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Abstract!
Encrypted!data,!by!definition,!is!obscured!data.!!Most!web!application!
authentication!happens!over!HTTPS,!which!uses!SSL/TLS!for!encryption.!!Did!you!
ever!wonder!what!that!authentication!exchange!looks!like!in!plaintext?!!What!if!you!
are!troubleshooting!your!HTTPS!enabled!web!application!and!need!to!dig!deeper!
down!in!the!OSI!model!than!Firebug!or!other!web!developer!tools!will!allow?!!This!
paper!demonstrates!how!to!easily!decrypt!and!dissect!a!captured!web!session!
without!either!a!proxy!middleman!or!possession!of!the!server’s!private!key.!!It!will!
walk!the!reader!through!the!simple!steps!in!a!TLS!connection!in!an!attempt!to!reveal!
the!unreasonable!mystique!surrounding!encryption!protocols.!
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1. Introduction 
Secure Sockets Layer (SSL) and Transport Layer Security (TLS) are both 

protocols used for the encryption of network data.  They use encryption, hash functions 

or message digests, and digital signatures to provide confidentiality, integrity and 

authentication for data in transit (Rescorla, 2001, pp. 5-7).  Wireshark is a feature-rich, 

free tool that captures and dissects network traffic (Wireshark Protocol Analyzer, 2013). 

When data is encrypted using the SSL or TLS protocol, it normally looks like gibberish 

and until fairly recently, Wireshark was not able to decrypt and dissect such traffic unless 

it had access to the private key of the web server.  If, however, the data is web traffic sent 

to a browser and Wireshark has access to the appropriate session keys it now has the 

ability to decrypt that data.  Current versions of both the Firefox and Chrome browsers 

will easily save encryption keys in a file that can then be imported to Wireshark.  Since 

documentation on how to set this up and utilize this feature of Wireshark is sparse, what 

follows are guidelines to help the reader through the process of capturing and analyzing 

encrypted web traffic using Wireshark, including a step-by-step reference guide in 

Appendix A. 

This paper will begin with a quick refresher of symmetric and asymmetric key 

encryption.  It will be followed with an explanation of how a TLS secure session is setup 

between two endpoints and how to capture a TLS session along with its encryption keys 

on a Linux system.  It will then provide a detailed analysis of the SSL/TLS protocols 

using Wireshark to decrypt and dissect an actual TLS data capture.  For a very 

comprehensive examination of cryptographic protocols and algorithms, the reader is 

directed to the book Applied Cryptography: Protocols,  Algorithms, and Source Code in 

C by Bruce Schneier (Schneier, 1996). 

1.1. A Brief History of SSL/TLS 
The first publicly released version of SSL was actually SSL 2.0, which was 

released in 1995.  It was quickly updated and replaced by SSL 3.0 in 1996.  This was 

considered a complete redesign of the protocol according to one of the leading experts on 

the SSL protocol, Eric Rescorla (Rescorla, 2001, p. 49).  In 1999, TLS 1.0 was released 
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as a successor to SSL.  TLS 1.0 was based on SSL 3.0 and is defined in RFC 2246 

(Dierks & Allen, 1999).  TLS is very closely related to SSL 3.0, though it does not 

provide backward compatibility due to changes in some of the algorithms.  The name 

change to TLS from SSL is political in nature and is beyond the scope of this paper; 

however, Eric Rescorla has written a very interesting account of the history of SSL/TLS 

through TLS 1.0 (Rescorla, 2001, p. 47).  TLS 1.0 was updated to v1.1 in RFC 4346 in 

2006 (Dierks & Rescorla, 2006) and again to v1.2 in RFC 5246 in 2008 (Dierks & 

Rescorla, 2008).  The BEAST attack (Dougherty, 2011) against SSLv3 and TLS v1.0 

caused some web servers to force the use of TLS 1.1 or 1.2 that have protection against 

the attack (Rescorla, 2011).  On the client side, however, most browsers do not yet 

support TLS 1.1/1.2 as of this writing (Ristić, 2013). 

Best practice dictates that TLS 1.0 or greater be used wherever possible.  SSL 2.0 

should no longer be used at all.  SSL 2.0 was declared insecure primarily due to its re-use 

of encryption keys as well as its lack of integrity checking of the SSL handshake 

sequence (Rescorla, 2001, p. 458).  Furthermore, a server using TLS 1.0 should also 

select cipher RC4 for encryption during the cipher negotiation for HTTPS traffic to 

mitigate against the BEAST attack.  The above recommendations are based on the Qualys 

Best Practice Guide of 2013 (Ristić, 2013).  In addition to the BEAST attack of 2011, 

other recent notable attacks against SSL/TLS include CRIME (Constantin, 2012), Lucky 

Thirteen (AlFardon & Paterson, 2013) and a new attack against the RC4 symmetric key 

cipher (Bernstein, 2013). 

The acronyms SSL and TLS are commonly used interchangeably to refer to 

encryption at the transport layer.  Because TLS is the most current this paper will use the 

term TLS unless otherwise specified. 

2. TLS 
TLS is encryption for data in transit, not data at rest.  That means that the end host 

or recipient in a TLS connection must be able to decrypt the encrypted traffic sent to it in 

order to be processed and/or displayed in the web browser.  When you capture your own 

data using an Internet browser from a secure connection that you initiated, you are able to 
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get at all the pieces involved in this process to examine them regardless of the methods 

used for encryption.   

Bruce Schneier describes the differences between symmetric and asymmetric 

algorithms in his book Applied Cryptography (Schneier, 1996, Section 1.1).  Symmetric 

algorithms like AES and 3DES use a single key for encryption and decryption.  That is, 

the same key that encrypts data is used to decrypt it.  Asymmetric algorithms like RSA 

use two separate keys, one for encryption and the other for decryption.  With asymmetric 

encryption, the key used to encrypt data cannot be used for decryption.  The only 

mathematically feasible method of decryption is to use the second key in that key pair. 

Symmetric ciphers are computationally much faster than asymmetric ciphers so 

symmetric ciphers are preferred over asymmetric ciphers when encrypting/decrypting 

large amounts of data.  The traditional problem of shared key management, however, 

makes using only symmetric ciphers undesirable because it is difficult to securely 

transport the key prior to the establishment of an encrypted channel.  The method most 

often used is a combination of both asymmetric and symmetric ciphers.  Asymmetric 

ciphers are used to either exchange or generate the keying material from which 

symmetric “session” keys are derived.  Symmetric keys are often referred to as session 

keys because they are used for a single session and then discarded.  They are the shared 

secrets used for symmetric encryption/decryption of the bulk of the data.  This provides a 

secure and manageable method for exchanging “secret” keys while also allowing for 

computationally faster cryptographic operations (Schneier, 1996, Section 10.2). 

2.1. Sharing session keys 
As noted above, session keys are computed on each side of the connection; 

however, the components used to generate the session keys are passed back and forth in 

one of two ways.  These are often referred to as “key exchange” and “key generation” 

methods, respectively.  The key exchange method uses asymmetric encryption to send a 

pre-master secret securely to the server.  The key generation method is used to exchange 

unencrypted components, which both sides will then use to derive symmetric session 

keys (Rescorla, 2001, p. 58).  A more detailed examination of both methods follows. 
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2.1.1. Key exchange method 
The RSA and DSA algorithms are commonly used with the key exchange method 

(Viega, Messier & Pravir, 2009, ch. 8).  The client generates a pre-master secret from 

which both sides will generate the actual cryptographic keys used to encrypt/decrypt the 

data transferred over this session.  This pre-master secret must remain private to protect 

the confidentiality of the session.  It is the seed from which the final keys will be derived.  

If an attacker had access to the pre-master secret and was able to intercept the TLS 

handshake the attacker would be able to generate the session keys that would decrypt all 

the data from that session (Rescorla, 2001, p.140).  To protect the pre-master secret in 

transit, the client encrypts it with the server’s public key (one of the keys in an 

asymmetric key pair) and sends it to the server.  Anyone eavesdropping on the 

connection cannot determine the pre-master secret because it can only be decrypted with 

the server’s private key.  The server uses the parameters exchanged during the TLS 

handshake and the decrypted pre-master secret and applies an agreed upon pseudo 

random function (PRF) to produce the master secret.  The session keys are then derived 

from the master secret (Rescorla, 2001, p. 82).  After each side has generated the final 

session keys, data can be sent back and forth between the client and the server securely 

encrypted with these session keys as shown in figure 1. 

 

            Figure 1.  The steps in the RSA key exchange process 
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2.1.2. Key generation method 
A common algorithm used for the key generation method is Diffie-Hellman (DH) 

(Viega et al., 2009, ch. 8).  The client and server independently generate a master secret 

after an initial exchange of components that are required for that process, all of which can 

be public and therefore do not require encryption. In addition, each side adds components 

which must remain private in order to protect the confidentiality of the process, therefore,  

these are not transmitted across the network but remain private to each side. Intermediate 

calculations are done on both sides using the private and public components and the 

results of those calculations are exchanged.  These intermediate results may also be 

public.  Similar calculations are done again on each side using the intermediate results.  

This produces the master secret, which is ultimately converted to session keys for use in 

symmetric encryption (Rescorla, 1999, p. 1).  None of the intermediate private 

components, the master secret or the final session keys ever travels on the network.  They 

are generated and remain on each side of the connection.  The public components that 

have been exchanged cannot by themselves be used to compromise the Diffie-Hellman 

key generation process and therefore no encryption is necessary during key generation as 

shown in figure 2.  The important advantage of key generation (DH) over key exchange 

(RSA) is that if the traffic is intercepted by an attacker during this handshake the attacker 

does not have enough pieces of the puzzle to compute the master secret and derive the 

cryptographic keys even if the attacker were to be in possession of the server’s private 

key.  Using the key exchange method (RSA), the attacker could independently derive the 

cryptographic keys and decrypt the exchanged data if she had access to the server’s 

private key. 
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Figure 2.  The steps in the DH key generation process 

In addition, both key exchange and key generation methods can be ephemeral, 

meaning they produce “one time use” keys (Barker, Branstad, Chokhani & Smid, 2010). 

In order to achieve this, each session key is generated using an algorithm that does not 

include the server’s private key in any part of its calculation.  The only way to decrypt 

data that has been encrypted with an ephemeral key is by having possession of the one-

time session key.  In the case of key exchange methods like RSA, this means that 

compromise of a session key only compromises a single session.  However, since the pre-

master secrets are transferred over the network encrypted with the server’s private key, a 

compromise of the server’s private key would allow an attacker to intercept the pre-

master secret, derive the one-time-use session keys and basically nullify the value of 

using ephemeral keys.  In the case of key generation methods like Diffie-Hellman, pre-

master secrets are not used and therefore cannot be intercepted.  When using the key 

generation method, both sides of the connection compute a master key from which the 

session keys are derived.  The only key capable of decrypting a DH session is that session 

key.  Since the components used to derive the session keys do not cross the network, an 

attacker intercepting network traffic could not discover these keys. 

Using the combination of ephemeral keys and the DH key generation method 

provides what is known as Perfect Forward Secrecy (PFS) (Rescorla, 2001, p. 195).  PFS 

implies that compromise of a server’s private key would not compromise past sessions.  
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The session keys for those past sessions are the only keys that will decrypt the session’s 

data.  In this case, the server’s private key is used exclusively for authentication of the 

server, not for encryption of any session related keys or data (Rescorla, 2001, p. 147).   

2.1.3. Digital Signatures 
Bruce Schneier provides an excellent description of digital signatures in his book, 

Applied Cryptography (Schneier, 1996, Sec. 2.6).  What follows is a brief summary of his 

explanation.  Digital signatures use the two keys in an asymmetric cipher to provide 

authentication of a message.  The owner of an asymmetric key pair calculates a message 

digest over a message using a hashing algorithm such as MD5 or SHA1.  That message 

digest is encrypted with the owner’s private key and sent over the network along with the 

message itself as well as the sender’s signed public key.  The encrypted hash functions as 

the signature.  The receiver can use the owner’s public key to decrypt the message hash. 

The receiver will be able to authenticate the sender by repeating the process and 

comparing the hashes.  That is, the receiver will decrypt the senders encrypted message 

digest with the sender’s public key, independently create a message digest of the received 

message and compare the message digest it calculated with the message digest it 

received.  If the two match and the receiver trusts the signed public key from the sender 

then the receiver can be confident that this message came from the sender.  An important 

part of this process is trusting the signed public key of the sender.  An organization that 

issues signed certificates for this purpose is called a Certificate Authority (CA).  The 

CA’s function is discussed in more detail in section 2.2.1.  It is worth noting here that the 

certificate trust model has come under attack in the past and is considered by some to be 

broken.  Moxie Marlinspike has written an interesting discussion on CA trust at 

www.thoughtcrime.org (Marlinspike, 2011).  Peter Eckersley has also addressed the trust 

model at www.eff.org (Eckersley, 2011). 

2.2. TLS Handshake 
The TLS protocol consists of two sub-protocols, the handshake protocol and the 

record protocol (Dierks & Rescorla, 2008).  The handshake protocol describes the rules 

used to establish common cryptographic parameters as well as authenticating the server 

and optionally, the client.  The record protocol establishes the rules for breaking up the 
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data to be transferred, encrypting it and packaging it into “records” such that when it 

reaches the other side it can be properly decrypted.  With respect to the 7 layer OSI 

networking model, the handshake protocol operates at the session layer and the record 

protocol operates at the presentation layer. 

In order to establish a TLS session using a web browser, a client first contacts a 

server and declares that it would like to initiate a secure connection with that server.  The 

client does this by sending a TCP packet with the SYN flag set to the port at which the 

server is listening, usually port 443 for secure web traffic.  Assuming the server is 

configured to support this type of connection, the TCP three-way handshake is completed 

and the TLS session parameters can be negotiated.  This negotiation is referred to as the 

SSL or TLS handshake (Rescorla, 2001, p. 58).  The handshake will authenticate the 

server and establish the encryption algorithm to be used as well as exchange the 

components used to generate the cryptographic session keys.  The key exchange and key 

generation methods described in previous sections take place during the TLS handshake. 

The server may optionally authenticate the client during the handshake as well.  

Ultimately, session keys will be derived on each side of the TLS connection using the 

exchanged components and will be used to encrypt and decrypt the data transmitted 

during the session.  Some browsers can capture and log the components used to generate 

session keys such that captured network traffic can be decrypted either at the time of 

capture or using previously captured packets.  This is possible using both the key 

exchange and the key generation methods. Wireshark has a built in capability to perform 

this decryption of TLS traffic if it has access to these components, which will be 

described in more detail below. 

2.2.1. The Handshake Protocol 
The TLS handshake begins when the client sends the ClientHello Message.  The 

three most important elements in this message are the version of TLS used by the client, a 

random string that will be used for generating cryptographic keys and the cipher suites 

that the client supports.  The cipher suite consists of a code that represents four 

parameters: authentication algorithm, key exchange method, encryption cipher and 

hashing algorithm (Rescorla, 2013).  The client lists these ciphers in its preferred order; 
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in other words, it would prefer to use the cipher listed first if the server supports it.  The 

server replies with a ServerHello message, which contains its choice of cipher from the 

client’s list and a random string, again for use later when generating cryptographic keys.  

Notice that it is the server that ultimately decides on the actual cipher to be used for 

encryption.  If the server is not satisfied with any of the cipher choices offered by the 

client, it will send a “Handshake Failure” message back to the client and per RFC, 

sending a TCP packet with the FIN and ACK flags set gracefully terminates the 

connection (Dierks & Allen, 1999).  Next, the server sends its certificate.  The certificate 

is the server’s proof of identify so the client can authenticate the server.  The client 

examines the certificate and if it is valid and digitally signed by a CA that the client 

trusts, the client can be confident that it is talking to the correct server and not an 

imposter.  A more thorough discussion of CA trust follows in section 5.5.3.   

A certificate is valid if it meets 3 criteria: the certificate must be signed by a CA 

that the browser trusts; the domain name on the certificate must match the domain 

presenting the certificate; and the certificate must not have expired.  Additionally, some 

browsers may confirm that the certificate has not been revoked before declaring it valid 

(Viega et al., 2009, Sect. 1.2).  There are also optional certificate extensions that, if 

present, should be checked by the client.  One important extension is “key usage”.  This 

is a field in the certificate that specifies what the certificate may be used for. Examples 

are digital signature, non-repudiation and data encipherment.  A complete description of 

the key usage option for certificates is described in RFC 2459  (Housley, Ford, Polk & 

Solo, 1999).  If the certificate is self-signed, unsigned or not signed by a trusted third 

party the browser will usually warn the user that the identity of the server cannot be 

properly verified.  A self-signed certificate is a certificate that has been signed using the 

server’s private key, not the private key of a trusted third party.   

If the method of key exchange chosen by the server is DH, the server sends the 

ServerKeyExchange message that contains the public components that will be used to 

generate the master secret (Rescorla, 2001, p. 35).  Finally, the server sends the 

ServerHelloDone message that indicates to the client that the server is finished passing 

parameters.  
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Once the cipher suite has been agreed upon, the client and server can begin 

trading more specific parameters.  First, the client sends a ClientKeyExchange message 

and a ChangeCipherSpec message.  The ClientKeyExchange message contains the pre-

master secret, which is generated by the client.  Both the client and the server will use 

this to generate what is called a master secret from which they both will derive the final 

cryptographic keys.  The client encrypts the pre-master secret with the server’s public key 

so if an eavesdropper were to intercept this bit of data he could not decrypt it.  If the 

cipher chosen for this session was DH, then the ClientKeyExchange contains the client’s 

public DH parameters instead of the pre-master secret.  The ChangeCipherSpec message 

is just a message from the client to inform the server that all data the client sends from 

here on will be encrypted using the agreed upon parameters.  At this point, both the client 

and the server have all the components necessary to generate the master secret and then 

derive cryptographic session keys.  



SSL/TLS: What’s Under the Hood 
!

12 

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

       Figure 3.  The TLS handshake using the key exchange method 

Both sides verify that the handshake has proceeded as planned and that both have 

generated identical keys by sending an encrypted Finished message.  First, the client 

sends an encrypted Finished message to the server.  This message is a message digest, 

also called a cryptographic hash, of various components used during the handshake 

process, not all of which have been transmitted on the network.  This is encrypted with 

the newly generated session key and sent to the server.  Next, the server sends a 

ChangeCipherSpec message to the client to tell the client that all data after this message 

will be encrypted.  This is followed by an encrypted Finished message from the server to 
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the client.  The final step in the TLS handshake is for each side to decrypt and verify the 

Finished message that it received from the other side.  They do this by checking each 

other’s work.  Both sides perform a computation using the master-secret and a hash of the 

handshake messages as inputs.  This gets compared to the value received in the Finished 

message from the other side.  They will conclude that the handshake has succeeded if the 

values match.  If there was a problem with the verification then a HandshakeFailure 

message is sent and the session is terminated (Rescorla, 2001, p. 81).  Figures 3 and 4 

show graphical illustrations of TLS handshakes, one using RSA key exchange and the 

other DH key generation.  Notice that the handshake in figure 4 using DH key generation 

has an extra step.  If the server selects a DH cipher from the list of ciphers presented to it 

from the client, then it must also send the parameters that the client will need for 

generation of the master secret in the ServerKeyExchange message. 
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Figure 4.  The TLS handshake using the key generation method (Diffie-Hellman). 

2.2.2. The Record protocol 
Now that the encryption parameters have been established and session keys 

generated the real purpose of this connection – data transfer can take place.  This is where 

the record protocol comes in.  The record protocol is used to break the stream of data  

into pieces for transmission (Rescorla, 2001, p. 61).  Each piece is encrypted and 

encapsulated with a header letting the other side know the specifics about that particular 
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piece.  Together this header plus data is called a “record”.  The encrypted records contain 

the confidential data that is transmitted back and forth.  All packets starting with the 

Finished messages of the TLS handshake are encrypted using the newly generated 

session key.  As we will see later, Wireshark is able to reassemble and decrypt these 

records when given access to the browser’s key log file, which contains the values 

needed to derive the session key. 

3. Capturing pre-master secrets/master secrets 
Not all browsers support the logging of TLS session components.  As of this 

writing, Firefox 19 and Chrome 24 so support this feature.  

Both Firefox and Chrome will check to see if the user has an environment 

variable set for “SSLKEYLOGFILE” which points to a writable file.  If so, the browser 

will write the secrets to the file identified by the environment variable.  This should be a 

user environment variable, not a system-wide or global variable since these secrets can be 

used to decrypt captured web traffic which may contain sensitive data. 

3.1.1. Environment Variables 
On a Linux system user environment variables may be set using any of several 

files.  For example, the users environment variables may be set in ~/.profile, 

~/.bash_profile, ~/.bashrc, etc.  Typically, the way to create the file and set the 

environment variable on a Linux system is like this:   

$ touch /protected/folder/my_session_keys.log 
$ chmod  700 /protected/folder/my_session_keys.log 

 

Then add the following line to whichever file is executed at login, for example, 

for user account student this might be  /home/student/.profile 

 
export  SSLKEYLOGFILE=/protected/folder/my_session_keys.log  

 

Typing “echo $SSLKEYLOGFILE”  after a successful login will confirm the value 

assigned to the variable. 
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3.1.2. The key log file 
Network Security Services (NSS) is an open source set of C libraries, maintained 

primarily by Mozilla, that contain cryptographic modules.  NSS developed modules for 

key log file operations as well as the format of the key log file (Mozilla Developer 

Network, 2013).  The key log file itself is a flat text file.  If the proper environment 

variable is defined and a file exists that the browser can write to, both Firefox and 

Chrome utilize the NSS libraries to write pre-master secrets and master secrets to a file. 

The file format is defined as follows (Combs, 2012): 

CLIENT_RANDOM<space>|64 bytes Client Random Values in Hex|<space>|96 bytes 

Master Secret in Hex| 

RSA<space>|16 bytes encrypted pre-master secret in hex|<space>|96 bytes pre-master 

secret in hex| 

 

 

 

 

 

Figure 4a. Sample entries from a populated key log file 

The first entry in figure 4a , CLIENT_RANDOM, is the format for TLS sessions 

using non-RSA cipher suites.  The master secret is saved for non-RSA sessions.  The 

second entry is for TLS sessions using an RSA cipher suite.  The pre-master secret is 

saved for RSA negotiated sessions.  Wireshark will be able to read in these “secrets” and 

generate the session keys, which will decrypt the captured data. Because the key log is a 

flat text file written in ASCII, these are not raw hex values used by the browser, instead 

they are the ASCII representation for the hex values.  For example, the ClientRandom 

value sent as part of the TLS handshake is 32 bytes long.  Writing the ASCII 

representation of a 32-byte value in hexadecimal requires 64 bytes. 

# SSL/TLS secrets log file, generated by NSS 

CLIENT_RANDOM 
51a3e7b9041587fb8143cd2c3c212a2c27c40e872c8fc7d10e995484c74d623d 
04b1dd60fd0a1a9460ae66d3bdf76eae74f97459352b366b66b3f71150957b7b282
65992c0b0c74d953acd46beea80ac 

RSA 0c9b7e07178f02e8 
03014fbec62aa7e665957155cb841cbb8f04d4ef48d24160ee40bf1a90aa964c56d4
53711af4abad169edd1f04466282 

!
!
!
!
!
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4. Capturing Traffic 
There are several different tools that will capture network traffic.  Two common 

free tools are tcpdump and Wireshark.  Wireshark is an open source GUI based 

application that runs on many platforms including Linux, Windows and OS X  

(Wireshark Protocol Analyzer, 2013).  Wireshark has a command line version as well, 

called tshark that is typically installed during a Wireshark install.  Tcpdump is a 

command line application that runs on many Unix and Linux operating systems 

(Tcpdump & Libpcap, 2013).  Windump is the port of tcpdump for Windows (WinPcap, 

2013).  This paper will address packet capture using tcpdump, Wireshark and tshark on 

Fedora Linux. 

4.1. Capturing network traffic with tcpdump and tshark 
Unix–like machines may have tcpdump installed by default.  If not, it can be 

downloaded from www.tcpdump.org.  Tcpdump also requires that the network packet 

capture library, libpcap, be installed.  This is also distributed at www.tcpdump.org.  For 

capturing traffic, tshark syntax is very similar to tcpdump; however, tshark has many 

more options than tcpdump for displaying data from packet captures.  Documentation for 

tshark can be found on the tshark man page (Combs, 2013).  

Figure 5 illustrates how to capture packets on network interface “eth0” and write 

the data to a file called “packets.pcap” in both tcpdump and tshark.  The –n option 

instructs tcpdump not to resolve names while it is capturing data and the  -w option 

indicates that tcpdump should write to a file.  The key combination of Control-C will end 

the packet capture and close the file for both utilities.   



SSL/TLS: What’s Under the Hood 
!

18 

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

 
Figure 5.  Capturing packets using tcpdump and tshark 

 

4.2. Capturing network traffic with Wireshark 
!

Capturing traffic using Wireshark is very simple.  Select “Capture ! Options…” 

to view the capture dialogue.  Select the network interface and any other desired options, 

such as, unchecking the name resolution boxes (Figure 6).  Using “promiscuous mode” 

on all interfaces will capture all traffic that an interface can “see” and is sufficient for this 

example.  Click on the Start button to begin the capture.  To conclude a packet capture in 

Wireshark select “Capture ! Stop” for the menu bar or click on the Stop Capture button 

on the toolbar.  The captured packets are displayed in the Wireshark 3-pane interface. 
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    Figure 6.  Capturing packets using Wireshark 

5. Analyzing Traffic 
 

For the results and discussion that follow, I created a test lab and spent many 

hours using Wireshark, tshark and tcpdump to view network traffic.  This section will 

illustrate how the TLS handshake works using a captured TLS session establishment and 

login sequence from a temporary SANS portal account, which has since been removed. 

The handshake records comprise the TLS session establishment and negotiation of the 

session parameters.  That is followed by “Application data” records that make up the 

actual login to the SANS account.  Appendix A contains a step-by-step guide for this 

process without the explanations. 
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5.1. Set environment variables 
Prior to capturing the data there are a few things to set up.  First, the key log file 

must exist as well as the environment variable “SSLKEYLOGFILE”.  This will signal the 

browser to save TLS pre-master/master secrets and allow decryption of the data outside 

the browser.  The procedure for setting this up is described above in “Capturing pre-

master secrets/master secrets”, or refer to Appendix A. 

5.2. Capture network traffic 
Using tcpdump, the following command will start capturing all network traffic 

coming in to the interface eth0 (-i), DNS names will not be resolved (-n) and captured 

data will be written (-w) to the file sansLogin.pcap. 

 # tcpdump –i eth0  -n –w  sansLogin.pcap 

Now that network traffic is being captured, open up Firefox or Chrome and login 

to a portal account.  This experiment has worked with Firefox versions 19 through 22 and 

Chrome versions 24 through 30.  Since this feature is not yet well documented, it is 

unclear what the future support will be.  

This short example includes only a login to the SANS portal account followed 

immediately by a logout.  When the logout sequence completes, terminate the packet 

capture in tcpdump by entering Control-C.  If the packet capture terminates before the 

TLS session is properly terminated then Wireshark will not have all the packets it needs 

to properly reassemble the session and will therefore be unable to decrypt the traffic.  

At this point, the captured traffic from a login/logout session exists in 

sansLogin.pcap and the keys for that session have been written to the key log file.  To 

verify that the keys were successfully written to the key log file:  

# less  $SSLKEYLOGFILE 

5.3. A look at the traffic in Wireshark 
Open the new packet trace file in Wireshark, noting that Wireshark does not 

require administrative privileges to open a previously captured trace file because the 

default permissions that it assigns allow anyone to read. 
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 $ wireshark –r  sansLogin.pcap 

In Wireshark select Analyze ! Conversations from the menu bar at the top of the 

screen.  Click on the tab for TCP.  This will display a summary of the different TCP 

conversations in this trace file (Figure 7). 

 

Figure 7.  Wireshark’s “Analyze Conversations” window 

 

The IP address resolution for www.sans.org at the time of this capture was 

66.35.59.202 and the port for the HTTPS connection was 443.  The highlighted line 

represents the conversation for the actual login session.  Select “Follow Stream” and 

Wireshark will filter on all packets related to that conversation only.  The actual meat of 

the traffic, the payloads without the TCP handshake packets and packet headers, are 

arranged neatly in a pop up window that is in two colors, one color for the client to server 

payloads and the other color for the server to client payloads.  This is often red for client 

initiated packets and blue for server initiated packets but the default can vary per 

platform. 
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Figure 8.  “Follow Stream” shows the payloads for an entire TCP stream. 

The data shown in figure 8 is the raw data from the TCP payloads in this stream.   

The first portion of the SSL handshake, including the transmission of the server’s 

certificate can be seen in figure 8.  Further down in the stream, after the completion of the 

TLS handshake, the data would be encrypted and therefore unreadable.  Close the 

“Follow TCP Stream” window and look at the top pane in Wireshark.  The display filter 

shows that only the packets associated with this single TCP stream are being displayed. 

The first 3 packets establish the TCP connection between the client and the server using 

the sequence of TCP flags  [SYN], [SYN, ACK] and [ACK].  What follows the TCP 

three-way handshake is the handshake to establish the TLS session parameters.  After the 

TLS handshake comes the actual data that is being transmitted, which Wireshark labels 

“Application Data”.    
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5.4. Dissecting the TLS handshake 
The first step in the TLS handshake, the ClientHello, follows the TCP handshake 

and is underlined in figure 9. 

Figure 9.  ClientHello portion of handshake 

To filter for only the packets that comprise the TLS handshake, add the following 

to the display filter:   “&&  ssl.handshake”  and Apply (Figure 10).  This will narrow 

the selection and display only the handshake packets for this particular conversation. 

Figure 10.  Display filter showing single SSL handshake sequence 

The handshake consists of 10 distinct steps and there is an extra step when using 

the DH key generation method.  The TLS session captured in figure 10 shows the steps of 

the TLS handshake transmitted in 6 packets.  This is because the entire TLS stream, 

starting with the handshake records, is broken up at the application layer into the 

maximum size pieces that may be transmitted at a given time over the network to reduce 

overhead and improve performance (Rescorla, 2001, p. 179).  In other words, some of the 

handshake records are combined and sent in one packet.  Other records, like the 
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certificate are too long to fit into one packet and so are split up and sent in two packets.  

The TLS data is the embedded protocol data in the TCP packets.  Each packet will 

contain a frame header, and IP header and a TCP header.  Following the TCP header is 

the TLS data. 

RFC 2246 defines the format for the TLS records (Dierks & Allen, 1999).  There 

are specific TLS header values to identify what type of content is contained in each 

record.  Wireshark uses these specifications to parse the data and display it properly. 

Each record can consist of one of four “Content Types”, Alert, ApplicationData, 

ChangeCipherSpec or Handshake.  Alert messages are to signal warning or error 

messages, ApplicationData contains the encrypted data being sent back and forth, 

ChangeCipherSpec is the message informing the other side that encryption will begin and 

the Handshake content type is used while setting up the session.  Because there are 

different fields for each Content Type,  there is a formal definition for these header fields, 

defined in RFC 2246 (Dierks & Allen, 1999, pp. 48-50).  Header fields can take the 

following values: 
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Figure 10a.  TLS record header field values 

Content Type 

ChangeCipherSpec = 0x14 

Alert = 0x15 

Handshake = 0x16 

ApplicationData = 0x17 

Protocol Version 

SSL v3   =  0x0300 

 TLS v1.0 = 0x0301 

 TLS v1.1 = 0x0302 

 TLS v1.2 = 0x0303 

Handshake Message Type 

 ClientHello = 0x01 

 ServerHello = 0x02 

 Certificate = 0x0B 

 ServerKeyExchange = 0x0C 

 ServerHelloDone = 0x0E 

 ClientKeyExchange = 0x10 

 Finished = 0x14 

Alert Message Type 

close_notify 0x00 

unexpected_message 0x0A 

bad_record_mac 0x14 

decryption_failed 0x15 

record_overflow 0x16 

decompression_failure 0x1E 

handshake_failure 0x28 

no_certificate 0x29 SSLv3 only 

bad_certificate 0x2A 

unsupported_certificate 0x2B 

certificate_revoked 0x2C 

certificate_expired 0x2D 

certificate_unknown 0x2E 

illegal_parameter 0x2F 

unknown_ca 0x30 

access_denied 0x31 

decode_error 0x32 

decrypt_error 0x33 

export_restriction 0x3C 

protocol_version 0x46 

insufficient_security 0x47 

internal_error 0x50 

user_canceled 0x5A 

no_renegotiation 0x64 

!
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Below are the formats of the header fields for the four different record types: 

Handshake (Figure 11) , ChangeCipherSpec (Figure 12) , ApplicationData (Figure 13) 
and Alert (Figure 14). 
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     Figure 13.  ApplicationData Record Layout 
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5.5. Handshake records in detail 
5.5.1. ClientHello 
Since the client initiated this TCP connection, it will also start the negotiation 

with the server regarding TLS parameters, making suggestions that the server must either 

agree to or suggest a suitable alternative in order for the connection to be successful.  The 

client presents the parameters shown in figure 15.  The handshake header fields are 

outlined in red and contain handshake type,  handshake length and TLS version. 

Following the header fields, are the content type specific fields.  This particular record is 

a ClientHello record and contains the random data that the client will use when 

establishing keys later, the cipher suites that the client supports, the server name it would 

like to authenticate, etc.  By clicking on an individual item in the middle pane, Wireshark 

will highlight the corresponding hex value for that item in the lower pane.  Conversely, 

clicking on any value in the lower pane in Wireshark will show the corresponding parsed 

value with its identifier in the middle pane.  The TLS record header is outlined in red in 

figure 15 and can be mapped to the header fields shown in figure 11.  These five bytes 

define the Content Type (0x16 is a handshake record), TLS version (0x0301 is TLS 

version 1.0), and the Length of the record following the header fields (0x00A4  or 164 

decimal).    
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Figure 15.  ClientHello  

 

 

The handshake message header fields follow the TLS header fields and are 

outlined in blue.  Figure 15 shows a ClientHello message, identified by the 0x01 in the 

handshake message type field.  This is followed by the 3-byte message length field 

(0x0000A0 or 160 decimal) and then the data associated with this Handshake message 

type that is of variable length.  Most of relates to the negotiation of cryptographic 

parameters, such as, which cipher to use, whether or not to use compression on the data, 

etc. 

Highlighting and expanding the Cipher Suites field in the middle pane shows the 

numeric representations of all the cipher suites that the client will support.  Each cipher 

suite is represented by a 2-byte value.  Wireshark resolves this 2-byte value to the RFC 

defined ciphers.  A full listing of these values is maintained by IANA and can be found at 

the IANA web site (Rescorla, 2013).  

Figure 16 shows the ciphers supported by Firefox 21, which was used for this test. 
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            Figure 16.  Cipher Suites supported by Firefox 21 

5.5.2. ServerHello 
Once the client is finished sending its proposed parameters to the server, the 

server will respond with a ServerHello message (Figure 17).  This portion of the TLS 

handshake will inform the client which of the ciphers it has chosen from the list presented 

by the client in the ClientHello message.  It also passes its “random” values for key 

generation later, confirms the version of SSL/TLS used and confirms which compression 

method, if any, will be used on the encrypted data.  For this particular session, no 

compression will be used as shown by the Compression Method of  “null”.   
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Figure 17.  ServerHello message 

5.5.3. Certificate 
The server’s certificate is its credential for authentication.  The server sends the 

client its certificate that also includes the server’s public key.  Either an intermediate 

Certificate Authority or a root Certificate Authority digitally signs the server’s certificate.  

If the server’s certificate is signed by an intermediate CA it must attach that certificate as 

well.  The intermediate CA’s certificate may be signed be another intermediate CA or a 

root CA.  All intermediate CA certificates must be attached in what is referred to as a 

“certificate chain”.  The certificate chain is complete when a root CA has digitally signed 

a certificate.  Browsers contain a store of trusted  root CA’s.  If a certificate from an 

intermediate CA has been signed by a root CA in the browsers trusted store, then 

according to this trust model the authenticating server can also be trusted.  The client 

verifies three things: an authority that the browser trusts has digitally signed the 

certificate; the domain name on the certificate matches the domain that is presenting the 

certificate; and the certificate has not expired (Schneier, 1996, Sec. 2.6). 

If the certificate checks out, the client will proceed.  If the cipher suite negotiated 

was not a DH cipher then the server’s public key will be used to encrypt the pre-master 

secret at a later stage in the handshake.  If the cipher suite negotiated is a DH cipher, then 



SSL/TLS: What’s Under the Hood 
!

31 

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

the server’s public key is not needed for anything else.  There are many good resources 

online for further information about certificates and Public Key Infrastructure (PKI) 

including the already referenced book by Bruce Schneier, (Schneier, 1996).  In the 

example here, the length of the certificate is more than can be sent in 1514 byte datagram 

so it is split up.  The first portion is sent in the ServerHello message because that packet 

was not near its maximum length.  Wireshark shows the certificate in the following 

handshake packet because that is the packet that reassembles the two portions of the 

certificate.  Figure 18 shows the certificate bytes beginning immediately following the 

ServerHello.  The Content Type of 0x16 and the Handshake Message Type of 0x0B 

indicates that a certificate follows. 

 

 

 

 

 

 

                  Figure 18.  ServerHello Message with first section of server certificate 
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The next record in the Wireshark display is the Certificate message.  The second and 

complete portion of the server certificate is transmitted in this packet.  Expanding the 

Certificate section in the middle pane in Wireshark will identify the various components  

of the certificate (Figure 19).   

Click on any component to see the corresponding highlighted value for that field.  

Figure 19.  Server certificate 

5.5.4. Server to client handshake messages 
The next packet contains two of the TLS handshake messages.  They are 

ServerKeyExchange and ServerHelloDone.  The cipher chosen by the server in this 

example session will use the DH key generation method.  The ServerKeyExchange 

message contains numeric components that will be used for the generation of the session 

keys in the DH algorithm (Rescorla, 2001, p. 35).  The ServerHelloDone message is a 

one byte code to indicate that the server is finished with its side of the session negotiation 

(Figure 20). 
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Figure 20.  Diffie-Hellman public values from server in ServerKeyExchange message and the 

ServerHelloDone Message 
 

5.5.5. Client to server final handshake messages 
The client then responds similarly, sending a ClientKeyExchange, a 

ChangeCipherSpec and a Finished message, however, the Finished message is still 

encrypted so Wireshark labels this “Encrypted Handshake Message”.  When Wireshark is  

pointed at the SSL key log file that stores the session keys and is able to perform 

decryption, it will label this message Finished.  

Since the client and server have decided to use the DH key generation method, the 

client sends DH parameters in the ClientKeyExchange message just as the server did 

above.  This is followed by the ChangeCipherSpec message, a one byte code stating that 

the all further transmissions will have an encrypted payload.  Lastly, the client completes 

its side of the TLS handshake by using the newly generated session key to encrypt a hash 

of the handshake components, creating the Finished Message.  The client and server can 
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each derive session keys at this point because they have exchanged all the necessary 

information, including the DH parameters.    

5.5.6. Server to client final handshake messages 
The final step in the handshake is for the server to also send a ChangeCipherSpec, 

followed by an encrypted hash of the handshake components so that the client can also 

verify the integrity of the process.  If both the client and server determine that the other’s 

Encrypted Handshake Message is correct the connection will remain open and data will 

be sent in encrypted ApplicationData records.  If a problem is detected on either side 

during the verification then the session is terminated and an alert record will be sent with 

a message to indicate the problem. 

At this point, removing just the “ssl.handshake” portion of the Wireshark display 

filter will show all packets in the stream including the ApplicationData Packets.  These 

are all encrypted, so it is impossible to determine what data is being exchanged. 

Wireshark needs to have access to the key log file in order to decrypt the Finished 

messages from the handshake and the ApplicationData records.  Navigate to the 

Wireshark Preferences page using either Edit ! Preferences or the key combination 

Shift-Ctrl-P.  Expand “Protocols” in the leftmost column and select SSL. 

  

  

  

Figure 21.  Configuring Wireshark to use saved session keys 
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Enter the path to the log file as defined by the SSLKEYLOGFILE variable, which 

Wireshark calls the “(Pre)-Master-Secret log file” and click Apply and OK (Figure 21). 

 

 

 

 

 

 

Figure 22.  The decrypted tab in Wireshark 

The decrypted Finished message shown in figure 22 was called “Encrypted 

Handshake Message” by Wireshark before it had access to the key log file.  Now that 

Wireshark can decrypt the data, it can read all the header fields, in this case, the 

handshake type field is 0x14 defining this as a Finished message.  The Finished message 

content is a hash or digest over the master secret and all handshake messages.  Expand 

the record in the middle pane to view the decrypted Finished message from the client and 

compare it to the decrypted Finished message from the server.  The two messages are 

different.  This is because these messages contain a hash of the concatenation of all 

handshake messages thus far so the server’s Finished message will be hashed over a 

slightly different data set than the client’s Finished message.  The Finished message is 

encrypted with the newly generated session key.  In the Decrypted tab in Wireshark, is 

the handshake message type of 0x14 (20 decimal), followed by 3 bytes for the message 

length field.  This is followed by 0xC (12 decimal) bytes of data that represents the hash 

used to verify the successful completion of the handshake.  Each side makes a quick 

calculation of what it believes the hash should be and compares it to what the other sent. 
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If those values do not match the session will not proceed.  To understand how this 

protects the integrity of the session, suppose that an attacker was able to intercept and 

change some part of the handshake that the client sent to the server (remember, most of 

the handshake is unencrypted).  During the handshake verification process, the handshake 

data used to calculate the hash for the Finished message consists of the data that it sent to 

the server and the data that it received from the server.  When the server verifies this 

hash, it does its own computation of the fields that it received from the client as well as 

the fields that it sent to the client.  If an attacker had changed any of these fields while in 

transit then those datasets would no longer match and the hash of each would be 

different, causing the session to end in error (Rescorla, 2001, p. 81). 

5.6. Dissecting the Application Data  
 The data that follows the handshake is the ApplicationData.  Adding “and 

ssl.segments” to the Wireshark display filter will display only the decrypted packets from 

that stream.  Because it is decrypted, Wireshark can apply protocol decoders and parse 

the contents that are now identified and labeled as HTTP and highlighted with the default 

color of green.  Figure 23 shows the unencrypted ApplicationData packets and figure 24 

shows the properly decrypted and decoded HTTP data. 

Figure 23.  Application Data records before decryption 
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     Figure 24.  Application Data records after decryption 

Note the tabs at the bottom in Figure 24.  Because TLS breaks up the data for 

encryption at the application layer and then TCP may have to further break up encrypted 

streams at the transport layer, there may be several tabs for a given packet where data has 

been decrypted and/or reassembled.  Selecting the “Decrypted SSL data” tab will show 

the decrypted data in the bottom pane of Wireshark.  Alternatively, by  right-clicking on 

any HTTP, SSL or TLS packet in the top or middle pane and selecting Follow SSL 

stream and assuming Wireshark has access to the key log file, Wireshark will pop up a 

box containing the TLS Application data without the packet headers and decrypted.   

Wireshark is displaying data that has already been decrypted in a browser in this 

example.  What is Wireshark showing us that we could not see with the browser?  Any 

code, including scripts or values that was sent to the browser encrypted and used by the 

browser to display pages has been decrypted by the browser but it has not necessarily all 

been displayed.  The browser does, however, have a “View Source” option that will show 

the raw HTML revealing some of these scripts and values.  What is not normally  

displayed is the data being sent back from the browser to the server, that is, unless we 

have set up a proxy such as Fiddler or Paros.  This data may include things like cookies, 

hidden form fields or data the user has entered into a web form such as usernames and 
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passwords.  Often this is data used by the web application to help with session tracking 

and as such is not normally displayed to the user. 

Most of us know that usernames and passwords should never be sent in cleartext 

because tools like Wireshark can capture that traffic and compromise those credentials.  

Many websites use TLS to encrypt a session so that sensitive credentials are protected.  

For example, a server login session normally starts by setting up a TLS connection with 

the server after which the server sends the browser a login page.  The user enters his 

username and password and it is encrypted with the established session keys and sent 

back to the server.  For a session using the RSA key exchange method, if an attacker was 

intercepting that traffic, she would also need the server’s private key in order to discover 

the pre-master secret.  The pre-master secret is required to generate the master secret that, 

in turn, is used to generate the session keys.  The session keys ultimately decrypt the 

captured data.  For a session using the DH key generation method, an attacker 

intercepting traffic would also need the DH private components or she would not have 

enough information to generate the master secret and then the session keys.  Since those 

private components do not cross the network, such an attack is unlikely to succeed. In 

contrast, Wireshark is able to decrypt the session because it has access to the pre-master 

and master secrets that the browser saved and it has captured the client and server random 

values from the ClientHello and ServerHello messages, or the DH parameters from the 

ClientKeyExchange and ServerKeyExchange messages.  

We already know our username and password so this may not seem very 

interesting, however, this method can be helpful when troubleshooting TLS connection 

problems or debugging web applications.  It also provides a way to view exactly what is 

sent back and forth during an encrypted session that a browser does not normally display.  

From a defensive standpoint, this is not a bad method to “look under the hood” and get a 

better view of how an application works in order to decide whether or not to perform 

transactions with a given online entity, for example, a bank.  This is not the only method 

to view this decrypted data, but it provides another way.  In addition, it helps to 

understand how the TLS protocol works by breaking down the steps in an organized 

fashion.  To further enhance an understanding of TLS, Wireshark offers the option to turn 
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on debugging mode.  With this enabled, every step that Wireshark takes in the decryption 

process is documented in a debug file.  

5.6.1. Help from Wireshark’s debug feature 
The final part of this examination of TLS traffic will demonstrate the debug 

capabilities that are built into Wireshark using the same trace file, sansLogin.pcap with 

logged pre-master  and master secrets in the sessionkeys.log file.  The first step in this 

process is to create an empty debug file so that Wireshark can write the details of its 

actions when reading in the trace.  The file can be located anywhere but it is important to 

remember that all decrypted data will be written to this file so if the data is sensitive, it 

should be properly protected. 

 $ touch /tmp/sansLogin.debug.txt 

This can be set up on Wireshark preferences page using either Edit ! Preferences 

or the key combination Shift-Ctrl-P.  Expand “Protocols” in the leftmost column and 

select SSL. 

Figure 25.  Configuring the debug file in Wireshark 

Enter the path to the newly created SSL debug file and click Apply (Figure 25). 

When the trace file is opened in Wireshark, the debug file will be populated with verbose 

information about the steps taken by Wireshark to read in the file, reassemble packets and 

decrypt the data.  If the trace file is already open, the debug file will be populated 

immediately after clicking Apply or OK to finish the dialogue.  The debug file will 

continue to be populated every time Wireshark performs any action.  This file can grow 

very large, very quickly.  For our purposes here, loading the file once to populate the 
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debug file will provide adequate data for analysis.  To stop the debugging, remove the 

entry for the debug file in Wireshark’s preferences and click Apply or OK. 

When Wireshark encounters an encrypted packet and it has been given a filename 

where pre-master and master secrets have been stored it will search through the file, 

looking for the correct key.  There are entries that start with RSA and entries that start 

with CLIENT-RANDOM.  Wireshark takes a brute force approach and checks each line 

to see if the index field matches the corresponding field in the packet.  For example, if a 

line in the key log file starts with RSA it will compare the next 16 bytes from that line in 

the file to the first 16 bytes of the encrypted pre-master secret field from the 

ClientKeyExchange message.  If the client and server have negotiated a DH key 

generation method then that particular session will not use an encrypted pre-master secret 

so Wireshark will move to the next line in the file.  When an entry in the key log file 

starts with CLIENT_RANDOM Wireshark will compare the next 96 bytes from that line 

in the file with the Random field in the ClientHello message of the TLS handshake for 

that session.  This process continues until a match is found or the end of the file is 

reached.  The debug file will have an entry for each line it checks, as well as, whether or 

not it found a match.  To see which cipher suite was chosen for a particular TLS session 

in Wireshark enter the following display filter: 

 ssl.handshake.ciphersuite && tcp.port == xxx    
(xxx = the client’s TCP port number for that particular session) 

Two packets are returned for this display filter, the first is the ClientHello message, 

which is the client’s initial proposal to the server stating which cipher’s it supports and 

the second is the ServerHello message stating the cipher that it has chosen for the session. 

Each cipher suite consists of four elements: 1) Authentication method 2) Key 

exchange method 3) Encryption algorithm and 4) Hash algorithm. 
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Figure 26.  Chosen cipher suite for a TLS session 

Figure 26 shows a ServerHello message with the chosen cipher suite highlighted. 

The server sends the value 0x0005 to the client to identify the cipher suite and Wireshark 

translates that according to the assignments at IANA (Rescorla, 2013).  

For this cipher, TLS_RSA_WITH_RC4_128_SHA,  the TLS session will use RSA Key 

Exchange, RSA Authentication, RC4 Encryption using a 128 bit key length and SHA1 

hash algorithm (Rescorla, 2001, p. 74). 

 

 

 

 

 

 

Figure 27.  Sample from a key log file showing entries for RSA and Diffie-Hellman Key 

Exchange methods. 
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The format of the TLS key log file shown in Figure 27 is documented at the 

Mozilla Developer’s Network website (Combs, 2012).  See Appendix B for a more 

thorough examination of the contents a Wireshark debug file. 

6. Securing packet capture and debug files   
Since TLS is often used for sensitive transactions, it naturally follows that when 

capturing this traffic along with the keys used to decrypt it, security of these files is 

paramount.  Of primary concern is the key log file, which should be readable only to the 

owner of the file.  In addition, when Wireshark writes to a debug file it writes TLS 

session keys, ciphertext and the corresponding decrypted plaintext to the debug file as 

described in the previous section and so may also require access restrictions.  Securing 

these files is documented in Appendix A. 

7. Conclusion 
!

This paper has outlined how to capture, decrypt and analyze TLS sessions using 

the built in capabilities of Wireshark.  The TLS handshake was examined in depth both 

using Wireshark display filters as well as the debug capability that Wireshark offers.  

Based on experiments done for this paper, the browsers that currently will support export 

to a key log file for this type of operation are Firefox versions 19 -22 and Chrome 

versions 24 - 30.  This type of analysis is useful for those who wish to understand the 

TLS protocol in greater depth.  Web application developers may find these tools useful 

when troubleshooting an application that uses TLS.  Penetration testers may find value in 

examining all the data transferred back and forth during an encrypted session with targets 

of their test without using a proxy. 
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Appendix A 
Decrypt TLS Traffic Using Wireshark: Step-by-Step  

1. Create a key log file and set environment variable 
Add the following to either ~/.profile,  ~/.bash_profile, or ~/.bashrc 
 

export  SSLKEYLOGFILE=/protected/folder/my_session_keys.log 
 
Create the empty log file 
 

$ touch /protected/folder/my_session_keys.log 
$ chmod  700 /protected/folder/my_session_keys.log 

Check the variable 
  

$ ls –l  $SSLKEYLOGFILE 
 
 

2. Capture traffic  
2.1.1. Tcpdump or tshark 

Figure A-1 shows how to capture traffic using tcpdump and tshark respectively.  The 
command will capture all traffic on interface “eth0” (-i),  IP addresses will not be 
resolved  to domain names (-n) and the packets will be written (-w) to a file called 
packets.pcap in the current directory. 
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Figure A-1.  Capturing network traffic with tcpdump and tshark 
 

2.1.2. Wireshark 
 

Select “Capture ! Options…” to view the capture dialogue.  Select the network 

interface and any other desired options, such as, unchecking the name resolution boxes 

(figure A-2).  Using “promiscuous mode” on all interfaces will capture all traffic that an 

interface can “see”.  Typically, this includes all traffic to and from that interface and all 

broadcast traffic.  This may vary if an interface is connected to a spanned switch port. 
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Figure A-2.  Wireshark capture options 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To end the capture,  click on the Stop capture button from the Wireshark toolbar (figure 
A-3). 
 

  
 
 
 
 
 
 
 
 
 

Figure A-3.  Wireshark stop capture and “Save As…” options 
 

Save the captured packets to a file by selecting “File” from the Wireshark toolbar and 
then “Save As …” to select a location. 
 

2.2. Open a packet capture file in Wireshark for analysis 
 
Open the Wireshark application and click on “File  ! Open…” from the toolbar.  
Navigate to the desired file. 
 

3. TLS Analysis steps 
3.1.1. Filter on TLS packets 

From the Wireshark toolbar select Analyze ! Conversations and select  the TCP tab. 
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Select an encrypted conversation form the populated list.  A server port of 443 can most 
likely identify encrypted conversations (figure A-4). 
 

!
Figure!AV4.!!Conversation!list!displayed!by!Wireshark 

 
 
Highlight a conversation and click on Follow Stream (figure A-5). 
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!
Figure!AV5.!!TCP!stream!display!in!Wireshark 

 
 
Close “Follow TCP Stream” window to view just that conversation that Wireshark has 
now filtered on (figure A-6). 
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!
Figure!AV6.!!Filtering!on!a!single!TCP!stream!in!Wireshark 

 

3.1.2. Filter on the TLS handshake 
To view just the TLS handshake from this conversation, add “&& ssl.handshake” to 
the display filter (figure A-7). 
 

 
Figure A-7.  Isolate an SSL handshake in Wireshark 
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Click on the ServerHello handshake record in the top pane in Wireshark (figure A-8). 
 

 
Figure A-8.  ServerHello message 

 
Expand any sections in the middle pane to view how Wireshark identifies the various 
components.   
 

3.1.3. TLS Decryption 
To determine the location of the key log file type one of the following commands at the 
command line 
 
On Linux or OS X: 
$ echo $SSLKEYLOGFILE  
 
On Windows: 
C:\> echo  %SSLKEYLOGFILE% 
 
Configure Wireshark to use the session keys collected by the browser in order to decrypt 
the data.  From the toolbar select “Edit ! Preferences ! Protocols ! SSL” (figure A-9). 
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Figure A-9.  Wireshark’s SSL preferences dialogue box 

 
 
In the Secure Sockets Layer configuration box, browse to the file containing the session 
keys and click OK (figure A-10). 
 

 
Figure A-10. Directing Wireshark to the key log file 
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Enter the display filter “tcp.port==443 && http”  to show the packets that 
Wireshark was able to decrypt (figure A-11). 
 

 
Figure A-11.  Display decrypted HTTPS packets 

 
 

3.1.4. Use the SSL debug feature in Wireshark 
 
Create an empty debug file for Wireshark to write its detailed decryption operations. 
 

$ touch /path/to/protected/folder/my_debug_file.log 
$ chmod  700 /path/to/protected/folder/my_debug_file.log 

 
Configure Wireshark to use the debug file.  From the toolbar select “Edit ! Preferences 
! Protocols ! SSL” (figure A-12). 
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Figure A-12.  Wireshark’s  SSL preferences dialogue box 

 
In the Secure Sockets Layer configuration box, browse to the newly created debug file 
and click OK (figure A-13). 
 
 

 
Figure A-13.  Directing Wireshark to the debug file 
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Reload the capture file to populate the debug file.  The reload button is on the main 
toolbar in Wireshark (figure A-14). 
 

 
Figure A-14.  The reload packet capture button 

 
Return to the SSL Preferences and remove the entry for the debug file to prevent this file 
from growing very large. 
 
View the debug file with any text editor to see verbose output from Wireshark regarding 
its decryption operations.  Appendix B shows an example debug file. 
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Appendix B 
The Wireshark Debug File 

Below is a section of the debug file (with many lines snipped for brevity) that illustrates 

Wireshark’s process for finding the correct entry in the key log file and  computing 

session keys.  This is an abbreviated entry for a single packet.  Wireshark creates similar 

entries for each packet that is part of a TLS conversation. 

 

           
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 
 

 
 

Reading!in!
$SSLKEYLOGFILE!
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Correct!entry!from!key!log!
file!containing!preVmaster!
secret!and!random!values.!!
These!will!be!inputs!to!
pseudo!random!function!
(PRF)!to!generate!master!
secret.!

Master!secret!computation!

Session!key!generation,!
continued!to!next!page…!
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Session!key!generation!
finished.!!Client/Server!Write!
keys!used!for!!application!
data!encryption/decryption.!

Session!key!generation!
success!message!
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Example!of!decrypted!
client!Finished!message.!!
!
Finished!header!fields:!
Handshake!message!type!
=0x14!(Finished)!
!
Message!length!=!0x00000c!
(12!decimal)!
!
Verify!Data!=!b2!60!…..!
(This!is!the!decrypted!hash!
used!to!verify!integrity!of!
TLS!handshake)!
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This fragment from a debug file shows frame number 208. It is a single packet 

containing the ClientKeyExchange, ChangeCipherSpec and Finished elements of an TLS 

handshake. 

When Wireshark encounters a TLS packet, it searches the key log file for a 

corresponding entry. If it finds a matching entry in the key log file, it is able to generate 

“Keying material”.  This is the “Key expansion” section.  The “Key expansion” is a 

stream divided up to create several different session keys, two of which are client and 

server write keys.  For a complete explanation of the various keys derived from the key 

stream for a single TLS session see page 20 of RFC 2246 (Dierks & Allen, 1999). 

The session keys remain in memory for the duration of the session.  When an 

ApplicationData message is encountered for the session, Wireshark writes the ciphertext 

to the debug file and then uses the corresponding session key to decrypt the ciphertext 

without recalculating the keys.  It writes the hex encoded plaintext to the debug file as 

well and for some embedded protocols, like HTTP, it will decode the hex encoded 

plaintext to the corresponding readable characters or “decrypted app data fragment” as 

shown in figure B-1. 
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Figure B-1.  Conversion of hex encoded plaintext to readable text in the debug file, called 

“decrypted app data fragment” 

 

Wireshark works through the packets, frame by frame, decrypting packets when 

possible and recording its actions in the debug file.  

The display filters available in Wireshark provide a very granular and convenient 

way to view particular fields in a given packet.  This makes it relatively easy to find 

records in a trace file containing values found in the debug file.  For example, to search 

for the encrypted pre-master secrets of an RSA key exchange use the display filters:    

For RSA key exchange: 
ssl.handshake.epms == 4722.2a2a.2f69.baf7   or 
ssl.handshake.epms contains 4722 
 

Figure B-2 shows the results of the filter in Wireshark. 
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       Figure B-2. Using Wireshark display filter to find encrypted pre-master secret from 

       debug file 

 

To view the handshake random values for key generation use the display filter: 

ssl.handshake.random_bytes == 51cc.a885….<48 bytes 
snipped>....fa04.0865 
         or 
ssl.handshake.random_bytes contains  fa04.0865 
 

 For a complete listing of Wireshark’s display filters is maintained at 
http://www.wireshark.org/docs/dfref/. 
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Figure B-3 shows the results of the random_bytes filter in Wireshark. 
 

 
 

            

 

 

 

 

 

 

 

 

 

Figure B-3. Using Wireshark display filter to find a Client Random Bytes field from the 

            debug file 

 
 
 


