure 2. The important advantage of key generation (DH) over key exchange
(RSA) is that if the traffic is intercepted by an attacker during this handshake the attacker
does not have enough pieces of the puzzle to compute the master secret and derive the
cryptographic keys even if the attacker were to be in possession of the server’s private
key. Using the key exchange method (RSA), the attacker could independently derive the
cryptographic keys and decrypt the exchanged data if she had access to the server’s

private key.
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Figure 2. The steps in the DH key generation process

In addition, both key exchange and key generation methods can be ephemeral,
meaning they produce “one time use” keys (Barker, Branstad, Chokhani & Smid, 2010).
In order to achieve this, each session key is generated using an algorithm that does not
include the server’s private key in any part of its calculation. The only way to decrypt
data that has been encrypted with an ephemeral key is by having possession of the one-
time session key. In the case of key exchange methods like RSA, this means that
compromise of a session key only compromises a single session. However, since the pre-
master secrets are transferred over the network encrypted with the server’s private key, a
compromise of the server’s private key would allow an attacker to intercept the pre-
master secret, derive the one-time-use session keys and basically nullify the value of
using ephemeral keys. In the case of key generation methods like Diffie-Hellman, pre-
master secrets are not used and therefore cannot be intercepted. When using the key
generation method, both sides of the connection compute a master key from which the
session keys are derived. The only key capable of decrypting a DH session is that session
key. Since the components used to derive the session keys do not cross the network, an

attacker intercepting network traffic could not discover these keys.

Using the combination of ephemeral keys and the DH key generation method
provides what is known as Perfect Forward Secrecy (PFS) (Rescorla, 2001, p. 195). PFS

implies that compromise of a server’s private key would not compromise past sessions.



SSL/TLS: What’s Under the Hood 8

The session keys for those past sessions are the only keys that will decrypt the session’s
data. In this case, the server’s private key is used exclusively for authentication of the

server, not for encryption of any session related keys or data (Rescorla, 2001, p. 147).

2.1.3. Digital Signatures

Bruce Schneier provides an excellent description of digital signatures in his book,
Applied Cryptography (Schneier, 1996, Sec. 2.6). What follows is a brief summary of his
explanation. Digital signatures use the two keys in an asymmetric cipher to provide
authentication of a message. The owner of an asymmetric key pair calculates a message
digest over a message using a hashing algorithm such as MD5 or SHA1. That message
digest is encrypted with the owner’s private key and sent over the network along with the
message itself as well as the sender’s signed public key. The encrypted hash functions as
the signature. The receiver can use the owner’s public key to decrypt the message hash.
The receiver will be able to authenticate the sender by repeating the process and
comparing the hashes. That is, the receiver will decrypt the senders encrypted message
digest with the sender’s public key, independently create a message digest of the received
message and compare the message digest it calculated with the message digest it
received. If the two match and the receiver trusts the signed public key from the sender
then the receiver can be confident that this message came from the sender. An important
part of this process is trusting the signed public key of the sender. An organization that
issues signed certificates for this purpose is called a Certificate Authority (CA). The
CA’s function is discussed in more detail in section 2.2.1. It is worth noting here that the
certificate trust model has come under attack in the past and is considered by some to be
broken. Moxie Marlinspike has written an interesting discussion on CA trust at
www.thoughtcrime.org (Marlinspike, 2011). Peter Eckersley has also addressed the trust
model at www.eff.org (Eckersley, 2011).

2.2. TLS Handshake

The TLS protocol consists of two sub-protocols, the handshake protocol and the
record protocol (Dierks & Rescorla, 2008). The handshake protocol describes the rules
used to establish common cryptographic parameters as well as authenticating the server

and optionally, the client. The record protocol establishes the rules for breaking up the
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data to be transferred, encrypting it and packaging it into “records” such that when it
reaches the other side it can be properly decrypted. With respect to the 7 layer OSI
networking model, the handshake protocol operates at the session layer and the record

protocol operates at the presentation layer.

In order to establish a TLS session using a web browser, a client first contacts a
server and declares that it would like to initiate a secure connection with that server. The
client does this by sending a TCP packet with the SYN flag set to the port at which the
server is listening, usually port 443 for secure web traffic. Assuming the server is
configured to support this type of connection, the TCP three-way handshake is completed
and the TLS session parameters can be negotiated. This negotiation is referred to as the
SSL or TLS handshake (Rescorla, 2001, p. 58). The handshake will authenticate the
server and establish the encryption algorithm to be used as well as exchange the
components used to generate the cryptographic session keys. The key exchange and key
generation methods described in previous sections take place during the TLS handshake.
The server may optionally authenticate the client during the handshake as well.
Ultimately, session keys will be derived on each side of the TLS connection using the
exchanged components and will be used to encrypt and decrypt the data transmitted
during the session. Some browsers can capture and log the components used to generate
session keys such that captured network traffic can be decrypted either at the time of
capture or using previously captured packets. This is possible using both the key
exchange and the key generation methods. Wireshark has a built in capability to perform
this decryption of TLS traffic if it has access to these components, which will be

described in more detail below.

2.2.1. The Handshake Protocol

The TLS handshake begins when the client sends the ClientHello Message. The
three most important elements in this message are the version of TLS used by the client, a
random string that will be used for generating cryptographic keys and the cipher suites
that the client supports. The cipher suite consists of a code that represents four
parameters: authentication algorithm, key exchange method, encryption cipher and

hashing algorithm (Rescorla, 2013). The client lists these ciphers in its preferred order;
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in other words, it would prefer to use the cipher listed first if the server supports it. The
server replies with a ServerHello message, which contains its choice of cipher from the
client’s list and a random string, again for use later when generating cryptographic keys.
Notice that it is the server that ultimately decides on the actual cipher to be used for
encryption. Ifthe server is not satisfied with any of the cipher choices offered by the
client, it will send a “Handshake Failure” message back to the client and per RFC,
sending a TCP packet with the FIN and ACK flags set gracefully terminates the
connection (Dierks & Allen, 1999). Next, the server sends its certificate. The certificate
is the server’s proof of identify so the client can authenticate the server. The client
examines the certificate and if it is valid and digitally signed by a CA that the client
trusts, the client can be confident that it is talking to the correct server and not an

imposter. A more thorough discussion of CA trust follows in section 5.5.3.

A certificate is valid if it meets 3 criteria: the certificate must be signed by a CA
that the browser trusts; the domain name on the certificate must match the domain
presenting the certificate; and the certificate must not have expired. Additionally, some
browsers may confirm that the certificate has not been revoked before declaring it valid
(Viega et al., 2009, Sect. 1.2). There are also optional certificate extensions that, if
present, should be checked by the client. One important extension is “key usage”. This
is a field in the certificate that specifies what the certificate may be used for. Examples
are digital signature, non-repudiation and data encipherment. A complete description of
the key usage option for certificates is described in RFC 2459 (Housley, Ford, Polk &
Solo, 1999). If the certificate is self-signed, unsigned or not signed by a trusted third
party the browser will usually warn the user that the identity of the server cannot be
properly verified. A self-signed certificate is a certificate that has been signed using the

server’s private key, not the private key of a trusted third party.

If the method of key exchange chosen by the server is DH, the server sends the
ServerKeyExchange message that contains the public components that will be used to
generate the master secret (Rescorla, 2001, p. 35). Finally, the server sends the
ServerHelloDone message that indicates to the client that the server is finished passing

parameters.
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Once the cipher suite has been agreed upon, the client and server can begin
trading more specific parameters. First, the client sends a ClientKeyExchange message
and a ChangeCipherSpec message. The ClientKeyExchange message contains the pre-
master secret, which is generated by the client. Both the client and the server will use
this to generate what is called a master secret from which they both will derive the final
cryptographic keys. The client encrypts the pre-master secret with the server’s public key
so if an eavesdropper were to intercept this bit of data he could not decrypt it. If the
cipher chosen for this session was DH, then the ClientKeyExchange contains the client’s
public DH parameters instead of the pre-master secret. The ChangeCipherSpec message
is just a message from the client to inform the server that all data the client sends from
here on will be encrypted using the agreed upon parameters. At this point, both the client
and the server have all the components necessary to generate the master secret and then

derive cryptographic session keys.
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Sy ClientHello

*Client sends server the version of TLS that it would like to use, a list of supported ciphers and a
random string that the server will need later.

e ServerHello —

*The server sends the TLS version, the cipher it has chosen and a randoem string that the client will
need later.

e -

*The server sends its certificate as proof of its identity.

e JerverHelloDone -

*The server tells the client that it is done passing parameters.

s ClientKeyExchange -

*The client sends pre-master secret which will be used by both sides to generate session keys.

assm ChangeCipherSpec L.

*The client informs the server that all messages sent from now on will be encrypted with the
generated session key.

*The client sends a hash of the handshake components, encrypted with the genenerated session key.
The server will use this to verify the integrity of the handshake process.

e ChangeCipherSpec —

*The server informs the client that all messages sent from now on will be encrypted with the
generated session key.

B o

*The server sends a hash of the handshake components, encrypted with the genenerated session
key. The client will use this to verify the integrity of the handshake process.

Figure 3. The TLS handshake using the key exchange method

Both sides verify that the handshake has proceeded as planned and that both have
generated identical keys by sending an encrypted Finished message. First, the client
sends an encrypted Finished message to the server. This message is a message digest,
also called a cryptographic hash, of various components used during the handshake
process, not all of which have been transmitted on the network. This is encrypted with
the newly generated session key and sent to the server. Next, the server sends a
ChangeCipherSpec message to the client to tell the client that all data after this message

will be encrypted. This is followed by an encrypted Finished message from the server to

© 2014 The SANS Institute Author retains full rights.
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the client. The final step in the TLS handshake is for each side to decrypt and verify the
Finished message that it received from the other side. They do this by checking each
other’s work. Both sides perform a computation using the master-secret and a hash of the
handshake messages as inputs. This gets compared to the value received in the Finished
message from the other side. They will conclude that the handshake has succeeded if the
values match. If there was a problem with the verification then a HandshakeFailure
message is sent and the session is terminated (Rescorla, 2001, p. 81). Figures 3 and 4
show graphical illustrations of TLS handshakes, one using RSA key exchange and the
other DH key generation. Notice that the handshake in figure 4 using DH key generation
has an extra step. If the server selects a DH cipher from the list of ciphers presented to it
from the client, then it must also send the parameters that the client will need for

generation of the master secret in the ServerKeyExchange message.
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sl ClientHello 1
I |

«Client sends server the version of TLS that it would like to use, a list of supported ciphers and a random string |
that the server will need later. |

— ServerHello - - =

*The server sends the TLS version, the cipher it has chosen and a random string that the client will need Iater.

. x —

«The server sends its certificate as proof of its identity.

e ServerKeyExchange - —

*The server sends parameters that will be needed in the Diffe-Hellman key exchange to genarate the master
secret.

ey ServerHelloDone —

*The server tells the client that it is done passing parameters.

e ClientKeyExchange - - -

*The client sends the parameters that will be needed in the Diffe-Hellman key exchange to generate the master
secret.

e

*The dient informs the server that all messages sent from now on will be encrypted with the generated session

key.

..

*The client sends a hash of the handshake components, encrypted with the genenerated session key. The server
will use this to verify the integnity of the handshake process.

— ChangeCipherSpec -

*The server informs the client that all messages sent from now on will be encrypted with the generated session
key.

*The server sends 3 hash of the handshake components, encrypted with the genenerated session key. The client
will use this to verify the integrity of the handshzke process.

_Figure 4. The TLS handshake using the key generation method (Diffie-Hellman).

2.2.2. The Record protocol

Now that the encryption parameters have been established and session keys
generated the real purpose of this connection — data transfer can take place. This is where
the record protocol comes in. The record protocol is used to break the stream of data
into pieces for transmission (Rescorla, 2001, p. 61). Each piece is encrypted and

encapsulated with a header letting the other side know the specifics about that particular

© 2014 The SANS Institute Author retains full rights.
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piece. Together this header plus data is called a “record”. The encrypted records contain
the confidential data that is transmitted back and forth. All packets starting with the
Finished messages of the TLS handshake are encrypted using the newly generated
session key. As we will see later, Wireshark is able to reassemble and decrypt these
records when given access to the browser’s key log file, which contains the values

needed to derive the session key.

3. Capturing pre-master secrets/master secrets
Not all browsers support the logging of TLS session components. As of this

writing, Firefox 19 and Chrome 24 so support this feature.

Both Firefox and Chrome will check to see if the user has an environment
variable set for “SSLKEYLOGFILE” which points to a writable file. If so, the browser
will write the secrets to the file identified by the environment variable. This should be a
user environment variable, not a system-wide or global variable since these secrets can be

used to decrypt captured web traffic which may contain sensitive data.

3.1.1. Environment Variables

On a Linux system user environment variables may be set using any of several
files. For example, the users environment variables may be set in ~/.profile,
~/.bash profile, ~/.bashrc, etc. Typically, the way to create the file and set the
environment variable on a Linux system is like this:

$ touch /protected/folder/my session keys.log
$ chmod 700 /protected/folder/my session keys.log

Then add the following line to whichever file is executed at login, for example,

for user account student this might be /home/student/.profile
export SSLKEYLOGFILE=/protected/folder/my session keys.log

Typing “echo $SSLKEYLOGFILE” after a successful login will confirm the value

assigned to the variable.
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3.1.2. The key log file

Network Security Services (NSS) is an open source set of C libraries, maintained
primarily by Mozilla, that contain cryptographic modules. NSS developed modules for
key log file operations as well as the format of the key log file (Mozilla Developer
Network, 2013). The key log file itself is a flat text file. If the proper environment
variable is defined and a file exists that the browser can write to, both Firefox and
Chrome utilize the NSS libraries to write pre-master secrets and master secrets to a file.

The file format is defined as follows (Combs, 2012):

CLIENT RANDOM<space>|64 bytes Client Random Values in Hex|<space>|96 bytes

Master Secret in Hex|

RSA<space>|16 bytes encrypted pre-master secret in hex|<space>|96 bytes pre-master

secret in hex|

# SSL/TLS secrets log file, generated by NSS

CLIENT RANDOM
51a3e7b9041587fb8143cd2c3c212a2¢27c40e872¢8fc7d10€995484¢74d623d
04b1dd60fd0ala9460aec66d3bdf76eac74197459352b366b66b3£71150957b7b282
65992¢0b0c74d953acd46beea80ac

RSA 0c9b7e07178102¢8
03014fbec62aa7e¢665957155cb841cbb8f04d4ef48d24160ee40bf1a90aa964c56d4
53711af4abad169edd1f04466282

Figure 4a. Sample entries from a populated key log file

The first entry in figure 4a , CLIENT RANDOM, is the format for TLS sessions
using non-RSA cipher suites. The master secret is saved for non-RSA sessions. The
second entry is for TLS sessions using an RSA cipher suite. The pre-master secret is
saved for RSA negotiated sessions. Wireshark will be able to read in these “secrets” and
generate the session keys, which will decrypt the captured data. Because the key log is a
flat text file written in ASCII, these are not raw hex values used by the browser, instead
they are the ASCII representation for the hex values. For example, the ClientRandom
value sent as part of the TLS handshake is 32 bytes long. Writing the ASCII

representation of a 32-byte value in hexadecimal requires 64 bytes.
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4. Capturing Traffic

There are several different tools that will capture network traffic. Two common
free tools are tcpdump and Wireshark. Wireshark is an open source GUI based
application that runs on many platforms including Linux, Windows and OS X
(Wireshark Protocol Analyzer, 2013). Wireshark has a command line version as well,
called tshark that is typically installed during a Wireshark install. Tcpdump 1s a
command line application that runs on many Unix and Linux operating systems
(Tcpdump & Libpcap, 2013). Windump is the port of tcpdump for Windows (WinPcap,
2013). This paper will address packet capture using tcpdump, Wireshark and tshark on

Fedora Linux.

4.1. Capturing network traffic with tcpdump and tshark

Unix—like machines may have tcpdump installed by default. If not, it can be
downloaded from www.tcpdump.org. Tcpdump also requires that the network packet
capture library, libpcap, be installed. This is also distributed at www.tcpdump.org. For
capturing traffic, tshark syntax is very similar to tcpdump; however, tshark has many
more options than tcpdump for displaying data from packet captures. Documentation for

tshark can be found on the tshark man page (Combs, 2013).

Figure 5 illustrates how to capture packets on network interface “eth0” and write
the data to a file called “packets.pcap” in both tcpdump and tshark. The —n option
instructs tcpdump not to resolve names while it is capturing data and the -w option
indicates that tcpdump should write to a file. The key combination of Control-C will end

the packet capture and close the file for both utilities.
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[ [demol = =)
File Edit View Terminal Help

[demo] $ sudo tcpdump -1 ethO -n -w packets.pcap

tcpdump: listening on ethO, link-type EN1OMB (Ethernet), capture size 65535 bytes
~C2127 packets captured

2127 packets received by filter

0 packets dropped by kernel

[demo] $

[demo] $ sudo tshark -1 ethO -n -w packets.pcap

Running as user "root" and group "root". This could be dangerous.
Capturing on etho

8710 ~C[demo] $

[demo] % [

Figure 5. Capturing packets using tcpdump and tshark

4.2. Capturing network traffic with Wireshark

Capturing traffic using Wireshark is very simple. Select “Capture = Options...”
to view the capture dialogue. Select the network interface and any other desired options,
such as, unchecking the name resolution boxes (Figure 6). Using “promiscuous mode”
on all interfaces will capture all traffic that an interface can “see” and is sufficient for this
example. Click on the Start button to begin the capture. To conclude a packet capture in
Wireshark select “Capture = Stop” for the menu bar or click on the Stop Capture button

on the toolbar. The captured packets are displayed in the Wireshark 3-pane interface.
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”
M Wireshark: Capture Options

- B

Link-layer header Prom. Mode Snaplen [B] Buffer [MB]

Capture
Capture Interface
A Wireless Network Connection 3 Ethernet
0000
| YSJZ:SIC:; Network Connection i
B Il.;)lcoa! 5A‘;naa Connection 2 Ethernet
VMware Network Adapter VMn...
[ tes0-2873:5e625e 02024 Ethernet

1010764

enabled

enabled

enabled

enabled

Capture Filter -

default 2
default 2 - i
default 2
default 2

<

1

[] Capture on all interfaces

t Use promiscuous mode on all interfaces >

Capture Filter:

Capture Files
File:
[] Use multiple files
Next file every 1
Next file every 1
Ring buffer with 2
Stop capture after |1

l Stop Capture Automatically After...

b packet(s)
@ (1 megabyte(s)
[ (1 minute(s)

Use pcap-ng format
megabyte(s)

minute(s)

files

file(s)

r_Manage Interfaces
[+] [Compileselected BPFs

Display Options

(] Update list of packets in real time
[¥] Automatically scroll during live capture

Hide capture info dialog

Name Resolution

[7] Resolve network-layer names
[] Resolve transport-layer name

[7] Use external network name resolver

[ Start ‘ [ Close

Figure 6. Capturing packets using Wireshark

5. Analyzing Traffic

For the results and discussion that follow, I created a test lab and spent many

hours using Wireshark, tshark and tcpdump to view network traffic. This section will

illustrate how the TLS handshake works using a captured TLS session establishment and

login sequence from a temporary SANS portal account, which has since been removed.

The handshake records comprise the TLS session establishment and negotiation of the

session parameters. That is followed by “Application data” records that make up the

actual login to the SANS account. Appendix A contains a step-by-step guide for this

process without the explanations.

© 2014 The SANS Institute

Author retains full rights.



SSL/TLS: What’s Under the Hood 20

5.1. Set environment variables

Prior to capturing the data there are a few things to set up. First, the key log file
must exist as well as the environment variable “SSLKEYLOGFILE”. This will signal the
browser to save TLS pre-master/master secrets and allow decryption of the data outside
the browser. The procedure for setting this up is described above in “Capturing pre-

master secrets/master secrets”, or refer to Appendix A.

5.2. Capture network traffic
Using tcpdump, the following command will start capturing all network traffic
coming in to the interface ethO (-1), DNS names will not be resolved (-n) and captured

data will be written (-w) to the file sansLogin.pcap.
# tcpdump —i eth0 -n —w sansLogin.pcap

Now that network traffic is being captured, open up Firefox or Chrome and login
to a portal account. This experiment has worked with Firefox versions 19 through 22 and
Chrome versions 24 through 30. Since this feature is not yet well documented, it is

unclear what the future support will be.

This short example includes only a login to the SANS portal account followed
immediately by a logout. When the logout sequence completes, terminate the packet
capture in tcpdump by entering Control-C. If the packet capture terminates before the
TLS session is properly terminated then Wireshark will not have all the packets it needs

to properly reassemble the session and will therefore be unable to decrypt the traffic.

At this point, the captured traffic from a login/logout session exists in
sansLogin.pcap and the keys for that session have been written to the key log file. To

verify that the keys were successfully written to the key log file:

# less $SSLKEYLOGFILE

5.3. A look at the traffic in Wireshark
Open the new packet trace file in Wireshark, noting that Wireshark does not
require administrative privileges to open a previously captured trace file because the

default permissions that it assigns allow anyone to read.
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$ wireshark —r sansLogin.pcap

In Wireshark select Analyze - Conversations from the menu bar at the top of the
screen. Click on the tab for TCP. This will display a summary of the different TCP
conversations in this trace file (Figure 7).

\ sansLogin.pcap [Wireshark 1.8.1 (SVN Rev 43946 from /trunk-1.8)]

apture Analvze Statistics Telephonv Tools Internals Help
e O 0 \| Conversations: sansLogin.pcap

‘7‘\
—— FEthernet: 7| | FoDi|ipva: 21 |ipve: 2 |iR<| A | NER | RSVER| TCP: 34| |uop: 43| <¢]

TCP Conversations
irce
—! Address A |Port A |Address B v |Port B [Packets Bytes Packets A»B |Bytes A—B |[Packets A—B |B* h
Tlea) 192.168.1.5 53508  66.35.59.202 80 i 7] (] IS 9
.18 192.168.1.5 53509 66.35.59.202 80 140 134752 49 8535 91 m 1967 TSec
.168. 192.168.1.5 53511 66.35.59.202 80 15 6236 7 775 8
.194.  192.168.1.5 53512 66.35.59.202 80 18 9044 8 838 10 pS8833 TS
-194. 192.168.1.5 53513 66.35.59.202 80 25 127 1Ll 1490 12
.168. 5195154 T
.168.
104  192.168.1.5 53518 66.35.59.202 443 120 96 409 47 6 765 s 8550017 T
.104. 192.168.1.5 53489 66.35.59.249 443 61 29900 32 6 849 29
.168 192.168.1.5 53498 66.35.59.249 443 123 96418 52 8 252 7l $195334 T
.168. 102 162 1 £ C2CNN cc 2C CQ Y24Q AN I~ A Cac 1c 2N1C L b 4
o2y @ I > 8550199 T
% Name resolution O Limit to display filter
ire { I Help Copy Follow Stream | ¥ Close |
jear_|

B

sion b
1o (LE=gg e

>rotocol, Src Port: 993 (993), Dst Port: 52763 (52763), Seq: 1, Ack:

00 22 3f 30 ba e2 08 00 45 00 T3K&1v." 70....E.

Figure 7. Wireshark’s “Analyze Conversations” window

The IP address resolution for www.sans.org at the time of this capture was
66.35.59.202 and the port for the HTTPS connection was 443. The highlighted line
represents the conversation for the actual login session. Select “Follow Stream” and
Wireshark will filter on all packets related to that conversation only. The actual meat of
the traffic, the payloads without the TCP handshake packets and packet headers, are
arranged neatly in a pop up window that is in two colors, one color for the client to server
payloads and the other color for the server to client payloads. This is often red for client
initiated packets and blue for server initiated packets but the default can vary per

platform.
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e OO0 N\ Follow TCP Stream
Stream Content ’
........... ] L T e L e e O B P = Je ] e 4
....... G e S E D 2 L A m
iy A R Www.Sans.org. ‘
................ :#..3t......Q...M..Q.........'#..BGSB..W....e..f...
B G Ry PO O OSSR ] ] e
oD ELEL cooocoonooconoaconoaog 05 656185 biomomom0o m| .LAE..2..@.Tr%0
| 3lc H
| H[lo o5alilo o
AlEacas Opl.0...U....GBl.0...U....Greater Manchesterl.0...U....Salfordl.0...U.

..COMODO CA Limitedl.O...U...

COMODO SSL CAQ.. ‘
121126000000Z.

171125235959Z0V1! 0. ..U....Domain Control Validatedl.0...U....COMODO SSL

wildcardl.o...U... ‘
*.sans.orgo.."o
| walnla o
||| [t oo \
[lllo.c.000.0000 B
1| e i gyt T B T e L s e g Y i
PR S USS PRG T O (o} B e = RIS F0 D e S == e -ves a1
e latolfie oo alls oo oot = AES 0 ol b o ot blle c o2l c o8 " a oo oo M.
ns.5
W& S (= S 22 M = T KD G U e A e e e g e O O L O S kT Ty
u TAAT A (OB Sl e fooallaEriaaatizanio dvn®hoallb cacooacaaaho o aaoaaltllel U.%..0
et R 00..U. .HOFO:..+..... A OE0) S e https://secure.comodo.com/
Entire conversation (86059 bytes) v |

N Find | & Save As | & Print |O ASCIl O EBCDIC O Hex Dump O C Arrays @ Raw

I Help ] Filter Out This Stream | ¥ Close |

Figure 8. “Follow Stream” shows the payloads for an entire TCP stream.

The data shown in figure 8 is the raw data from the TCP payloads in this stream.
The first portion of the SSL handshake, including the transmission of the server’s
certificate can be seen in figure 8. Further down in the stream, after the completion of the
TLS handshake, the data would be encrypted and therefore unreadable. Close the
“Follow TCP Stream” window and look at the top pane in Wireshark. The display filter
shows that only the packets associated with this single TCP stream are being displayed.
The first 3 packets establish the TCP connection between the client and the server using
the sequence of TCP flags [SYN], [SYN, ACK] and [ACK]. What follows the TCP
three-way handshake is the handshake to establish the TLS session parameters. After the
TLS handshake comes the actual data that is being transmitted, which Wireshark labels

“Application Data”.

Author retains full rights.
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5.4. Dissecting the TLS handshake
The first step in the TLS handshake, the ClientHello, follows the TCP handshake

and is underlined in figure 9.

e O O \| sansLogin.pcap [Wireshark 1.8.1 (SVN Rev 43946 from /trunk-1.8)]
File Edit View GCo Capture Analyze Statistics Telephony Tools Internals Help

Beaee pPEXRE A wFLEBEB QRaQACH #®H -

Filter: |tcp.stream eq 27 j Expression... Clear Save

No. |Time |Source |Src port | Destination | Dst port | Protocol | Length | Info
807 14.584041 192.168.1.5 53514 66.35.59.202 443 TCP 78 53514 > 443 [SYN] Seq=0 Win=6553
836 14.678926 66.35.59.202 443 192.168.1.5 53514 TCP 74 443 > 53514 [SYN, ACK] Seq=0 Ack
837 14.678968 192.168.1.5 53514 66.35.59.202 443 TCP 66 53514 > 443 [ACK] Seq=1 Ack=1 Wi
868 14.770906 66.35.59.202 443 192.168.1.5 53514 TCP 56 AT S BISIATACK] Seq=1 Ack=170
886 14.782733 66.35.59.202 443 192.168.1.5 53514 TLSv1 1514 Server Hello[Malformed Packet]
887 14.784214 66.35.59.202 443 192.168.1.5 53514 TLSv1 1514 Ignored Unknown Record
888 14.784261 192.168.1.5 53514 66.35.59.202 443 TCP 66 53514 > 443 [ACK] Seq=170 Ack=2€
932 14.882672 66.35.59.202 443 192.168.1.5 53514 TLSv1 329 Ignored Unknown Record

Dl e — 1) >

P Frame 838: 235 bytes on wire (1880 bits), 235 bytes captured (1880 bits)

P Ethernet II, Src: Apple_26:69:76 (60:33:4b:26:69:76), Dst: Netgear_30:ba:e2 (00:22:3f:30:ba:e2)

P Internet Protocol Version 4, Src: 192.168.1.5 (192.168.1.5), Dst: 66.35.59.202 (66.35.59.202)

P Transmission Control Protocol, Src Port: 53514 (53514), Dst Port: 443 (443), Seq: 1, Ack: 1, Len: 169
D Secure Sockets Layer

F

igure 9. ClientHello portion of handshake

To filter for only the packets that comprise the TLS handshake, add the following
to the display filter: “s& ssl.handshake” and Apply (Figure 10). This will narrow

the selection and display only the handshake packets for this particular conversation.

\ sanslogin.pcap [Wireshark 1.8.1 (SVN Rev 43946 from /trunk-1.8)]
File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help

BEdee cEEXsE A¢swTFEIEBREB Qaal #¥E % B

Filter: |tcp.stream eq 27 && ssl.handshake ¥ | Expression... Clear Save
No. ITime Source |Src port| Destination | Dst port| Protocol | Length | Info
838 14.679201 192.168.1.5 53514  66.35.59.202 443 TLSv1 235 Client Hello

886 14.782733 66.35.59.202 443 192.168.1.5 53514 TLSv1 1514 Server Hello

887 14.784214 66.35.59.202 443 192.168.1.5 53514 TLSvl 1514 Certificate

932 14.882672 66.35.59.202 443 192.168.1.5 53514 TLSvl 329 Server Key Exchange, Server Hello Done

934 14.884544 192.168.1.5 53514 66.35.59.202 443 TLSv1 264 Client Key Exchange, Change Cipher Spec, Encrypted

Figure 10. Display filter showing single SSL handshake sequence

The handshake consists of 10 distinct steps and there is an extra step when using
the DH key generation method. The TLS session captured in figure 10 shows the steps of
the TLS handshake transmitted in 6 packets. This is because the entire TLS stream,
starting with the handshake records, is broken up at the application layer into the
maximum size pieces that may be transmitted at a given time over the network to reduce
overhead and improve performance (Rescorla, 2001, p. 179). In other words, some of the

handshake records are combined and sent in one packet. Other records, like the
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certificate are too long to fit into one packet and so are split up and sent in two packets.
The TLS data is the embedded protocol data in the TCP packets. Each packet will
contain a frame header, and IP header and a TCP header. Following the TCP header is
the TLS data.

RFC 2246 defines the format for the TLS records (Dierks & Allen, 1999). There
are specific TLS header values to identify what type of content is contained in each
record. Wireshark uses these specifications to parse the data and display it properly.
Each record can consist of one of four “Content Types”, Alert, ApplicationData,
ChangeCipherSpec or Handshake. Alert messages are to signal warning or error
messages, ApplicationData contains the encrypted data being sent back and forth,
ChangeCipherSpec is the message informing the other side that encryption will begin and
the Handshake content type is used while setting up the session. Because there are
different fields for each Content Type, there is a formal definition for these header fields,
defined in RFC 2246 (Dierks & Allen, 1999, pp. 48-50). Header fields can take the

following values:
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Content Type

ChangeCipherSpec = 0x14

Alert = 0x15
Handshake = 0x16

ApplicationData = 0x17

Protocol Version

SSL v3 = 0x0300
TLS v1.0 = 0x0301
TLS v1.1 = 0x0302
TLS v1.2 = 0x0303
Handshake Message Type

ClientHello = 0x01
ServerHello = 0x02
Certificate = 0x0B

ServerKeyExchange = 0x0C

ServerHelloDone = 0x0OE

ClientKeyExchange = 0x10

Finished = 0x14
Alert Message Type

close notify 0x00
unexpected message 0x0A
bad record mac 0x14
decryption_failed 0x15
record overflow 0x16
decompression_failure 0x1E
handshake failure 0x28
no_certificate 0x29 SSLv3 only
bad_certificate 0x2A
unsupported certificate 0x2B
certificate revoked 0x2C

certificate expired 0x2D

certificate unknown 0x2E
illegal parameter 0x2F
unknown_ca 0x30
access_denied 0x31
decode error 0x32
decrypt_error 0x33
export_restriction 0x3C
protocol_version 0x46
insufficient security 0x47
internal_error 0x50
user_canceled 0x5A

no_renegotiation 0x64

Figure 10a. TLS record header field values
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Below are the formats of the header fields for the four different record types:

Handshake (Figure 11) , ChangeCipherSpec (Figure 12) , ApplicationData (Figure 13)
and Alert (Figure 14).

S Content Record
2 o Type 0x16 Protocol Version
z g (1 byte) (2 bytes) Length
S (2 bytes)
Handshake
Message Message Length Data
Type (3 bytes)
(1 byte)

Data...(length varies with message type)

Encrypted if
Message Type 0x14

—_—
—_—

Figure 11. Handshake Record Layout

]
g Content Type .
o ‘é Ox14 P Protocol Version Record
C 2 bytes Length (2 bytes
S (1 byte) (2 bytes) gth (2 bytes)
w
Figure 12. ChangeCipherSpec Record Layout
Content Type Version Length
Ox17 (2 bytes) (2 bytes)
(1 byte) ¥ y
©
g
i>‘ Data
=
w
Data...

Figure 13. ApplicationData Record Layout
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Content Type Version Length
Ox15 (2 bytes) (2 bytes)
(1 byte) Y !

Severity Level | Message code
(1 byte) (1 byte)

Not Encrypted

Figure 14. Alert Record Layout

5.5. Handshake records in detail

5.5.1. ClientHello

Since the client initiated this TCP connection, it will also start the negotiation
with the server regarding TLS parameters, making suggestions that the server must either
agree to or suggest a suitable alternative in order for the connection to be successful. The
client presents the parameters shown in figure 15. The handshake header fields are
outlined in red and contain handshake type, handshake length and TLS version.
Following the header fields, are the content type specific fields. This particular record is
a ClientHello record and contains the random data that the client will use when
establishing keys later, the cipher suites that the client supports, the server name it would
like to authenticate, etc. By clicking on an individual item in the middle pane, Wireshark
will highlight the corresponding hex value for that item in the lower pane. Conversely,
clicking on any value in the lower pane in Wireshark will show the corresponding parsed
value with its identifier in the middle pane. The TLS record header is outlined in red in
figure 15 and can be mapped to the header fields shown in figure 11. These five bytes
define the Content Type (0x16 is a handshake record), TLS version (0x0301 is TLS
version 1.0), and the Length of the record following the header fields (0x00A4 or 164

decimal).
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8 00 - . \ sansLogin.pcap [Wireshark 1.8.1 (SVN Rev 43946 from Ilruni(~1:éil-
File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help

BEoee cEX2E A ¢rwFELEE Qaaarm @B % B

Filter: |tcp.5\ream eq 27 && ssl.handshake v [ Expression... Clear Save
No. |Time |Source |Src port | Destination |Dst port | Protocol | Length| Info
886 14.782733 66.35.59.202 443 192.168.1.5 53514 TLSV1 1514 Server Hello
887 14.784214 66.35.59.202 443 192.168.1.5 53514 TLSV1 1514 Certificate
932 14.882672 66.35.59.202 443 192.168.1.5 53514 TLSv1 329 Server Key Exchange, Server Hello Done
934 14.884544 192.168.1.5 53514 66.35.59.202 443 TLSv1 264 Client Key Exchange, Change Cipher Spec, Encrypted Handshake Mess
982 14.979216 66.35.59.202 443 192.168.1.5 53514 TLSv1 125 Change Cipher Spec, Encrypted Handshake Message
<= >

< TLSv1 Record La’yer: Handshake Protocol: Client Hello

Secure Sockets Layer

Version: TLS 1.0 (0x0301)

et 181, i iientendite ¥ TLSvl Record Layer: Handshake Protocol: Client Hello
s L Content Type: Handshake (22)
e Version: TLS 1.0 (0x0301)
ii;ﬁli"si?tffi:;tg; 72 Length: 164

ooz 11 11 wos;omscst214 x. ¥ Handshake Protocol: Client Hello
0050 74 o 04 25 53 S o iameooas Handshake Type: Client Hello (1)
0070 00 ff cO 0a cO 14 OONRE 00 87 00 39 00 38 cO Of

= DLEERIOTMERISEEC o Lengthiieo

oobo 0 od c0 03 fe ff 00 0a 01 00 00 2 Version: TLS 1.0 (0x0301)

00cO 00 Of 00 00 Oc 77 77 77
00d0 67 00 0a 00 08 00 06 00 17 00 18 00 19 00 OBNQQD
0020 02 01 00 00 23 00 00 33 74 00 00

© #7[Content Type (ssl.record.con... ] Packets: 2235 Displa

~00 00 22 3f 30 ba e2 60 33 4b 26 69 76 08 00 45 00
dd 92 9a 40 00 40 06 67 e6 cO a8 01 05 42 23 .
ca dl ©0a 01 bb 9c f7 61 48 78 14 02 f2 80 18 A
Figure 15. ClientHello 30 ff 53 f8.00 00 01 01 08 03 30 a6 Sc 9f 22 14

40 f4 89[%6 03 01 00 a4jj01 00 00 ab |03 01 51 cc a8
50 8a 8c Ba ct eSS Be Oa 0Ue a/ 96 b3 34 61 3c

The handshake message header fields follow the TLS header fields and are
outlined in blue. Figure 15 shows a ClientHello message, identified by the 0x01 in the
handshake message type field. This is followed by the 3-byte message length field
(0x0000A0 or 160 decimal) and then the data associated with this Handshake message
type that is of variable length. Most of relates to the negotiation of cryptographic
parameters, such as, which cipher to use, whether or not to use compression on the data,

etc.

Highlighting and expanding the Cipher Suites field in the middle pane shows the
numeric representations of all the cipher suites that the client will support. Each cipher
suite is represented by a 2-byte value. Wireshark resolves this 2-byte value to the RFC
defined ciphers. A full listing of these values is maintained by IANA and can be found at
the IANA web site (Rescorla, 2013).

Figure 16 shows the ciphers supported by Firefox 21, which was used for this test.

© 2014 The SANS Institute Author retains full rights.
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|Src port [ Destination _|Dst port | Protocol | Lengthl Info

No. ITime |Source
886 14.782733 66.35.59.202 443 192.168.1.5 53514 TLSv1
887 14.784214 66.35.59.202 443 192.168.1.5 53514 TLSv1
932 14.882672 66.35.59.202 443 192.168.1.5 53514 TLSv1
934 14.884544 192.168.1.5 53514 66.35.59.202 443 TLSv1
<€ =]

< Cipher Suites (36 suites)
Cipher Suite: TLS_EMPTY_RENEGOTIATION_INFO_SCSV (0x00ff)
Cipher Suite: TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA (0xcO0a)
Cipher Suite: TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0xc014)
Cipher Suite: TLS_DHE RSA_WITH_CAMELLIA 256_CBC_SHA (0x0088)
Cipher Suite: TLS_DHE DSS_WITH_CAMELLIA 256 CBC_SHA (0x0087)
Cipher Suite: TLS_DHE_RSA_WITH_AES_256_CBC_SHA (0x0039)
Cipher Suite: TLS_DHE DSS_WITH_AES_256_CBC_SHA (0x0038)
Cipher Suite: TLS_ECDH RSA_WITH_AES_256_CBC_SHA (0xc00f)
Cipher Suite: TLS_ECDH ECDSA_WITH_AES_256_CBC_SHA (0xc00S)
Cipher Suite: TLS_RSA_WITH_CAMELLIA 256 CBC_SHA (0x0084)
Cipher Suite: TLS_RSA_WITH_AES_256_CBC_SHA (0x0035)
Cipher Suite: TLS_ECDHE_ECDSA_WITH RC4_128 SHA (0xc007)
Cipher Suite: TLS_ECDHE ECDSA_WITH_AES_128 CBC_SHA (0xc009)
Cipher Suite: TLS_ECDHE_RSA_WITH RC4_128 SHA (0xcOll)
Cipher Suite: TLS_ECDHE_RSA_WITH_AES_128 CBC_SHA (0xc013)
Cipher Suite: TLS_DHE RSA_WITH_CAMELLIA_ 128 CBC_SHA (0x0045)
Cipher Suite: TLS_DHE DSS_WITH_CAMELLIA 128 CBC_SHA (0x0044)
Cipher Suite: TLS_DHE_RSA_WITH_AES_128 CBC_SHA (0x0033)
Cipher Suite: TLS_DHE DSS_WITH_AES_ 128 CBC_SHA (0x0032)
Cipher Suite: TLS_ECDH_RSA_WITH_RC4_128 SHA (0xc00c)
Cipher Suite: TLS_ECDH RSA_WITH_AES_ 128 CBC_SHA (Oxc0Oe)
Cipher Suite: TLS_ECDH_ECDSA_WITH RC4_128 SHA (0xc002)
Cipher Suite: TLS_ECDH_ECDSA_WITH_AES 128 _CBC_SHA (0xc004)
Cipher Suite: TLS_RSA_WITH_SEED_CBC_SHA (0x0096)
Cipher Suite: TLS_RSA_WITH_ CAMELLIA 128 CBC_SHA (0x0041)
Cipher Suite: TLS_RSA_WITH RC4_1238 SHA (0x0005)
Cipher Suite: TLS_RSA_WITH_RC4_128 MDS (0x0004)
Cipher Suite: TLS_RSA_WITH_AES_128 CBC_SHA (0x002f)
Cipher Suite: TLS_ECDHE_ECDSA_WITH 3DES_EDE_CBC_SHA (0xc008)
Cipher Suite: TLS_ECDHE_RSA_WITH 3DES_EDE_CBC_SHA (0xc012)
Cipher Suite: TLS_DHE RSA_WITH_3DES_EDE_CBC_SHA (0x0016)
Cipher Suite: TLS_DHE DSS_WITH_3DES_EDE CBC_SHA (0x0013)
Cipher Suite: TLS_ECDH RSA_WITH_3DES_EDE CBC_SHA (Oxcood)
Cipher Suite: TLS_ECDH_ECDSA_WITH 3DES_EDE_CBC_SHA (0xc003)
Cipher Suite: SSL_RSA_FIPS_WITH_3DES_EDE CBC_SHA (0Oxfeff)
Cipher Suite: TLS_RSA_WITH_3DES_EDE CBC_SHA (0x000a)

Comnression Methads | enath: 1

1514 Server Hello

1514 Certificate

329 Server Key Exchant

264 Client Key Exchanc 1
) >

Hex code for each cipher *
suite

« &

L4
v

0020 3b ca dl 0a Ol bb 9c f7 61 48 78 14 02 f2 80 18 Feseeaee Ak

AASA £L L£L £ £ An AR AT A AO An AR ae £~ AL AA g v Ao

Figure 16. Cipher Suites supported by Firefox 21

5.5.2. ServerHello

Once the client is finished sending its proposed parameters to the server, the

server will respond with a ServerHello message (Figure 17). This portion of the TLS

handshake will inform the client which of the ciphers it has chosen from the list presented

by the client in the ClientHello message. It also passes its “random” values for key

generation later, confirms the version of SSL/TLS used and confirms which compression

method, if any, will be used on the encrypted data. For this particular session, no

compression will be used as shown by the Compression Method of “null”.

© 2014 The SANS Institute
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‘@00 \ sansLogin.pcap [Wireshark 1.8.1 (SVN Rev 43946 from /trunk-1.8)]
File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help

B@oaee cEXeL A¢er»wFLEE Qaaf @®¥BE % B

Filter: Itcp.stream eq 27 && ssl.handshake v | Expression... Clear Save

No. |Time |Source |Src port| Destination | Dst port| Protocol | Leng[h| Info
838 14.679201 192.168.1.5 53514 66.35.59.202 443 TLSv1 235 Client Hello
887 14.784214 66.35.59.202 443 192.168.1.5 53514 TLSv1 1514 Certificate
932 14.882672 66.35.59.202 443 192.168.1.5 53514 TLSv1 329 Server Key Exchange, Server Hello Done
934 14.884544 192.168.1.5 53514 66.35.59.202 443 TLSv1 264 Client Key Exchange, Change Cipher Spec, Encrypted Handshake Mes
982 14.979216 66.35.59.202 443 192.168.1.5 53514 TLSv1 125 Change Cipher Spec, Encrypted Handshake Message

<« _

|v Secure Sockets Layer A

¥ TLSvl Record Layer: Handshake Protocol: Server Hello

Version: TLS 1.0 (0x0301)
Length: 81 M
| v Handshake Protocol: Server Hello
Handshake Type: Server Hello (2)

| Length: 77
Version: TLS 1.0 (0x0301)
P Random

Session ID Length: 32
Session ID: 0d25476500a21a673b8ceac1261e6b00b969644alce35d3S. ..
Cipher Suite: TLS DHE RSA WITH AES 256 CBC SHA (0x0039)
Compression Method: null (0)
Extensions Length: 5

P Extension: renegotiation_info

<

0040 Sc of 03 01 00 51 02 00 00 4d 03 01 51 cc a8 \. ...Q. ..M..Q.. 2

0050 8a c3 a9 f6 ef ff e6 27 23 bg d8 42 36 53 42 bT. ....... ' #..B6SB.
0060 93 77 19 83 a5 80 65 14 b6 66 d7 b2 13 20 0d 25  .W....e. .f... .%
0070 47 65 00 a2 la 67 3b 8c ea cl 26 le 00 b9 69  Ge...g;. ..&.k..1

0080 64 4a lc e3 5d 35 Oc Oc a0 Od 84 fc 4e 39 00 39 dJ..]5.. .... N9.9

0090 00 00 05 ff O1 00 01 G0 16 03 01 09 el Ob 00 09  w..evune wuvvnnes

00a0 dd 00 09 da 00 04 ee 30 82 04 ea 30 82 03 d2 a0  ....... Ofersrs Orss v
e e P I It i R X =t vae A ,

© ";I Content Type (ssl.record.con... | Packets: 2235 Displayed: 6 Marked: 0 Load tim... { Profile: Default

Figure 17. ServerHello message

5.5.3. Certificate

The server’s certificate is its credential for authentication. The server sends the
client its certificate that also includes the server’s public key. Either an intermediate
Certificate Authority or a root Certificate Authority digitally signs the server’s certificate.
If the server’s certificate is signed by an intermediate CA it must attach that certificate as
well. The intermediate CA’s certificate may be signed be another intermediate CA or a
root CA. All intermediate CA certificates must be attached in what is referred to as a
“certificate chain”. The certificate chain is complete when a root CA has digitally signed
a certificate. Browsers contain a store of trusted root CA’s. If a certificate from an
intermediate CA has been signed by a root CA in the browsers trusted store, then
according to this trust model the authenticating server can also be trusted. The client
verifies three things: an authority that the browser trusts has digitally signed the
certificate; the domain name on the certificate matches the domain that is presenting the

certificate; and the certificate has not expired (Schneier, 1996, Sec. 2.6).

If the certificate checks out, the client will proceed. If the cipher suite negotiated
was not a DH cipher then the server’s public key will be used to encrypt the pre-master

secret at a later stage in the handshake. If the cipher suite negotiated is a DH cipher, then
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the server’s public key is not needed for anything else. There are many good resources

online for further information about certificates and Public Key Infrastructure (PKI)

including the already referenced book by Bruce Schneier, (Schneier, 1996). In the

example here, the length of the certificate is more than can be sent in 1514 byte datagram

so it is split up. The first portion is sent in the ServerHello message because that packet

was not near its maximum length. Wireshark shows the certificate in the following

handshake packet because that is the packet that reassembles the two portions of the

certificate. Figure 18 shows the certificate bytes beginning immediately following the

ServerHello. The Content Type of 0x16 and the Handshake Message Type of 0x0B

indicates that a certificate follows.

J Expression...

|Dst port| Protocol | Length | Info

Filter: |tcp.stream eq 27 && ssl.handshake Clear Save

No. |Time |Source |Src port| Destination

e OO0 \ sansLogin.pcap [Wireshark 1.8.1 (SVN Rev 43946 from /trunk-1.8)]
File Edit View Co Capture Analyze Statistics Telephonv Tools Internals Help
BDWHOM EEXTE s

T3 F_F“P@ R

838 14.679201 192.168.1.5 53514 66.35.59.202 443 TLSv1 235 Client Hello

887 14.784214 66.35.59.202 443 192.168.1.5 53514 TLSvl 1514 Certificate
932 14.882672 66.35.59.202 443 192.168.1.5 53514 TLSv1
934 14.884544 192.168.1.5 53514 66.35.59.202 443 TLSv1
982 14.979216 66.35.59.202 443 192.168.1.5 53514 TLSv1

329 Server Key Exchange, Server Hello Done
264 Client Key Exchange, Change Cipher Spec, Encrypted Handshake Mess|
125 change Cipher Spec, Encrypted Handshake Message

<€

> >

v Secure Sockets Layer
-
Content Type: Handshake (22)
Version: TLS 1.0 (0x0301)
Length: 81
Handshake Protocol: Server Hello
Handshake Type: Server Hello (2)
Length: 77
Version: TLS 1.0 (0x0301)
ndom
ssion ID Length: 32
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/[Record Layer

72 65 61 74 6]

Handshake Type: Server Hello (2)

Handshake Record header

Length: 77

Version: TLS 1.0 (0x0301)
P Random

Session ID Length: 32

Content Type 0x16
Protocol Version ~ 0x0301
Record Length 0x09e1

Handshake Msg Type 0x0b
Handshake Msg Len 0x 0009dd
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Figure 18. ServerHello Message with first section of server certificate
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The next record in the Wireshark display is the Certificate message. The second and
complete portion of the server certificate is transmitted in this packet. Expanding the

Certificate section in the middle pane in Wireshark will identify the various components
of the certificate (Figure 19).

Click on any component to see the corresponding highlighted value for that field.

e O 0 \ sanslLogin.pcap [Wireshark 1.8.1 (SVN Rev 43946 from /trunk-1.8)]
File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help

BEee EEXes AerswFL[EE QAR @BE% B

Filter: ltcp.stream eq 27 && ssl.handshake v [ Expression... Clear Save
No. |Time ISource ISrc port | Destination |Dst port| Protocol | Length| Info
838 14.679201 192.168.1.5 53514 66.35.59.202 443 TLSv1 235 Client Hello
| 886 14.782733 66.35.59.202 443 192.168.1.5 53514 TLSv1 1514 Server Hello
|
932 14.882672 66.35.59.202 443 192.168.1.5 53514 TLSv1 320 Server Key Exchange, Server Hello Done
934 14.884544 192.168.1.5 53514 66.35.59.202 443 TLSv1 264 Client Key Exchange, Change Cipher Spec, Encrypte
982 14.979216 66.35.59.202 443 192.168.1.5 53514 TLSv1 125 Change Cipher Spec, Encrypted Handshake Message
e - —— =)

LengTn: 2525
Certificates Length: 2522
v Certificates (2522 bytes)
Certificate Length: 1262
v Certificate (id-at-commonName=*.sans.org,1d-at-organizationalUnitName=COMODO SSL Wildcard,id-at-organizationalUnitName=D
v signedCertificate
version: v3 (2)

signature (shawithRSAEncryption)

issuer: rdnSequence (0)

validity

subject: rdnSequence (0)

e — 3 >

0010 82 04 ea 30 82 03 d2 a0 03 02 Ol 02 02 10 eea@iiie talal
0020 30 od 0.

vVvvw

0030 06 09 2a 86 48 86 f7 6d 01 01 05 0S5 00 30 70 31 ¥ H..o .....0pl
0040 Ob 30 09 06 03 55 04 06 13 02 47 42 31 1b 30 19 .0...U.. ..GBl.O.
0050 06 03 55 04 08 13 12 47 72 65 61 74 65 72 20 4d ..U....G reater M
0060 61 6e 63 68 65 73 74 65 72 31 10 30 Oe 06 03 55 ancheste rl1.0...U
0070 04 07 13 07 53 61 6¢c 66 6f 72 64 31 1la 30 18 06 ....salf ordl.o0..
0080 03 55 04 Oa 13 11 43 4f 4d 4f 44 4f 20 43 41 20 .U....CO MODO CA
0090 4c 69 6d 69 74 65 64 31 16 30 14 06 03 55 04 03 Limitedl .0...U..

Frame (1514 bytes) Reassermbled TCP (2810 bytes)
O #7[Text item (text), 16 bytes [ Packets: 2235 Displayed: 6 Marke... i Profile: Default

Figure 19. Server certificate

5.5.4. Server to client handshake messages

The next packet contains two of the TLS handshake messages. They are
ServerKeyExchange and ServerHelloDone. The cipher chosen by the server in this
example session will use the DH key generation method. The ServerKeyExchange
message contains numeric components that will be used for the generation of the session
keys in the DH algorithm (Rescorla, 2001, p. 35). The ServerHelloDone message is a
one byte code to indicate that the server is finished with its side of the session negotiation

(Figure 20).
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e 00 \ sansLogin.pcap [Wireshark 1.8.1 (SVN Rev 43946 from /trunk-1.8)]
File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help

SEdee cEXSE AerwnTF I EE QAR $VE% B

Filter: |tcp.stream eq 27 && ssl.handshake ¥ | Expression... Clear Save
No. |Time |Source |Src port| Destination I Dst portl Protocol | Length | Info
838 14.679201 192.168.1.5 53514 66.35.59.202 443 TLSv1 235 Client Hello
886 14.782733 66.35.59.202 443 192.168.1.5 53514 TLSv1 1514 Server Hello
887 14.784214 66.35.59.202 443 192.168.1.5 53514 TLSv1 1514 Certificate
934 14.884544 192.168.1.5 53514 66.35.59.202 443 TLSv1 264 Client Key Exchange, Change Cipher Spec, Encryptec
982 14.979216 66.35.59.202 443 192.168.1.5 53514 TLSv1 125 Change Cipher Spec, Encrypted Handshake Message
<€ - : ) >
v Diffie-Hellman Server Params A
AL

p Length: 128
p: d67dedd0cbbbdc1936d693d34afd0ad50c84d239a45f520b. . .

g Length: 1

g: 02

Pubkey Length: 128

pubkey: 17b2b28002afSacdf6c2deansf9e31f27cd781f2d2ch6ads. . .
Signature Length: 256

Content Type: Handshake (22)
Version: TLS 1.0 (0x0301)
Length: 4
v Handshake Protocol: Server Hello Done
Handshake Type: Server Hello Done (14)

Length: 0 v
01f0 Se a4 &5 3a a6 75 d3 35 53 34 d8 2e ff 86 11 c2 ~..:.u.5 S4...... 2
0200 d9 83 b3 74 21 of ¢ la 4d bS 65 6d d3 bl 78 ...t!..T .M.em..x m
0210 f8 1b I

Frame (329 bytes) Reassembled TCP (539 bytes)|
© #7[Record Layer (ssl.record), 9 ... i Packets: 2235 Displayed: 6 Marke... i Profile: Default

Figure 20. Diffie-Hellman public values from server in ServerKeyExchange message and the

ServerHelloDone Message

5.5.5. Client to server final handshake messages
The client then responds similarly, sending a ClientKeyExchange, a
ChangeCipherSpec and a Finished message, however, the Finished message is still
encrypted so Wireshark labels this “Encrypted Handshake Message”. When Wireshark is
pointed at the SSL key log file that stores the session keys and is able to perform

decryption, it will label this message Finished.

Since the client and server have decided to use the DH key generation method, the
client sends DH parameters in the ClientKeyExchange message just as the server did
above. This is followed by the ChangeCipherSpec message, a one byte code stating that
the all further transmissions will have an encrypted payload. Lastly, the client completes
its side of the TLS handshake by using the newly generated session key to encrypt a hash

of the handshake components, creating the Finished Message. The client and server can

© 2014 The SANS Institute Author retains full rights.
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each derive session keys at this point because they have exchanged all the necessary

information, including the DH parameters.

5.5.6. Server to client final handshake messages

The final step in the handshake is for the server to also send a ChangeCipherSpec,
followed by an encrypted hash of the handshake components so that the client can also
verify the integrity of the process. If both the client and server determine that the other’s
Encrypted Handshake Message is correct the connection will remain open and data will
be sent in encrypted ApplicationData records. If a problem is detected on either side
during the verification then the session is terminated and an alert record will be sent with

a message to indicate the problem.

At this point, removing just the “ssl.handshake” portion of the Wireshark display
filter will show all packets in the stream including the ApplicationData Packets. These

are all encrypted, so it is impossible to determine what data is being exchanged.

Wireshark needs to have access to the key log file in order to decrypt the Finished
messages from the handshake and the ApplicationData records. Navigate to the
Wireshark Preferences page using either Edit = Preferences or the key combination

Shift-Ctrl-P. Expand “Protocols” in the leftmost column and select SSL.

| 000 | Wireshark: Preferences - Profile: Default |
—rerer N

(Pre)-Master-Secret log filename: || Erowse...|

oy | SNA Message Authentlcation Code (MAC), lgnore 'mac falled™ O
- Pre-Shared-Key: |
SoulSeek
SRVLOC Teemm—— (Pre)-Master-Secret log filename: |sansLogin/sessionkeys.log Browse... d
| sscop
SSH
STANAG 5066
StarTeam
STP
SUA
SYNCHROPHASOR
T.38 U
TACACS+
TALI
TCAP
Htelp | S apply | ®cancel | 4ok

Figure 21. Configuring Wireshark to use saved session keys
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Enter the path to the log file as defined by the SSLKEYLOGFILE variable, which
Wireshark calls the “(Pre)-Master-Secret log file” and click Apply and OK (Figure 21).

800 \| sansLogin.pcap [Wireshark 1.8.1 (SVN Rev 43946 from /trunk-1.8)]

File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help
Bapgea PEXTE A ¢ FEEE Qaaaf @kmE:i

-
ol

Filter: |tcp.5tream eq 27 ¥ | Expression... Clear Save
No. |Time |Source |Src port| Destination | Dst portl Protocol |Length | Info .
14 = 443 [ACK] Seq=170Ack=280: =524176 Len=01
932 14.882672 66.35.59.202 443 192.168.1.5 53514  TLSvl 329 Server Key Exchange, Server Hello Done
933 14.882819 192.168.1.5 53514  66.35.59.202 443 TcP 66 53514 > 443 [ACK] Seq=170 Ack=3160 Win=524280 Len=0 1
982 14.979216 66.35.59.202 443 192.168.1.5 53514  TLSV1 125 change Cipher Spec, Finished
983 14.979261 192.168.1.5 53514 66.35.59.202 443 TcP 66 53514 > 443 [ACK] Sea=368 Ack=3219 Win=524280 Len=0 1
«E =) »

CUNLeNU Type. Giange Copnen spec w2y
Version: TLS 1.0 (0x0301)
Length: 1
change Cipher Spec Message
¥ TLSv1 Record Layer: Handshake Protocol: Finished
Content Type: Handshake (22)
Version: TLS 1.0 (0x0301)
Length: 48
v Handshake Protocol: Finished
Handshake Type: Finished (20)
Length: 12

000 e 000 0e = \

0000 14 00 00 Oc

Frame (264 bytes) Decrypted SSL record (16 bytes)

Figure 22. The decrypted tab in Wireshark

The decrypted Finished message shown in figure 22 was called “Encrypted
Handshake Message” by Wireshark before it had access to the key log file. Now that
Wireshark can decrypt the data, it can read all the header fields, in this case, the
handshake type field is 0x14 defining this as a Finished message. The Finished message
content is a hash or digest over the master secret and all handshake messages. Expand
the record in the middle pane to view the decrypted Finished message from the client and
compare it to the decrypted Finished message from the server. The two messages are
different. This is because these messages contain a hash of the concatenation of all
handshake messages thus far so the server’s Finished message will be hashed over a
slightly different data set than the client’s Finished message. The Finished message is
encrypted with the newly generated session key. In the Decrypted tab in Wireshark, is
the handshake message type of 0x14 (20 decimal), followed by 3 bytes for the message
length field. This is followed by OxC (12 decimal) bytes of data that represents the hash
used to verify the successful completion of the handshake. Each side makes a quick

calculation of what it believes the hash should be and compares it to what the other sent.
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If those values do not match the session will not proceed. To understand how this
protects the integrity of the session, suppose that an attacker was able to intercept and
change some part of the handshake that the client sent to the server (remember, most of
the handshake is unencrypted). During the handshake verification process, the handshake
data used to calculate the hash for the Finished message consists of the data that it sent to
the server and the data that it received from the server. When the server verifies this
hash, it does its own computation of the fields that it received from the client as well as
the fields that it sent to the client. If an attacker had changed any of these fields while in
transit then those datasets would no longer match and the hash of each would be

different, causing the session to end in error (Rescorla, 2001, p. 81).

5.6. Dissecting the Application Data

The data that follows the handshake is the ApplicationData. Adding “and
ssl.segments” to the Wireshark display filter will display only the decrypted packets from
that stream. Because it is decrypted, Wireshark can apply protocol decoders and parse
the contents that are now identified and labeled as HTTP and highlighted with the default
color of green. Figure 23 shows the unencrypted ApplicationData packets and figure 24
shows the properly decrypted and decoded HTTP data.

File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help

S @ e B.xg@lQ va2 BB ecom @@ -
Filter: \tcp.stream eq 27 “ $ ‘ Expression... Clear Save
No. Source Src port  Destination DST Port Protocol Length  Info

1310 UU.3J0.09. 2V 9445 19Z.100.1.90 D014 eovy 1oL pLJ.\.dLLUII Udild

1319 66.35.59.202 443 192.168.1.5 53514  TLSvl 64 Application Data

1320 192.168.1.5 53514  66.35.59.202 443 TCcP 66 53514 > https [ACK] Seq=2633460005 Ack=
1766 192.168.1.5 53514  66.35.59.202 443 TLSV1 940 Application Data, Application Data

66 https > 53514 [ACK] Seq=2014626134 Ack=2633
972 Application Data, Application Data

1770 66.35.59.202 443 192.168.1.5 53514 TCP
1774 66.35.59.202 443 192.168.1.5 53514 TLSy|

1775 192.168.1.5 53514 66.35.59.202 443 TCP 66 53514 > https [ACK] Seq=2633460879 Ack=2014
1776 192.168.1.5 53514 66.35.59.202 443 TLSv1 732 Application Data, Application Data
1781 66.35.59.202 443 192.168.1.5 53514 TCP 66 https > 53514 [ACK] Seq=2014627040 Ack=2833
1786 66.35.59.202 443 192.168.1.5 53514 Tl Sv1 1514 Aonlication Data. Aonlication Data
7\ 1 E\
v Transmission Control Protocol, Src Port: 53514 (53514), Dst Port: https (443), Seq: ‘
Source port: 53514 (53514)
Destination port: https (443)
[Stream index: 27]
Sequence number: 2633457991
Header length: 44 bytes
| T E\
2000
010
2020
2030

Figure 23. Application Data records before decryption
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s Telephony Tools Internals

9

Filter: ltcpstream eq 27 and ssl.segments

”E‘ Expression... Clear

Help

SRR G 8

~

No. Source Src port  Destination DST Port Protocol Le
1185 66.35.59.202 443 192.168.1.5 53514 HTTP 1100 HTTP/1.1 200 OK (JPEG JFIF 1mage)
1295 66.35.59.202 443 192.168.1.5 53514 HTTP 616 HTTP/1.1 200 OK (text/html)HTTP/1.1 200 OK
1319 66.35.59.202 443 .168.1.5 53514 HTTP, 564 HTTP/1.1 200 OK (PNG)
) 59.20 44 9 68 D g HTTP y d
1824 66.35.59.202 443 192.168.1.5 53514 HTTP 1504 HTTP/1.1 200 OK (text/html)HTTP/1.1 20(%(
1858 66.35.59.202 443 192.168.1.5 53514 HTTP 260 HTTP/1.1 200 OK (PNG)

SSL segment data (746 bytes)

Content Type: Application Data (23)
Version: TLS 1.0 (0x0301)
Length: 128

< TLSvl Record Layer: Application Data Protocol: http

Encrypted Application Data: Scffe8350e2f495054711c19clbbdc49daa7ofo3461f2d29. ..

Encrypted Application Data: 37e7372e53c2f0933ef6c05leaaaacec0ae5947bb608efa7. ..

0000 3c 68 31 3e 33 30 32 20 2d 20 46 6f 75 6e 64 3c <h1>302 - Found<
0010 2f 68 31 3e 3c 70 3e 3c 61 20 68 72 65 66 3d 22 /hls><p>< a href="
0020 68 74 74 70 3a 2f 2f 77 77 77 2e 73 61 6e 73 2¢  http://w ww.sans.
0030 6f 72 67 2f 61 63 63 6f 75 6e 74 22 3e 68 74 74 org/acco unt"shtt
0040 70 3a 2f 2f 77 77 77 2e 73 61 6e 73 2e 6f 72 67 p://www. sans.org
0050 2f 61 63 63 6f 75 6e 74 3c 2f 61 3e 3 </a=<

p= [

Frame (972 bytes) Decrypted SSL data (746 bytes)

Decrypted SSL data (96 bytes) |

2eassembled SSL (842 bytes)

Figure 24. Application Data records after decryption

Note the tabs at the bottom in Figure 24. Because TLS breaks up the data for

encryption at the application layer and then TCP may have to further break up encrypted

streams at the transport layer, there may be several tabs for a given packet where data has

been decrypted and/or reassembled. Selecting the “Decrypted SSL data” tab will show

the decrypted data in the bottom pane of Wireshark. Alternatively, by right-clicking on

any HTTP, SSL or TLS packet in the top or middle pane and selecting Follow SSL

stream and assuming Wireshark has access to the key log file, Wireshark will pop up a

box containing the TLS Application data without the packet headers and decrypted.

Wireshark is displaying data that has already been decrypted in a browser in this

example. What is Wireshark showing us that we could not see with the browser? Any

code, including scripts or values that was sent to the browser encrypted and used by the

browser to display pages has been decrypted by the browser but it has not necessarily all

been displayed. The browser does, however, have a “View Source” option that will show

the raw HTML revealing some of these scripts and values. What is not normally

displayed is the data being sent back from the browser to the server, that is, unless we

have set up a proxy such as Fiddler or Paros. This data may include things like cookies,

hidden form fields or data the user has entered into a web form such as usernames and
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passwords. Often this is data used by the web application to help with session tracking

and as such is not normally displayed to the user.

Most of us know that usernames and passwords should never be sent in cleartext
because tools like Wireshark can capture that traffic and compromise those credentials.
Many websites use TLS to encrypt a session so that sensitive credentials are protected.
For example, a server login session normally starts by setting up a TLS connection with
the server after which the server sends the browser a login page. The user enters his
username and password and it is encrypted with the established session keys and sent
back to the server. For a session using the RSA key exchange method, if an attacker was
intercepting that traffic, she would also need the server’s private key in order to discover
the pre-master secret. The pre-master secret is required to generate the master secret that,
in turn, is used to generate the session keys. The session keys ultimately decrypt the
captured data. For a session using the DH key generation method, an attacker
intercepting traffic would also need the DH private components or she would not have
enough information to generate the master secret and then the session keys. Since those
private components do not cross the network, such an attack is unlikely to succeed. In
contrast, Wireshark is able to decrypt the session because it has access to the pre-master
and master secrets that the browser saved and it has captured the client and server random
values from the ClientHello and ServerHello messages, or the DH parameters from the

ClientKeyExchange and ServerKeyExchange messages.

We already know our username and password so this may not seem very
interesting, however, this method can be helpful when troubleshooting TLS connection
problems or debugging web applications. It also provides a way to view exactly what is
sent back and forth during an encrypted session that a browser does not normally display.
From a defensive standpoint, this is not a bad method to “look under the hood” and get a
better view of how an application works in order to decide whether or not to perform
transactions with a given online entity, for example, a bank. This is not the only method
to view this decrypted data, but it provides another way. In addition, it helps to
understand how the TLS protocol works by breaking down the steps in an organized

fashion. To further enhance an understanding of TLS, Wireshark offers the option to turn
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on debugging mode. With this enabled, every step that Wireshark takes in the decryption

process is documented in a debug file.

5.6.1. Help from Wireshark’s debug feature

The final part of this examination of TLS traffic will demonstrate the debug
capabilities that are built into Wireshark using the same trace file, sansLogin.pcap with
logged pre-master and master secrets in the sessionkeys.log file. The first step in this
process is to create an empty debug file so that Wireshark can write the details of its
actions when reading in the trace. The file can be located anywhere but it is important to
remember that all decrypted data will be written to this file so if the data is sensitive, it

should be properly protected.
$ touch /tmp/sansLogin.debug.txt

This can be set up on Wireshark preferences page using either Edit - Preferences
or the key combination Shift-Ctrl-P. Expand “Protocols” in the leftmost column and

select SSL.

| Wireshark: Preferences - Profile: Default

Secure Sockets Layer

RSA keys list: ¥ Edit... |

SSL debug file: |;’tmp;’sansLogin.debug.txt Browse... |

RSA keys list (deprecated): |
Reassemble SSL records spanning multiple TCP segments:
Reassemble SSL Application Data spanning multiple SSL records:

Message Authentication Code (MAC), ignore "mac failed": O

Pre-Shared-Key: |

(Pre)-Master-Secret log filename: |!secret!sessionkeys.logl Browse...

Figure 25. Configuring the debug file in Wireshark

Enter the path to the newly created SSL debug file and click Apply (Figure 25).
When the trace file is opened in Wireshark, the debug file will be populated with verbose
information about the steps taken by Wireshark to read in the file, reassemble packets and
decrypt the data. Ifthe trace file is already open, the debug file will be populated
immediately after clicking Apply or OK to finish the dialogue. The debug file will
continue to be populated every time Wireshark performs any action. This file can grow

very large, very quickly. For our purposes here, loading the file once to populate the
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debug file will provide adequate data for analysis. To stop the debugging, remove the
entry for the debug file in Wireshark’s preferences and click Apply or OK.

When Wireshark encounters an encrypted packet and it has been given a filename
where pre-master and master secrets have been stored it will search through the file,
looking for the correct key. There are entries that start with RSA and entries that start
with CLIENT-RANDOM. Wireshark takes a brute force approach and checks each line
to see if the index field matches the corresponding field in the packet. For example, if a
line in the key log file starts with RSA it will compare the next 16 bytes from that line in
the file to the first 16 bytes of the encrypted pre-master secret field from the
ClientKeyExchange message. If the client and server have negotiated a DH key
generation method then that particular session will not use an encrypted pre-master secret
so Wireshark will move to the next line in the file. When an entry in the key log file
starts with CLIENT RANDOM Wireshark will compare the next 96 bytes from that line
in the file with the Random field in the ClientHello message of the TLS handshake for
that session. This process continues until a match is found or the end of the file is
reached. The debug file will have an entry for each line it checks, as well as, whether or
not it found a match. To see which cipher suite was chosen for a particular TLS session

in Wireshark enter the following display filter:

ssl.handshake.ciphersuite && tcp.port == xxx

(xxx = the client’s TCP port number for that particular session)
Two packets are returned for this display filter, the first is the ClientHello message,
which is the client’s initial proposal to the server stating which cipher’s it supports and

the second is the ServerHello message stating the cipher that it has chosen for the session.

Each cipher suite consists of four elements: 1) Authentication method 2) Key

exchange method 3) Encryption algorithm and 4) Hash algorithm.



SSL/TLS: What’s Under the Hood | 41

File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help

B & e Bixc@ Q¢ v 2y [EE

Filter: ‘ssl.handshake.ciphersuite && tcp.port==53520 I C | Expression... Clear Save
No. Source Src port  Destination DST Port Protocol Length Info
1508 192.168.1.5 53520 204.154.94.81 443 TLSv1 245 ClientgHello

<] 1" I

v Hanashake Protocol: Server Hello
Handshake Type: Server Hello (2)

Length: 76
Version: TLS 1.0 (0x0301)
P Random

Session ID Length 32
Session ID: 54 E
Cipher Suite:| TLS_RSA_WITH_RC4_128 SHA (OXOOOS)
Compression Method: null (0]
Extensions Length: 4

P Extension: server_name

| l m -~ =

0000 60 33 4b 26 69 76 00 22 3f 30 ba e2 08 00 45 0O "3K&v." 70....E.
0010 0S ac 2e Sc OO 00 ec 06 ae 16 cc 9a Se 51 cO a8 ........ P O T

A M~ A oA L LI N D [ An == AL A A AA A 1 - ~

Figure 26. Chosen 01pher suite for a TLS session

2c7218c0a0b2e. ..

Figure 26 shows a ServerHello message with the chosen cipher suite highlighted.
The server sends the value 0x0005 to the client to identify the cipher suite and Wireshark
translates that according to the assignments at IANA (Rescorla, 2013).

For this cipher, TLS RSA WITH RC4 128 SHA, the TLS session will use RSA Key
Exchange, RSA Authentication, RC4 Encryption using a 128 bit key length and SHA
hash algorithm (Rescorla, 2001, p. 74).

# SSITLSdsecrets log file, generated by NSS
RSA 2273f99ea182a552 0301121d681ed9412175d564bad04f2f fb9ch99f8c9df7af006fdab854520b5cc8b491

RSA 47222a2a2f69baf7 03012080d05Tbd620930e3e0d4352db9b3fc9c25a64ch5902ea5652bT4a2646fc5eefa
51cc388357857a9d540b6b185d5db9466de05056e52ee5b36f40d697647b2c48 1d7d6bT0c062

3e2204d13185

CLIENT RANDOM 51cc3885d403811039b25ad8ee8b8f9f934aaOce88934bc7503c374afa040865 9c54ae691e84
CLIENT_RANDOM 51cca885dal5d694946Tb795e974Th84ed4c786ad5ad52066114e3414beaf581b b72a47c8c098
CLIENT_RANDOM 51cca885b06e0651d6630a5b047635d7491974eef6ed4be811c2d493d510dblal 3e2204d13185
CLIENT_RANDOM 51cca88574cee70b302dbf54b77b@3bc45abd565e2bd6ceade@dff5abbl6ebaZ 3e2204d13185
CLIENT_RANDOM 51cca88517e544debl4e2a06637a8d6bd41ab8bf23a59ffdel18b14b@b@9c08d7 3e2204d13185
51cca885a3553c93955556741e439%ee35917020e2e0de63d8376d236034d8a35 3e2204d13185
51cca886a6229h929199%ef25dd6T046e859Td9937c7d549bT60bc2932¢c7011b5 78c68b869ch6b)
51cca88713e45b212ec775ee506ca9888254875a1d5800fe2a2caab82d9d72d8 e21608c44b09

] 51cca88a8c6a34ddcfe56e9abea796b334613cf4ed0425935776b5d7acadd2ct 7604597b988T
CLIENT_RANDOM 51cca88b4b69945c7d627f1abcc8989ec3b4b7499119Ffe50796c9fcf6T607a8 7604597hb988F

Figure 27. Sample from a key log file showing entries for RSA and Diffie-Hellman Key

Exchange methods.
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The format of the TLS key log file shown in Figure 27 is documented at the
Mozilla Developer’s Network website (Combs, 2012). See Appendix B for a more

thorough examination of the contents a Wireshark debug file.

6. Securing packet capture and debug files

Since TLS is often used for sensitive transactions, it naturally follows that when
capturing this traffic along with the keys used to decrypt it, security of these files is
paramount. Of primary concern is the key log file, which should be readable only to the
owner of the file. In addition, when Wireshark writes to a debug file it writes TLS
session keys, ciphertext and the corresponding decrypted plaintext to the debug file as
described in the previous section and so may also require access restrictions. Securing

these files is documented in Appendix A.

7. Conclusion

This paper has outlined how to capture, decrypt and analyze TLS sessions using
the built in capabilities of Wireshark. The TLS handshake was examined in depth both
using Wireshark display filters as well as the debug capability that Wireshark offers.
Based on experiments done for this paper, the browsers that currently will support export
to a key log file for this type of operation are Firefox versions 19 -22 and Chrome
versions 24 - 30. This type of analysis is useful for those who wish to understand the
TLS protocol in greater depth. Web application developers may find these tools useful
when troubleshooting an application that uses TLS. Penetration testers may find value in
examining all the data transferred back and forth during an encrypted session with targets

of their test without using a proxy.
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Appendix A
Decrypt TLS Traffic Using Wireshark: Step-by-Step

1. Create a key log file and set environment variable
Add the following to either ~/.profile, ~/.bash profile, or ~/.bashrc

export SSLKEYLOGFILE=/protected/folder/my session keys.log

Create the empty log file
$ touch /protected/folder/my session keys.log

$ chmod 700 /protected/folder/my session keys.log
Check the variable

$ 1s —1 $SSLKEYLOGFILE

2. Capture traffic
2.1.1. Tcpdump or tshark

Figure A-1 shows how to capture traffic using tcpdump and tshark respectively. The
command will capture all traffic on interface “eth0” (-1), IP addresses will not be
resolved to domain names (-n) and the packets will be written (-w) to a file called
packets.pcap in the current directory.
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I BEE

File Edit View Terminal Help

[demo] $ sudo tcpdump -1 eth® -n -w packets.pcap

tcpdump: listening on etho, link-type EN1OMB (Ethernet), capture size 65535 bytes
~C2127 packets captured

2127 packets received by filter

0 packets dropped by kernel

[demo] $

[demo] $ sudo tshark -1 etho -n -w packets.pcap

Running as user "root" and group "root". This could be dangerous.
Capturing on etho

8710 ~Cldemo] %

[demo] $ [

Figure A-1. Capturing network traffic with tcpdump and tshark

2.1.2. Wireshark

Select “Capture = Options...” to view the capture dialogue. Select the network
interface and any other desired options, such as, unchecking the name resolution boxes
(figure A-2). Using “promiscuous mode” on all interfaces will capture all traffic that an
interface can “see”. Typically, this includes all traffic to and from that interface and all

broadcast traffic. This may vary if an interface is connected to a spanned switch port.

r N
M Wireshark: Capture Options e
Capture
Capture Interface Link-layer header Prom. Mode Snaplen [B] Buffer [MB]  Capture Filter
Wireless Network Connection3 gy o/ ensbled  default N
0000
] WirelessNetwork Connection  giheret enabled  default 2
Local Area Connection 2 Ethemet ensbled  default 2
twork Adapter VMn...
; Sec 2004 Ethernet enabled  default 2 i
o107
Capture on all interfaces Manage Interfaces|
IV Use promiscuous mode on all interfaces
Capture Filter:| [=] [Compile selected 8PFs]
Capture Files Display Options
File: Browse.. 7] Update list of packets in real time
Leemulbplelles B nana ot 7] Automatically scroll during live capture

Next file eve

7] Hide capture info dialog

Next file eve 1 minute(s

files Name Resolution

Stop capture afte file 7] Resolve MAC addresses

Stop Capture Automatically After... Resolve network-layer names

packet(s;
Resolve transport-layer name

ninute(s Use external network name resolver

Help Start | Close
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Figure A-2. Wireshark capture options

To end the capture, click on the Stop capture button from the Wireshark toolbar (figure
A-3).

/

e OO0
File Edit Viewy/,Go Capture Analyze S

7 | @;I

No. ‘Time |Source SR

Filter: |

Figure A-3. Wireshark stop capture and “Save As...” options

Save the captured packets to a file by selecting “File” from the Wireshark toolbar and
then “Save As ...” to select a location.

2.2. Open a packet capture file in Wireshark for analysis

Open the Wireshark application and click on “File = Open...” from the toolbar.
Navigate to the desired file.

3. TLS Analysis steps

3.1.1. Filter on TLS packets
From the Wireshark toolbar select Analyze = Conversations and select the TCP tab.
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Select an encrypted conversation form the populated list. A server port of 443 can most

likely identify encrypted conversations (figure A-4).

X\ sanslogin.pcap [Wireshark 1.8.1 (SVN Rev 43946 from /trunk-1.8)]
apture Analyze Statistics Telephonv Tools Internals Help
00 |X| Conversations: sansLogin.pcap

[|ipva: 21 ipve: 2 <] A [lNCP | RsVR| STl TeP: 34

TCP Conversations

Ethernet:?l ibr f |

|upp: 43|10k

Irce
ﬁ Address A | Port A
Hoaj 192.168.T.5 53508

|Address B ~ | Port B | Packets | Bytes | Packets A—B | Bytes A—B | Packets AR

104, 66.35.55.202 80 18 @385 S SIS
.1es 192.168.1.5 53509 66.35.59.202 80 140 134752 49 3535 91
.168{ 192.168.1.5 53511 66.35.59.202 80 15 6236 7 i) 8
-194.  192.168.1.5 53512 66.35.59.202 80 18 9044 8 838 10
'izg' 192.168.1.5 53513 66.35.59.202 80 2= Ll 27 ikl 1490 12
I8 192.168.15 53518 66.35.59.202 443 120 96 409 47 6765 73
.10a, 192.168.1.5 53489 66.35.59.249 443 61 29900 32 6 849 29
.168. 192.168.1.5 53498 66.35.59.249 443 123 96418 52 8 252 7l
.168.) 1Q92 168 1. _CCNN £c 2T CQ 24Q A2 e 1 A Cac 1C 2 N1 1.4
.194. € > e
.194. ; P . y

Name resolution O Limit to display filter
dre| [IiHelp ~JCopy Follow Stream K Close
8 _Ette | Scopy | |

4967 TSec

558833 TS

5195154 T

8559017 T

5195334 T

8559199 T

>rotocol, Src Port: 993 (993), Dst Port: 52763 (52763), Seq: 1, Ack: 1, Len: O

00 22 3f 30 ba e2 08 00 45 00  "3K&iv." 70....E.

Figure A-4. Conversation list displayed by Wireshark

Highlight a conversation and click on Follow Stream (figure A-5).

© 2014 The SANS Institute

Author retains full rights.
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e O 0
Stream Content

'\ Follow TCP Stream

................. B Ot O M ) D ESE W e e e

Bl G ety BRI B O e[ e

cobEhEh ssooooooaoonanoonooooon (®lonalflcooooooon m| .LAE..2..Q@.Tr%0

oot onb o

Opl.0...U....GB1.0...U....Greater Manchesterl.0...U....Salfordl.0...U.
..COMODO CA Limitedl.0...U...

COMODO SSL CAO. .

121126000000Z.

171125235959Z0V1!0...U....Domain Control Validatedl.0...U....COMODO SSL
Wildcardl.o...U...

*.sans.org0.."0

caltlooalllh o aoaoal®alth o aiis ool oo
https://secure.comodo.com/

Entire conversation (86059 bytes)

M |

(I

v

"L Eind | BSave As | (= Print |O ASCII O EBCDIC O Hex Dump O C Arrays ®@ Raw

I Help HK Close

[ Filter Out This Stream |

Figure A-5. TCP stream display in Wireshark

Close “Follow TCP Stream” window to view just that conversation that Wireshark
now filtered on (figure A-6).
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e 00 I\ sansLogin.pcap [Wireshark 1.8.1 (SVN Rev 43946 from /trunk-1.8)]
File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help

BEdea EEXTE Aa¢ervwFTrEBEB QAR @®EE % O

Filter: Itcp.stream eq 27 ;I Expression... Clear ~pply  Save

678968 192.168.1.5 66.35.59.202 W1n=524280 Len=

192.168.1.5 235 Client Hello

868 14.770906 66.35.59.202 443 192.168.1.5 53514 TCP 66 443 > 53514 [ACK] Seq=1 Ack=170 Win=6912 Len=0 TS

886 14.782733 66.35.59.202 443 192.168.1.5 53514 TLSv1 1514 Server Hello

887 14.784214 66.35.59.202 443 192.168.1.5 53514 TLSv1 1514 Certificate

888 14.784261 192.168.1.5 53514 66.35.59.202 443 TCP 66 53514 > 443 [ACK] Seq=170 Ack=2897 Win=524176 Len

932 14.882672 66.35.59.202 443 192.168.1.5 53514 TLSvl 329 Server Key Exchange, Server Hello Done

933 14.882819 192.168.1.5 53514 66.35.59.202 443 TCP 66 53514 > 443 [ACK] Seq=170 Ack=3160 Win=524280 Len

934 14.884544 192.168.1.5 53514 66.35.59.202 443 TLSv1 264 Client Key Exchange, Change Cipher Spec, Encrypte

982 14.979216 66.35.59.202 443 192.168.1.5 53514 TLSv1 125 Change Cipher Spec, Encrypted Handshake Message

983 14.979261 192.168.1.5 53514 66.35.59.202 443 TCP 66 53514 > 443 [ACK] Seq=368 Ack=3219 Win=524280 Len

1137 15.642557 192.168.1.5 53514 66.35.59.202 443 TLSv1 460 Application Data, Application Data

1158 15.748371 66.35.59.202 443 192.168.1.5 53514 TLSv1 1514 Application Data v
«E : ) e

D Frame 838: 235 bytes on wire (1880 bits), 235 bytes captured (1880 bits)

D Ethernet II, Src: Apple_26:69:76 (60:33:4b:26:69:76), Dst: Netgear_30:ba:e2 (00:22:3f:30:ba:e2)

D Internet Protocol Version 4, Src: 192.168.1.5 (192.168.1.5), Dst: 66.35.59.202 (66.35.59.202)

D Transmission Control Protocol, Src Port: 53514 (53514), Dst Port: 443 (443), Seq: 1, Ack: 1, Len: 169
b

0040 f4 89
0050
0060

0070
0080
0090
00a0
00b0
v

s

00cO
00d0
0020

© #7[Secure Sockets Layer (ssl), ... Packets: 2235 Displayed: 120 Marked: 0 Loa... | Profile: Default
Figure A-6. Filtering on a single TCP stream in Wireshark

3.1.2. Filter on the TLS handshake

To view just the TLS handshake from this conversation, add “&& ssl.handshake” to
the display filter (figure A-7).

X| sansLogin.pcap [Wireshark 1.8.1 (SVN Rev 43946 from /trunk-1.8)]
File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help

SEeed 2EXRE e FREB QR @¥E X 8

Filter: |tcp.stream eq 27 && ssl.handshake ;I Expression... Clear ~pply  Save
No. |Time |Source |Src portl Destination | Dst portl Protocol | Length | Info

838 14.679201 192.168.1.5 53514  66.35.59.202 443 TLSv1 235 Client Hello

886 14.782733 66.35.59.202 443 192.168.1.5 53514  TLSvl 1514 Server Hello

887 14.784214 66.35.59.202 443 192.168.1.5 53514  TLSvl 1514 Certificate

932 14.882672 66.35.59.202 443 192.168.1.5 53514  TLSvl 329 Server Key Exchange, Server Hello Done

934 14.884544 192.168.1.5 53514 66.35.59.202 443 TLSV1 264 Client Key Exchange, Change Cipher Spec, Encrypted
& 98214979216 66.35.59.202 443 192.168.1.5 53514 TLSv1 125 Change Cipher Spec, Encrypted Handshake Message

Figure A-7. Isolate an SSL handshake in Wireshark

© 2014 The SANS Institute Author retains full rights.
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Click on the ServerHello handshake record in the top pane in Wireshark (figure A-8).

@00 \| sansLogin.pcap [Wireshark 1.8.1 (SVN Rev 43946 from /trunk-1.8)]
File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help

BWeee cEEXeE né¢vwTFLEBEB AR EDE% B

Filter: |tcp.stream eq 27 && ssl.handshake ¥ | Expression... Clear Save
No. |Time |Source |Src port| Destination | Dst port | Protocol | Length | Info
838 14.679201 192.168.1.5 53514  66.35.59.202 443 TLSv1 235 Client Hello
887 14.784214 66.35.59.202 443 192.168.1.5 53514  TLSvl 1514 Certificate
932 14.882672 66.35.59.202 443 192.168.1.5 53514  TLSvl 329 Server Key Exchange, Server Hello Done
934 14.884544 192.168.1.5 53514 66.35.59.202 443 TLSv1 264 Client Key Exchange, Change Cipher Spec, Encrypted Handst
982 14.979216 66.35.59.202 443 192.168.1.5 53514 TLSv1 125 change Cipher Spec, Encrypted Handshake Message
«E >

2) »

Content Type: Handshake (22)
Version: TLS 1.0 (0x0301)
Length: 81
v Handshake Protocol: Server Hello
Handshake Type: Server Hello (2)

Length: 77
Version: TLS 1.0 (0x0301)
P Random

Session ID Length: 32

Session ID: 0d25476500a21a673b8ceac1261e6b00b969644a1ce35d3S. ..
Cipher Suite: TLS_DHE_RSA_WITH_AES_256_CBC_SHA (0x0039)
Compression Method: null (0)

Cvtnmei ane | anathe ©

0000 60 33 4b 26 69 76 00 22 3f 30 ba e2 08 00 45 00  "3K&iv." 70....E.

0010 05 dc f6 18 00 00 2a 06 S5 69 42 23 3b ca cO a8  ...... *, ULB#; ...
0020 01 05 01 bb d1 0a 78 14 02 f2 9c f7 61 f1 80 10 ...... 0 SIS
0030 00 36 fe Sb 00 00 01 01 08 0a 22 14 f4 ee 30 a6  .6.[.... .."...0.
0040 Sc 9f 16 03 01 00 51 02 00 00 4d 03 01 51 cc a8 \.....Q. ..M..Q..

© #7[File: "/Users/sallvvdv/Docu... Packets: 2235 Displaved: 6 Marked: ... { Profile: Default

Figure A-8. ServerHello message

Expand any sections in the middle pane to view how Wireshark identifies the various
components.

3.1.3. TLS Decryption

To determine the location of the key log file type one of the following commands at the
command line

On Linux or OS X:
S echo S$SSLKEYLOGFILE

On Windows:
C:\> echo $%SSLKEYLOGFILE$%

Configure Wireshark to use the session keys collected by the browser in order to decrypt
the data. From the toolbar select “Edit = Preferences = Protocols = SSL” (figure A-9).

© 2014 The SANS Institute Author retains full rights.
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® 00 '\ Wireshark: Preferences - Profile: Default

SIGCOMP ~ |rSecure Sockets Layer
SIMULCRYET RSA keys list: T Edit... |

sip
SKINNY SSL debug file: £ Browse...

SMB

SMPP
SMTP Reassemble SSL Application Data spanning multiple SSL records:

Reassemble SSL records spanning multiple TCP segments:

SNA Message Authentication Code (MAC), ignore "mac failed". O
SNMP

SoulSeek

SRVLOC

SSCoP

SSH

STANAG 5066
StarTeam

STP

SUA
SYNCHROPHASOR
T.38

TACACS+

TALI

TCAP

re-Shared-Key:

(Pre)-Master-Secret log filename: " Browse...

«l

Trn

i Help Jépplvl xgancell <ok |

Figure A-9. Wireshark’s SSL preferences dialogue box

In the Secure Sockets Layer configuration box, browse to the file containing the session
keys and click OK (figure A-10).

(@00

i |7 | Users |tigger|g

Location: |}ny_session_keys.log

_N Wireshark: file prefere-née .

Modified «
1.1 KB 16:56

Places IG Narne
@, Search 3
@& Recently Used

s Acldl |w«=_~,r'l'\"-,%| T
xgancell <Jok |

<

Figure A-10. Directing Wireshark to the key log file
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Enter the display filter “tcp.port==443 && http” to show the packets that
Wireshark was able to decrypt (figure A-11).

rﬁ f\h"— . "\‘Vs'aTsl:;;ir;‘pca; Mi}esharlel iSVN Rev 4‘3946 from [trunk-1.8)]
File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help

Bwades ctEXRE A ¢r2wF LB Qacarl @@E% 8

| Filter: |tcp.port==443 && http v | Expression... Clear Save
No. |Time |Source |Src portl Destination | Dst portl Protocol | Length | Info
1 665 11.760839 192.168.1.5 53504  173.194.74.95 443 HTTP 519 Continuation or non-HTTP traffic
[ 671 11.840339 173.194.74.95 443 192.168.1.5 53504 HTTP 313 Continuation or non-HTTP traffic
[ 673 11.841027 173.194.74.95 443 192.168.1.5 53504 HTTP 802 Continuation or non-HTTP traffic
1176 15.878220 192.168.1.5 53518 66.35.59.202 443 HTTP 460 Continuation or non-HTTP trafficContinuation or non-HTTP
1185 15.939013 66.35.59.202 443 192.168.1.5 53514 HTTP 1100 HTTP/1.1 200 OK (JPEG JFIF image)
1204 16.137499 66.35.59.202 443 192.168.1.5 53518 HTTP 1292 HTTP/1.1 200 OK (JPEG JFIF image)
1257 17.555487 192.168.1.5 53514 66.35.59.202 443 HTTP 684 Continuation or non-HTTP trafficContinuation or non-HTTP
|« @ ) »

$v secure suckets cayer
< TLSvl Record Layer: Application Data Protocol: http
Content Type: Application Data (23)
1 Version: TLS 1.0 (0x0301)
Length: 32
Encrypted Application Data: 3dcf3af4e60a639e255054eaaS555e6aa7d504264105734a3. ..
~ TLSvl Record Layer: Application Data Protocol: http
Content Type: Application Data (23)
Version: TLS 1.0 (0x0301)

Length: 352
! Feacmumdad Annlianks am Rakns cafatadonancar$ankhanodanon aecvref ~foheo~nnaTdnnkn
10000 00 22 3f 30 ba e2 60 33 4b 26 69 76 08 00 45 00 M0y
0010 01 be ab 83 40 00 40 06 4e lc cO a8 0l 05 42 23 @.@ [
$on>0 3h ca d1 0a 01 bh 9c f7 G2 b7 78 14 0f A 80 18 :....... boxoo...

x
i Frame (460 bytes) | Decrypted SSL data (1 bytes) | Decrypted SSL data (327 byteﬂ
3O 7 [File: "/Users/sallyvdv/Docu... {Packets: 2235 Displayed: 127 Marke... { Profile: Default

Figure A-11. Display decrypted HTTPS packets

3.1.4. Use the SSL debug feature in Wireshark

Create an empty debug file for Wireshark to write its detailed decryption operations.

$ touch /path/to/protected/folder/my debug file.log
$ chmod 700 /path/to/protected/folder/my debug file.log

Configure Wircshark to use the debug file. From the toolbar select “Edit = Preferences
- Protocols - SSL” (figure A-12).
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[ XeXo) '\ Wireshark: Preferences - Profile: Default

SIGCOMP ~ |rSecure Sockets Layer

SIMULCRYPT
SIP

SKINNY
SMB

SMPP
SMTP Reassemble SSL Application Data spanning multiple SSL records: &

RSA keys list: £ Edit

SSL debug file: = Browse...

Reassemble SSL records spanning multiple

SNA Message Authentication Code (MAC), ignore "mac failed". O

SNMP Pre-Shared-Key: |
SoulSeek

SRVLOC (Pre)-Master-Secret log filename: || ¥ Browse...
SSCOP

SSH

SSL

STANAG 5066

StarTeam

STP

SUA

SYNCHROPHASOR

T.38 m
TACACS+

TALI

TCAP

Ten

@ﬂl JApplv| Xgance|| <ok |

Figure A-12. Wireshark’s SSL preferences dialogue box
In the Secure Sockets Layer configuration box, browse to the newly created debug file

and click OK (figure A-13).

8 0.0 . . x| Wireshark: file preference

|7- | Users |tigger|g

Location: |my_debug_fi|e.|og

Places IEn Name size | Modified «
©, Search y_debug_file.log 0 bytes 17:10
@ Recently Used i 1my_session_keys.log 1.1 KB 16:56

+:'H | d ;‘IH‘].%| b4
xgancel| <ok |

Figure A-13. Directing Wireshark to the debug file
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Reload the capture file to populate the debug file. The reload button is on the main
toolbar in Wireshark (figure A-14).

| File Edit View Go Capture Analyze¥ Statistics Telephony

S e

Filter: |tcp.port==443 && http v | Expre

Figure A-14. The reload packet capture button

Return to the SSL Preferences and remove the entry for the debug file to prevent this file
from growing very large.

View the debug file with any text editor to see verbose output from Wireshark regarding
its decryption operations. Appendix B shows an example debug file.
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Appendix B
The Wireshark Debug File

Below is a section of the debug file (with many lines snipped for brevity) that illustrates

Wireshark’s process for finding the correct entry in the key log file and computing

session keys. This is an abbreviated entry for a single packet. Wireshark creates similar

entries for each packet that is part of a TLS conversation.

dissect_ssl enter frame #208 (first time)
conversation = 0x10A573110, ssl_session = 0x10A573CF0
record: offset = 0, reported length remaining = 314
dissect_ssl3_record: content type 22 Handshake

<snip>

dissect_ssl3_handshake iteration | type 16 offset 5 length 258 bytes,

remaining 267 / Reading in
trying to use SSL key log in /sansLogin/sessionkeys.log $SSLKEYLOGFILE

checking keylog line: # SSL/TLS secrets log file, generated by NSS
line does not match

checking keylog line: RSA 2273{99%¢al82a552
0301121d681ed9412175d564ba40412ffb9cb99{8c9df7af006fdab05452
Ob5cc8b491c718dd041d0cfiDe97565b19a7

line does not match encrypted pre-master secret line does not match

checking keylog line: CLIENT RANDOM
51cca88386fca93031d2b4d3ded55a8a953¢74d5dal938840c26276¢ecae

f57533e2204d1318530e0e 1 faade7c8bde696528a4b5373f0fa53ef59bc7
5ea6ad55f7b10904810876fdb740645ff067c588b

line does not match client random

line does not match

checking keylog line: RSA 47222a2a2f69baf7

0301a080d05fbd620930e3e0d4352db9b3fc9c25a64cb5902ea5652bf4a2

646fc5ee9af2b1fb9f4388687 [ cfe8bcH7da

found pre-master secret in key log

ssl_generate_keyring material:PRF(pre_master secret)

© 2014 The SANS Institute
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pre master secret[48): =
03 01a080d05fbd 6209 30e3eld4352db9

Correct entry from key log
b3 fC 9c¢ 25 a6 4c b5 90 2e aS 65 2b f4 aZz 64 6f flle Containing pre_master
cSee9af2bl fb9f43 886871 cfeBbc 97 da secret and random values.

These will be inputs to
pseudo random function
51 ccaB83 57 85 7a9d 54 0b 6b 18 5d 5d b9 46 (PRF) to generate master

6d e0 50 56 e5 2e e5 b3 6f 40 d6 97 64 7b 2c 48 secret.
server random(32]:

bd 3cb342 b7 1f6f36 71 7fd1 1f 3b 25 bc 6¢

91 be 7d ac a3 c0 54 9e e9 fc 3d 9d 58 83 cb 50 4
tls_prf: tls_hash(md5 secret_len 24 seed_len 77)\
tls_hash: hash secret[24]:

0301a080...

client random|[32]:

<big snip>

> | Master secret computation

..66 522892 71 25 b7
2d 9e 68 c1 5b be c0 d2 cb ¢9 de b9 42 b6 29 d7
master secret[48]:
1d 7d 6b f0 c0 62 3f 02 ec 83 73 0b £0 29 80 74|
755e 0659 e6 5cbc 33 Bc 66 5228 9271 25 b7
2d Y9e 68 c1 Sh be c0 d2 cb ¢9 de b9 42 b6 29 d:/'/

ssl_generate_keyring material sess key generation

tls_prf: tls_hash(md5 secret_len 24 seed_len 77 )

<snip>
Session key generation,
~ | continued to next page...

key expansion[72]:
eb dd 99 67 09 fb bd 42 29 40 74 ea 9d 8a 58 Of
e062c16088fa989% abb9bl 0dcY 98cd 34

455be3f99dcd 00e2a791d2e9 a2 5a27 Bf
—
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N
1d d5 68 d7 d2 B0 87 da S5b e3 ¢9 d5 cd 89 ba 4c

2a5¢71d5998b3d9a
Client MAC key[20]:
eb dd 99 67 09 fb bd 42 29 40 74 ea 9d 8a 58 Of

elnzct a0 Session key generation
Server MAC key[20]: - finished. Client/Server Write

88 fa 98 9a ab b9 b1 0d c9 98 cd 34 45 5b €3 f9 keys used for application

9d cd 00 &2 data encryption/decryption.
Client Write key[16]:

a791d2e%9a25a278f1d d5 68d7 d2 8087 da
Server Write key[16]:

Sb e3¢9dS cd BY ba 4¢c 2a 5¢ 71 d5 99 8b 3d 9a »
Client Write IV([8]:

50 ce bf SEfE7E00 00

Server Write IV[8]:

cccb bf SEFE7£00 00

ssl_generate_keyring material ssl_create_decoder(client)
ssl_create_decoder CIPHER: ARCFOUR

decoder initialized (digest len 20)

ssl_generate_keyring material ssl_create_decoder(server)
ssl_create_decoder CIPHER: ARCFOUR

decoder initialized (digest len 20)

ssl_generate_keyring material: client seq 0, server seq 0
ssl_save session stored session id[32]:

bd 3cb3 42 b7 1f6f36 71 7fd1 1f 3b 25 bc 6¢

91 be 7d ac a3 c0 54 9e e9 fc 3d 9d 58 83 cb 50

ssl_save_session stored master secret[48]:

1d 7d 6b f0 c0 62 3f 02 ec 83 73 0b f0 29 80 74 Session key generation
755e 06 59 e6 S5cbc 33 Bc 66 5a 28 92 71 25 b7 success message
2d Ye 68 c1 Sb be c0 d2 cb ¢Y de b9 42 b6 29 d7

dissect_ssl3_handshake session keys successfully generated
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record: offset = 267, reported_length_remaining = 47
dissect_ssl3_record: content_type 20 Change Cipher Spec
dissect_ssl3_change_cipher_spec
packet_from_server: is from server - FALSE
ssl_change _cipher CLIENT

record: offset = 273, reported_length_remaining = 41
dissect_ssl3_record: content_type 22 Handshake
decrypt_ssl3_record: app_data len 36, ssl state 0x3F
packet_from_server: is from server - FALSE

decrypt_ssl3_record: using client decoder

60

ssl_decrypt_record ciphertext len 36
Ciphertext[36]:

24 4416 c1 8bb3 66 f4 €0 €9 87 c9 6b 99 b6 b
77 bfd8 08 2f9¢ 92d1 06 89 47 1487 c2 65 4b
3d 84 a5 33

Plaintext[36]:

140000 0cb2 60 f2 Sb 73 c4 32 8d cb d7 67 {7
bb 98 a9 92 50 ¢9 cf 8f 5d Bb 00 fe f0 1a 09 94
Be 33 b2 ec

checking mac (len 16, version 301, ct 22 seq 0)
tls_check_mac mac type:SHA1 md 2

Mac[20]:

bb 98 29 92 50 ¢9 cf 8f 5d 8b 00 fe f0 1a 09 94

Example of decrypted
client Finished message.

Finished header fields:
Handshake message type
=0x14 (Finished)

Message length = 0x00000c
(12 decimal)

Verify Data =b2 60 .....
(This is the decrypted hash
used to verify integrity of
TLS handshake)

Be 33 bZ ec

ssl_decrypt_record: mac ok

dissect_ssl3_handshake iteration 1 type 20 offset 0,
length 12 bytes, remaining 16
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This fragment from a debug file shows frame number 208. It is a single packet
containing the ClientKeyExchange, ChangeCipherSpec and Finished elements of an TLS
handshake.

When Wireshark encounters a TLS packet, it searches the key log file for a
corresponding entry. If it finds a matching entry in the key log file, it is able to generate
“Keying material”. This is the “Key expansion” section. The “Key expansion” is a
stream divided up to create several different session keys, two of which are client and
server write keys. For a complete explanation of the various keys derived from the key

stream for a single TLS session see page 20 of RFC 2246 (Dierks & Allen, 1999).

The session keys remain in memory for the duration of the session. When an
ApplicationData message is encountered for the session, Wireshark writes the ciphertext
to the debug file and then uses the corresponding session key to decrypt the ciphertext
without recalculating the keys. It writes the hex encoded plaintext to the debug file as
well and for some embedded protocols, like HTTP, it will decode the hex encoded
plaintext to the corresponding readable characters or “decrypted app data fragment” as

shown in figure B-1.
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dissect_ssl3_record decrypted len 804
decrypted app data fragment: POST /account/login HTTP/1.1

Host: www.sans.org
User-Agent: Mozilla/5.@ (Macintosh; Intel Mac 0S X 10.7; rv:21.0)
Gecko/20100101 Firefox/21.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
DNT: 1
Referer: https://www.sans.org/account/login
Cookie: __utma=157178169.777277707.1372366987.1372366987.1372366987.1;
__utmb=157178169.4.10.1372366987;
__utmec=157178169;
__utmz=157178169.1372366987.1.1.utmcsr=(direct) |utmccn=(direct) |utmemd=(none);
sans=24aa@5918bbfbd8db40691fea5f012f6
Connection: keep-alive
Content-Type: application/x-www-form-urlencoded
Content-Length: 132
_xsrf_token=7fe998ee86a6ee93aeefadf7f5a6b5d8f46f0539&

email=graceomalley16@3%48yahoo.com&password=maytheroadriseuptomeetyou& website

Figure B-1. Conversion of hex encoded plaintext to readable text in the debug file, called

“decrypted app data fragment”

Wireshark works through the packets, frame by frame, decrypting packets when

possible and recording its actions in the debug file.

The display filters available in Wireshark provide a very granular and convenient
way to view particular fields in a given packet. This makes it relatively easy to find
records in a trace file containing values found in the debug file. For example, to search

for the encrypted pre-master secrets of an RSA key exchange use the display filters:

For RSA key exchange:
ssl.handshake.epms == 4722.2a2a.2f69.baf7 or

ssl.handshake.epms contains 4722

Figure B-2 shows the results of the filter in Wireshark.
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File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help

Seaee BixgrlAe 2o 2 [EE e

Filter: [ssl.handshake.epms contains 4722 ]@ Expression... Clear ~pply Save
No. ‘ Source ‘ Src port [ Destination ‘ DST Port‘ Protocol‘ Length ‘ Info
208 192.168.1.5 53491 204.154.94.81 443 TLSvl 380 Client Key Exchange)

A

7 =)

Length: 258
~ RSA Encrypted PreMaster Secret

Encrypted PreMaster 1 256
Encrypted PreMaster:|4722pa2a2f69baf77fb70066e42198ecac3026ce6225a669. . .

3 J75 20 4e 06 24 3e e9 c3 e6 76 ab 5c 64

Frame (380 bytes) | Decrypted SSL record (16 bytes)

Figure B-2. Using Wireshark display filter to find encrypted pre-master secret from
debug file

To view the handshake random values for key generation use the display filter:

ssl.handshake.random bytes == 5lcc.a885...<48 bytes
snipped>....fa04.0865

or
ssl.handshake.random bytes contains £fa04.0865

For a complete listing of Wireshark’s display filters is maintained at
http://www.wireshark.org/docs/dfref/.

Sally Vandeven, sallyvdv@gmail.com
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Figure B-3 shows the results of the random_bytes filter in Wireshark.

File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help

BB B XEE Q¢ & a ¢

Filter: [ssl.handshake.random_bytes contains fa04.0865 ]@ Expression... Clear Apply Save

No. Source Src port | Destination DST Port Protocol Length  Info
324 192.168.1.5 53499 74.125.228.94 443 TRVl 247 Client Hel
(] N
Length: 176

< Handshake Protocol: Client Hello
Handshake Type: Client Hello (1)

Length: 172
Version: TLS 1.0 (0x0301)
v Random
gmt unix tim PR TR —)-r' 2012 17-02-01 000000000 =0T

random_bytes| d403811039h25ad8eeshsfof934aa0ce889a4bc7503c374a. . .
Session ID LengTht O

P Corrm . 1 o I T
[

0000 00 22 3f 30 ba e2 60 23 4b 26 69 76 08 00 45 00 ."?70.. 3 K&iv..E.
0010 00 e9 6c e5 40 00 40 06 dc ad cO a8 01 05 4a 7d
0020 e4 Se do fb 01 bb 58 b4 87 08 od 11 7d c2 80 18
0030 ff ff 15 59 00 00 01 01 08 Oa 30 a6 47 db bb ee
0040 17 b5 16 02 01 00 b0 01 00 oo ac 03 01 51 cc a8
0050 85 d4 03 81 10 39 b2 Sa_d8 ee 8b 8f 9f 93 4a a0
0060 ce 88 9a 4b c7 S0 3c 37 4a Ta 04 02 65 00 00 48
0070 00 Tt cO Oa cO 14 00 88 00 87 00 39 00 38 cO of
0080 cO OS 00 84 00 35 cO 07 cO 09 cO 11 cO 13 00 45
0090 00 44 00 33 00 32 cO Oc cO Oe cO 02 cO 04 00 96

00a0 00 41 00 0S5 00 04 00 2f cO 08 cO 12 00 16 00 13
nnhn A0 Nd ~0 N2 foa FF AN N A1 A an 2k A0 AN AN 1A

Figure B-3. Using Wireshark display filter to find a Client Random Bytes field from the
debug file
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