
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

!
!

SSL/TLS: What’s Under the Hood

GIAC (GSEC) Gold Certification

Author:!Sally!Vandeven,!sallyvdv@gmail.com!
Advisor:!Hamed!Khiabani!

Accepted:!!
August!13,!!2013!

Abstract!
Encrypted!data,!by!definition,!is!obscured!data.!!Most!web!application!
authentication!happens!over!HTTPS,!which!uses!SSL/TLS!for!encryption.!!Did!you!
ever!wonder!what!that!authentication!exchange!looks!like!in!plaintext?!!What!if!you!
are!troubleshooting!your!HTTPS!enabled!web!application!and!need!to!dig!deeper!
down!in!the!OSI!model!than!Firebug!or!other!web!developer!tools!will!allow?!!This!
paper!demonstrates!how!to!easily!decrypt!and!dissect!a!captured!web!session!
without!either!a!proxy!middleman!or!possession!of!the!server’s!private!key.!!It!will!
walk!the!reader!through!the!simple!steps!in!a!TLS!connection!in!an!attempt!to!reveal!
the!unreasonable!mystique!surrounding!encryption!protocols.!

SSL/TLS: What’s Under the Hood
!

2

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

1. Introduction
Secure Sockets Layer (SSL) and Transport Layer Security (TLS) are both

protocols used for the encryption of network data. They use encryption, hash functions

or message digests, and digital signatures to provide confidentiality, integrity and

authentication for data in transit (Rescorla, 2001, pp. 5-7). Wireshark is a feature-rich,

free tool that captures and dissects network traffic (Wireshark Protocol Analyzer, 2013).

When data is encrypted using the SSL or TLS protocol, it normally looks like gibberish

and until fairly recently, Wireshark was not able to decrypt and dissect such traffic unless

it had access to the private key of the web server. If, however, the data is web traffic sent

to a browser and Wireshark has access to the appropriate session keys it now has the

ability to decrypt that data. Current versions of both the Firefox and Chrome browsers

will easily save encryption keys in a file that can then be imported to Wireshark. Since

documentation on how to set this up and utilize this feature of Wireshark is sparse, what

follows are guidelines to help the reader through the process of capturing and analyzing

encrypted web traffic using Wireshark, including a step-by-step reference guide in

Appendix A.

This paper will begin with a quick refresher of symmetric and asymmetric key

encryption. It will be followed with an explanation of how a TLS secure session is setup

between two endpoints and how to capture a TLS session along with its encryption keys

on a Linux system. It will then provide a detailed analysis of the SSL/TLS protocols

using Wireshark to decrypt and dissect an actual TLS data capture. For a very

comprehensive examination of cryptographic protocols and algorithms, the reader is

directed to the book Applied Cryptography: Protocols, Algorithms, and Source Code in

C by Bruce Schneier (Schneier, 1996).

1.1. A Brief History of SSL/TLS
The first publicly released version of SSL was actually SSL 2.0, which was

released in 1995. It was quickly updated and replaced by SSL 3.0 in 1996. This was

considered a complete redesign of the protocol according to one of the leading experts on

the SSL protocol, Eric Rescorla (Rescorla, 2001, p. 49). In 1999, TLS 1.0 was released

SSL/TLS: What’s Under the Hood
!

3

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

as a successor to SSL. TLS 1.0 was based on SSL 3.0 and is defined in RFC 2246

(Dierks & Allen, 1999). TLS is very closely related to SSL 3.0, though it does not

provide backward compatibility due to changes in some of the algorithms. The name

change to TLS from SSL is political in nature and is beyond the scope of this paper;

however, Eric Rescorla has written a very interesting account of the history of SSL/TLS

through TLS 1.0 (Rescorla, 2001, p. 47). TLS 1.0 was updated to v1.1 in RFC 4346 in

2006 (Dierks & Rescorla, 2006) and again to v1.2 in RFC 5246 in 2008 (Dierks &

Rescorla, 2008). The BEAST attack (Dougherty, 2011) against SSLv3 and TLS v1.0

caused some web servers to force the use of TLS 1.1 or 1.2 that have protection against

the attack (Rescorla, 2011). On the client side, however, most browsers do not yet

support TLS 1.1/1.2 as of this writing (Ristić, 2013).

Best practice dictates that TLS 1.0 or greater be used wherever possible. SSL 2.0

should no longer be used at all. SSL 2.0 was declared insecure primarily due to its re-use

of encryption keys as well as its lack of integrity checking of the SSL handshake

sequence (Rescorla, 2001, p. 458). Furthermore, a server using TLS 1.0 should also

select cipher RC4 for encryption during the cipher negotiation for HTTPS traffic to

mitigate against the BEAST attack. The above recommendations are based on the Qualys

Best Practice Guide of 2013 (Ristić, 2013). In addition to the BEAST attack of 2011,

other recent notable attacks against SSL/TLS include CRIME (Constantin, 2012), Lucky

Thirteen (AlFardon & Paterson, 2013) and a new attack against the RC4 symmetric key

cipher (Bernstein, 2013).

The acronyms SSL and TLS are commonly used interchangeably to refer to

encryption at the transport layer. Because TLS is the most current this paper will use the

term TLS unless otherwise specified.

2. TLS
TLS is encryption for data in transit, not data at rest. That means that the end host

or recipient in a TLS connection must be able to decrypt the encrypted traffic sent to it in

order to be processed and/or displayed in the web browser. When you capture your own

data using an Internet browser from a secure connection that you initiated, you are able to

SSL/TLS: What’s Under the Hood
!

4

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

get at all the pieces involved in this process to examine them regardless of the methods

used for encryption.

Bruce Schneier describes the differences between symmetric and asymmetric

algorithms in his book Applied Cryptography (Schneier, 1996, Section 1.1). Symmetric

algorithms like AES and 3DES use a single key for encryption and decryption. That is,

the same key that encrypts data is used to decrypt it. Asymmetric algorithms like RSA

use two separate keys, one for encryption and the other for decryption. With asymmetric

encryption, the key used to encrypt data cannot be used for decryption. The only

mathematically feasible method of decryption is to use the second key in that key pair.

Symmetric ciphers are computationally much faster than asymmetric ciphers so

symmetric ciphers are preferred over asymmetric ciphers when encrypting/decrypting

large amounts of data. The traditional problem of shared key management, however,

makes using only symmetric ciphers undesirable because it is difficult to securely

transport the key prior to the establishment of an encrypted channel. The method most

often used is a combination of both asymmetric and symmetric ciphers. Asymmetric

ciphers are used to either exchange or generate the keying material from which

symmetric “session” keys are derived. Symmetric keys are often referred to as session

keys because they are used for a single session and then discarded. They are the shared

secrets used for symmetric encryption/decryption of the bulk of the data. This provides a

secure and manageable method for exchanging “secret” keys while also allowing for

computationally faster cryptographic operations (Schneier, 1996, Section 10.2).

2.1. Sharing session keys
As noted above, session keys are computed on each side of the connection;

however, the components used to generate the session keys are passed back and forth in

one of two ways. These are often referred to as “key exchange” and “key generation”

methods, respectively. The key exchange method uses asymmetric encryption to send a

pre-master secret securely to the server. The key generation method is used to exchange

unencrypted components, which both sides will then use to derive symmetric session

keys (Rescorla, 2001, p. 58). A more detailed examination of both methods follows.

SSL/TLS: What’s Under the Hood
!

5

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

2.1.1. Key exchange method
The RSA and DSA algorithms are commonly used with the key exchange method

(Viega, Messier & Pravir, 2009, ch. 8). The client generates a pre-master secret from

which both sides will generate the actual cryptographic keys used to encrypt/decrypt the

data transferred over this session. This pre-master secret must remain private to protect

the confidentiality of the session. It is the seed from which the final keys will be derived.

If an attacker had access to the pre-master secret and was able to intercept the TLS

handshake the attacker would be able to generate the session keys that would decrypt all

the data from that session (Rescorla, 2001, p.140). To protect the pre-master secret in

transit, the client encrypts it with the server’s public key (one of the keys in an

asymmetric key pair) and sends it to the server. Anyone eavesdropping on the

connection cannot determine the pre-master secret because it can only be decrypted with

the server’s private key. The server uses the parameters exchanged during the TLS

handshake and the decrypted pre-master secret and applies an agreed upon pseudo

random function (PRF) to produce the master secret. The session keys are then derived

from the master secret (Rescorla, 2001, p. 82). After each side has generated the final

session keys, data can be sent back and forth between the client and the server securely

encrypted with these session keys as shown in figure 1.

 Figure 1. The steps in the RSA key exchange process

SSL/TLS: What’s Under the Hood
!

6

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

2.1.2. Key generation method
A common algorithm used for the key generation method is Diffie-Hellman (DH)

(Viega et al., 2009, ch. 8). The client and server independently generate a master secret

after an initial exchange of components that are required for that process, all of which can

be public and therefore do not require encryption. In addition, each side adds components

which must remain private in order to protect the confidentiality of the process, therefore,

these are not transmitted across the network but remain private to each side. Intermediate

calculations are done on both sides using the private and public components and the

results of those calculations are exchanged. These intermediate results may also be

public. Similar calculations are done again on each side using the intermediate results.

This produces the master secret, which is ultimately converted to session keys for use in

symmetric encryption (Rescorla, 1999, p. 1). None of the intermediate private

components, the master secret or the final session keys ever travels on the network. They

are generated and remain on each side of the connection. The public components that

have been exchanged cannot by themselves be used to compromise the Diffie-Hellman

key generation process and therefore no encryption is necessary during key generation as

shown in figure 2. The important advantage of key generation (DH) over key exchange

(RSA) is that if the traffic is intercepted by an attacker during this handshake the attacker

does not have enough pieces of the puzzle to compute the master secret and derive the

cryptographic keys even if the attacker were to be in possession of the server’s private

key. Using the key exchange method (RSA), the attacker could independently derive the

cryptographic keys and decrypt the exchanged data if she had access to the server’s

private key.

SSL/TLS: What’s Under the Hood
!

7

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

Figure 2. The steps in the DH key generation process

In addition, both key exchange and key generation methods can be ephemeral,

meaning they produce “one time use” keys (Barker, Branstad, Chokhani & Smid, 2010).

In order to achieve this, each session key is generated using an algorithm that does not

include the server’s private key in any part of its calculation. The only way to decrypt

data that has been encrypted with an ephemeral key is by having possession of the one-

time session key. In the case of key exchange methods like RSA, this means that

compromise of a session key only compromises a single session. However, since the pre-

master secrets are transferred over the network encrypted with the server’s private key, a

compromise of the server’s private key would allow an attacker to intercept the pre-

master secret, derive the one-time-use session keys and basically nullify the value of

using ephemeral keys. In the case of key generation methods like Diffie-Hellman, pre-

master secrets are not used and therefore cannot be intercepted. When using the key

generation method, both sides of the connection compute a master key from which the

session keys are derived. The only key capable of decrypting a DH session is that session

key. Since the components used to derive the session keys do not cross the network, an

attacker intercepting network traffic could not discover these keys.

Using the combination of ephemeral keys and the DH key generation method

provides what is known as Perfect Forward Secrecy (PFS) (Rescorla, 2001, p. 195). PFS

implies that compromise of a server’s private key would not compromise past sessions.

SSL/TLS: What’s Under the Hood
!

8

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

The session keys for those past sessions are the only keys that will decrypt the session’s

data. In this case, the server’s private key is used exclusively for authentication of the

server, not for encryption of any session related keys or data (Rescorla, 2001, p. 147).

2.1.3. Digital Signatures
Bruce Schneier provides an excellent description of digital signatures in his book,

Applied Cryptography (Schneier, 1996, Sec. 2.6). What follows is a brief summary of his

explanation. Digital signatures use the two keys in an asymmetric cipher to provide

authentication of a message. The owner of an asymmetric key pair calculates a message

digest over a message using a hashing algorithm such as MD5 or SHA1. That message

digest is encrypted with the owner’s private key and sent over the network along with the

message itself as well as the sender’s signed public key. The encrypted hash functions as

the signature. The receiver can use the owner’s public key to decrypt the message hash.

The receiver will be able to authenticate the sender by repeating the process and

comparing the hashes. That is, the receiver will decrypt the senders encrypted message

digest with the sender’s public key, independently create a message digest of the received

message and compare the message digest it calculated with the message digest it

received. If the two match and the receiver trusts the signed public key from the sender

then the receiver can be confident that this message came from the sender. An important

part of this process is trusting the signed public key of the sender. An organization that

issues signed certificates for this purpose is called a Certificate Authority (CA). The

CA’s function is discussed in more detail in section 2.2.1. It is worth noting here that the

certificate trust model has come under attack in the past and is considered by some to be

broken. Moxie Marlinspike has written an interesting discussion on CA trust at

www.thoughtcrime.org (Marlinspike, 2011). Peter Eckersley has also addressed the trust

model at www.eff.org (Eckersley, 2011).

2.2. TLS Handshake
The TLS protocol consists of two sub-protocols, the handshake protocol and the

record protocol (Dierks & Rescorla, 2008). The handshake protocol describes the rules

used to establish common cryptographic parameters as well as authenticating the server

and optionally, the client. The record protocol establishes the rules for breaking up the

SSL/TLS: What’s Under the Hood
!

9

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

data to be transferred, encrypting it and packaging it into “records” such that when it

reaches the other side it can be properly decrypted. With respect to the 7 layer OSI

networking model, the handshake protocol operates at the session layer and the record

protocol operates at the presentation layer.

In order to establish a TLS session using a web browser, a client first contacts a

server and declares that it would like to initiate a secure connection with that server. The

client does this by sending a TCP packet with the SYN flag set to the port at which the

server is listening, usually port 443 for secure web traffic. Assuming the server is

configured to support this type of connection, the TCP three-way handshake is completed

and the TLS session parameters can be negotiated. This negotiation is referred to as the

SSL or TLS handshake (Rescorla, 2001, p. 58). The handshake will authenticate the

server and establish the encryption algorithm to be used as well as exchange the

components used to generate the cryptographic session keys. The key exchange and key

generation methods described in previous sections take place during the TLS handshake.

The server may optionally authenticate the client during the handshake as well.

Ultimately, session keys will be derived on each side of the TLS connection using the

exchanged components and will be used to encrypt and decrypt the data transmitted

during the session. Some browsers can capture and log the components used to generate

session keys such that captured network traffic can be decrypted either at the time of

capture or using previously captured packets. This is possible using both the key

exchange and the key generation methods. Wireshark has a built in capability to perform

this decryption of TLS traffic if it has access to these components, which will be

described in more detail below.

2.2.1. The Handshake Protocol
The TLS handshake begins when the client sends the ClientHello Message. The

three most important elements in this message are the version of TLS used by the client, a

random string that will be used for generating cryptographic keys and the cipher suites

that the client supports. The cipher suite consists of a code that represents four

parameters: authentication algorithm, key exchange method, encryption cipher and

hashing algorithm (Rescorla, 2013). The client lists these ciphers in its preferred order;

SSL/TLS: What’s Under the Hood
!

10

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

in other words, it would prefer to use the cipher listed first if the server supports it. The

server replies with a ServerHello message, which contains its choice of cipher from the

client’s list and a random string, again for use later when generating cryptographic keys.

Notice that it is the server that ultimately decides on the actual cipher to be used for

encryption. If the server is not satisfied with any of the cipher choices offered by the

client, it will send a “Handshake Failure” message back to the client and per RFC,

sending a TCP packet with the FIN and ACK flags set gracefully terminates the

connection (Dierks & Allen, 1999). Next, the server sends its certificate. The certificate

is the server’s proof of identify so the client can authenticate the server. The client

examines the certificate and if it is valid and digitally signed by a CA that the client

trusts, the client can be confident that it is talking to the correct server and not an

imposter. A more thorough discussion of CA trust follows in section 5.5.3.

A certificate is valid if it meets 3 criteria: the certificate must be signed by a CA

that the browser trusts; the domain name on the certificate must match the domain

presenting the certificate; and the certificate must not have expired. Additionally, some

browsers may confirm that the certificate has not been revoked before declaring it valid

(Viega et al., 2009, Sect. 1.2). There are also optional certificate extensions that, if

present, should be checked by the client. One important extension is “key usage”. This

is a field in the certificate that specifies what the certificate may be used for. Examples

are digital signature, non-repudiation and data encipherment. A complete description of

the key usage option for certificates is described in RFC 2459 (Housley, Ford, Polk &

Solo, 1999). If the certificate is self-signed, unsigned or not signed by a trusted third

party the browser will usually warn the user that the identity of the server cannot be

properly verified. A self-signed certificate is a certificate that has been signed using the

server’s private key, not the private key of a trusted third party.

If the method of key exchange chosen by the server is DH, the server sends the

ServerKeyExchange message that contains the public components that will be used to

generate the master secret (Rescorla, 2001, p. 35). Finally, the server sends the

ServerHelloDone message that indicates to the client that the server is finished passing

parameters.

SSL/TLS: What’s Under the Hood
!

11

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

Once the cipher suite has been agreed upon, the client and server can begin

trading more specific parameters. First, the client sends a ClientKeyExchange message

and a ChangeCipherSpec message. The ClientKeyExchange message contains the pre-

master secret, which is generated by the client. Both the client and the server will use

this to generate what is called a master secret from which they both will derive the final

cryptographic keys. The client encrypts the pre-master secret with the server’s public key

so if an eavesdropper were to intercept this bit of data he could not decrypt it. If the

cipher chosen for this session was DH, then the ClientKeyExchange contains the client’s

public DH parameters instead of the pre-master secret. The ChangeCipherSpec message

is just a message from the client to inform the server that all data the client sends from

here on will be encrypted using the agreed upon parameters. At this point, both the client

and the server have all the components necessary to generate the master secret and then

derive cryptographic session keys.

SSL/TLS: What’s Under the Hood
!

12

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

 Figure 3. The TLS handshake using the key exchange method

Both sides verify that the handshake has proceeded as planned and that both have

generated identical keys by sending an encrypted Finished message. First, the client

sends an encrypted Finished message to the server. This message is a message digest,

also called a cryptographic hash, of various components used during the handshake

process, not all of which have been transmitted on the network. This is encrypted with

the newly generated session key and sent to the server. Next, the server sends a

ChangeCipherSpec message to the client to tell the client that all data after this message

will be encrypted. This is followed by an encrypted Finished message from the server to

SSL/TLS: What’s Under the Hood
!

13

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

the client. The final step in the TLS handshake is for each side to decrypt and verify the

Finished message that it received from the other side. They do this by checking each

other’s work. Both sides perform a computation using the master-secret and a hash of the

handshake messages as inputs. This gets compared to the value received in the Finished

message from the other side. They will conclude that the handshake has succeeded if the

values match. If there was a problem with the verification then a HandshakeFailure

message is sent and the session is terminated (Rescorla, 2001, p. 81). Figures 3 and 4

show graphical illustrations of TLS handshakes, one using RSA key exchange and the

other DH key generation. Notice that the handshake in figure 4 using DH key generation

has an extra step. If the server selects a DH cipher from the list of ciphers presented to it

from the client, then it must also send the parameters that the client will need for

generation of the master secret in the ServerKeyExchange message.

SSL/TLS: What’s Under the Hood
!

14

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

Figure 4. The TLS handshake using the key generation method (Diffie-Hellman).

2.2.2. The Record protocol
Now that the encryption parameters have been established and session keys

generated the real purpose of this connection – data transfer can take place. This is where

the record protocol comes in. The record protocol is used to break the stream of data

into pieces for transmission (Rescorla, 2001, p. 61). Each piece is encrypted and

encapsulated with a header letting the other side know the specifics about that particular

SSL/TLS: What’s Under the Hood
!

15

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

piece. Together this header plus data is called a “record”. The encrypted records contain

the confidential data that is transmitted back and forth. All packets starting with the

Finished messages of the TLS handshake are encrypted using the newly generated

session key. As we will see later, Wireshark is able to reassemble and decrypt these

records when given access to the browser’s key log file, which contains the values

needed to derive the session key.

3. Capturing pre-master secrets/master secrets
Not all browsers support the logging of TLS session components. As of this

writing, Firefox 19 and Chrome 24 so support this feature.

Both Firefox and Chrome will check to see if the user has an environment

variable set for “SSLKEYLOGFILE” which points to a writable file. If so, the browser

will write the secrets to the file identified by the environment variable. This should be a

user environment variable, not a system-wide or global variable since these secrets can be

used to decrypt captured web traffic which may contain sensitive data.

3.1.1. Environment Variables
On a Linux system user environment variables may be set using any of several

files. For example, the users environment variables may be set in ~/.profile,

~/.bash_profile, ~/.bashrc, etc. Typically, the way to create the file and set the

environment variable on a Linux system is like this:

$ touch /protected/folder/my_session_keys.log
$ chmod 700 /protected/folder/my_session_keys.log

Then add the following line to whichever file is executed at login, for example,

for user account student this might be /home/student/.profile

export SSLKEYLOGFILE=/protected/folder/my_session_keys.log

Typing “echo $SSLKEYLOGFILE” after a successful login will confirm the value

assigned to the variable.

SSL/TLS: What’s Under the Hood
!

16

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

3.1.2. The key log file
Network Security Services (NSS) is an open source set of C libraries, maintained

primarily by Mozilla, that contain cryptographic modules. NSS developed modules for

key log file operations as well as the format of the key log file (Mozilla Developer

Network, 2013). The key log file itself is a flat text file. If the proper environment

variable is defined and a file exists that the browser can write to, both Firefox and

Chrome utilize the NSS libraries to write pre-master secrets and master secrets to a file.

The file format is defined as follows (Combs, 2012):

CLIENT_RANDOM<space>|64 bytes Client Random Values in Hex|<space>|96 bytes

Master Secret in Hex|

RSA<space>|16 bytes encrypted pre-master secret in hex|<space>|96 bytes pre-master

secret in hex|

Figure 4a. Sample entries from a populated key log file

The first entry in figure 4a , CLIENT_RANDOM, is the format for TLS sessions

using non-RSA cipher suites. The master secret is saved for non-RSA sessions. The

second entry is for TLS sessions using an RSA cipher suite. The pre-master secret is

saved for RSA negotiated sessions. Wireshark will be able to read in these “secrets” and

generate the session keys, which will decrypt the captured data. Because the key log is a

flat text file written in ASCII, these are not raw hex values used by the browser, instead

they are the ASCII representation for the hex values. For example, the ClientRandom

value sent as part of the TLS handshake is 32 bytes long. Writing the ASCII

representation of a 32-byte value in hexadecimal requires 64 bytes.

SSL/TLS secrets log file, generated by NSS

CLIENT_RANDOM
51a3e7b9041587fb8143cd2c3c212a2c27c40e872c8fc7d10e995484c74d623d
04b1dd60fd0a1a9460ae66d3bdf76eae74f97459352b366b66b3f71150957b7b282
65992c0b0c74d953acd46beea80ac

RSA 0c9b7e07178f02e8
03014fbec62aa7e665957155cb841cbb8f04d4ef48d24160ee40bf1a90aa964c56d4
53711af4abad169edd1f04466282

!
!
!
!
!

SSL/TLS: What’s Under the Hood
!

17

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

4. Capturing Traffic
There are several different tools that will capture network traffic. Two common

free tools are tcpdump and Wireshark. Wireshark is an open source GUI based

application that runs on many platforms including Linux, Windows and OS X

(Wireshark Protocol Analyzer, 2013). Wireshark has a command line version as well,

called tshark that is typically installed during a Wireshark install. Tcpdump is a

command line application that runs on many Unix and Linux operating systems

(Tcpdump & Libpcap, 2013). Windump is the port of tcpdump for Windows (WinPcap,

2013). This paper will address packet capture using tcpdump, Wireshark and tshark on

Fedora Linux.

4.1. Capturing network traffic with tcpdump and tshark
Unix–like machines may have tcpdump installed by default. If not, it can be

downloaded from www.tcpdump.org. Tcpdump also requires that the network packet

capture library, libpcap, be installed. This is also distributed at www.tcpdump.org. For

capturing traffic, tshark syntax is very similar to tcpdump; however, tshark has many

more options than tcpdump for displaying data from packet captures. Documentation for

tshark can be found on the tshark man page (Combs, 2013).

Figure 5 illustrates how to capture packets on network interface “eth0” and write

the data to a file called “packets.pcap” in both tcpdump and tshark. The –n option

instructs tcpdump not to resolve names while it is capturing data and the -w option

indicates that tcpdump should write to a file. The key combination of Control-C will end

the packet capture and close the file for both utilities.

SSL/TLS: What’s Under the Hood
!

18

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

Figure 5. Capturing packets using tcpdump and tshark

4.2. Capturing network traffic with Wireshark
!

Capturing traffic using Wireshark is very simple. Select “Capture ! Options…”

to view the capture dialogue. Select the network interface and any other desired options,

such as, unchecking the name resolution boxes (Figure 6). Using “promiscuous mode”

on all interfaces will capture all traffic that an interface can “see” and is sufficient for this

example. Click on the Start button to begin the capture. To conclude a packet capture in

Wireshark select “Capture ! Stop” for the menu bar or click on the Stop Capture button

on the toolbar. The captured packets are displayed in the Wireshark 3-pane interface.

SSL/TLS: What’s Under the Hood
!

19

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

 Figure 6. Capturing packets using Wireshark

5. Analyzing Traffic

For the results and discussion that follow, I created a test lab and spent many

hours using Wireshark, tshark and tcpdump to view network traffic. This section will

illustrate how the TLS handshake works using a captured TLS session establishment and

login sequence from a temporary SANS portal account, which has since been removed.

The handshake records comprise the TLS session establishment and negotiation of the

session parameters. That is followed by “Application data” records that make up the

actual login to the SANS account. Appendix A contains a step-by-step guide for this

process without the explanations.

SSL/TLS: What’s Under the Hood
!

20

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

5.1. Set environment variables
Prior to capturing the data there are a few things to set up. First, the key log file

must exist as well as the environment variable “SSLKEYLOGFILE”. This will signal the

browser to save TLS pre-master/master secrets and allow decryption of the data outside

the browser. The procedure for setting this up is described above in “Capturing pre-

master secrets/master secrets”, or refer to Appendix A.

5.2. Capture network traffic
Using tcpdump, the following command will start capturing all network traffic

coming in to the interface eth0 (-i), DNS names will not be resolved (-n) and captured

data will be written (-w) to the file sansLogin.pcap.

 # tcpdump –i eth0 -n –w sansLogin.pcap

Now that network traffic is being captured, open up Firefox or Chrome and login

to a portal account. This experiment has worked with Firefox versions 19 through 22 and

Chrome versions 24 through 30. Since this feature is not yet well documented, it is

unclear what the future support will be.

This short example includes only a login to the SANS portal account followed

immediately by a logout. When the logout sequence completes, terminate the packet

capture in tcpdump by entering Control-C. If the packet capture terminates before the

TLS session is properly terminated then Wireshark will not have all the packets it needs

to properly reassemble the session and will therefore be unable to decrypt the traffic.

At this point, the captured traffic from a login/logout session exists in

sansLogin.pcap and the keys for that session have been written to the key log file. To

verify that the keys were successfully written to the key log file:

less $SSLKEYLOGFILE

5.3. A look at the traffic in Wireshark
Open the new packet trace file in Wireshark, noting that Wireshark does not

require administrative privileges to open a previously captured trace file because the

default permissions that it assigns allow anyone to read.

SSL/TLS: What’s Under the Hood
!

21

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

 $ wireshark –r sansLogin.pcap

In Wireshark select Analyze ! Conversations from the menu bar at the top of the

screen. Click on the tab for TCP. This will display a summary of the different TCP

conversations in this trace file (Figure 7).

Figure 7. Wireshark’s “Analyze Conversations” window

The IP address resolution for www.sans.org at the time of this capture was

66.35.59.202 and the port for the HTTPS connection was 443. The highlighted line

represents the conversation for the actual login session. Select “Follow Stream” and

Wireshark will filter on all packets related to that conversation only. The actual meat of

the traffic, the payloads without the TCP handshake packets and packet headers, are

arranged neatly in a pop up window that is in two colors, one color for the client to server

payloads and the other color for the server to client payloads. This is often red for client

initiated packets and blue for server initiated packets but the default can vary per

platform.

SSL/TLS: What’s Under the Hood
!

22

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

Figure 8. “Follow Stream” shows the payloads for an entire TCP stream.

The data shown in figure 8 is the raw data from the TCP payloads in this stream.

The first portion of the SSL handshake, including the transmission of the server’s

certificate can be seen in figure 8. Further down in the stream, after the completion of the

TLS handshake, the data would be encrypted and therefore unreadable. Close the

“Follow TCP Stream” window and look at the top pane in Wireshark. The display filter

shows that only the packets associated with this single TCP stream are being displayed.

The first 3 packets establish the TCP connection between the client and the server using

the sequence of TCP flags [SYN], [SYN, ACK] and [ACK]. What follows the TCP

three-way handshake is the handshake to establish the TLS session parameters. After the

TLS handshake comes the actual data that is being transmitted, which Wireshark labels

“Application Data”.

SSL/TLS: What’s Under the Hood
!

23

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

5.4. Dissecting the TLS handshake
The first step in the TLS handshake, the ClientHello, follows the TCP handshake

and is underlined in figure 9.

Figure 9. ClientHello portion of handshake

To filter for only the packets that comprise the TLS handshake, add the following

to the display filter: “&& ssl.handshake” and Apply (Figure 10). This will narrow

the selection and display only the handshake packets for this particular conversation.

Figure 10. Display filter showing single SSL handshake sequence

The handshake consists of 10 distinct steps and there is an extra step when using

the DH key generation method. The TLS session captured in figure 10 shows the steps of

the TLS handshake transmitted in 6 packets. This is because the entire TLS stream,

starting with the handshake records, is broken up at the application layer into the

maximum size pieces that may be transmitted at a given time over the network to reduce

overhead and improve performance (Rescorla, 2001, p. 179). In other words, some of the

handshake records are combined and sent in one packet. Other records, like the

SSL/TLS: What’s Under the Hood
!

24

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

certificate are too long to fit into one packet and so are split up and sent in two packets.

The TLS data is the embedded protocol data in the TCP packets. Each packet will

contain a frame header, and IP header and a TCP header. Following the TCP header is

the TLS data.

RFC 2246 defines the format for the TLS records (Dierks & Allen, 1999). There

are specific TLS header values to identify what type of content is contained in each

record. Wireshark uses these specifications to parse the data and display it properly.

Each record can consist of one of four “Content Types”, Alert, ApplicationData,

ChangeCipherSpec or Handshake. Alert messages are to signal warning or error

messages, ApplicationData contains the encrypted data being sent back and forth,

ChangeCipherSpec is the message informing the other side that encryption will begin and

the Handshake content type is used while setting up the session. Because there are

different fields for each Content Type, there is a formal definition for these header fields,

defined in RFC 2246 (Dierks & Allen, 1999, pp. 48-50). Header fields can take the

following values:

SSL/TLS: What’s Under the Hood
!

25

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

Figure 10a. TLS record header field values

Content Type

ChangeCipherSpec = 0x14

Alert = 0x15

Handshake = 0x16

ApplicationData = 0x17

Protocol Version

SSL v3 = 0x0300

 TLS v1.0 = 0x0301

 TLS v1.1 = 0x0302

 TLS v1.2 = 0x0303

Handshake Message Type

 ClientHello = 0x01

 ServerHello = 0x02

 Certificate = 0x0B

 ServerKeyExchange = 0x0C

 ServerHelloDone = 0x0E

 ClientKeyExchange = 0x10

 Finished = 0x14

Alert Message Type

close_notify 0x00

unexpected_message 0x0A

bad_record_mac 0x14

decryption_failed 0x15

record_overflow 0x16

decompression_failure 0x1E

handshake_failure 0x28

no_certificate 0x29 SSLv3 only

bad_certificate 0x2A

unsupported_certificate 0x2B

certificate_revoked 0x2C

certificate_expired 0x2D

certificate_unknown 0x2E

illegal_parameter 0x2F

unknown_ca 0x30

access_denied 0x31

decode_error 0x32

decrypt_error 0x33

export_restriction 0x3C

protocol_version 0x46

insufficient_security 0x47

internal_error 0x50

user_canceled 0x5A

no_renegotiation 0x64

!

SSL/TLS: What’s Under the Hood
!

26

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

Below are the formats of the header fields for the four different record types:

Handshake (Figure 11) , ChangeCipherSpec (Figure 12) , ApplicationData (Figure 13)
and Alert (Figure 14).

N
ot
!

En
cr
yp

te
d! Content!

Type!0x16!
(1!byte)!

!

Protocol!Version!
(2!bytes)!

Record!
Length!
(2!bytes)!

! !

En
cr
yp
te
d!
if!

M
es
sa
ge
!T
yp
e!
0x
14

! Handshake!
Message!
Type!

(1!byte)!

Message!Length!
(3!bytes)!

Data!

Data…(length!varies!with!message!type)!

!!!!Figure 11. Handshake Record Layout

!!!

!

N
ot
!

En
cr
yp
te
d!

Content!Type!
0x14!

(1!byte)!

Protocol!Version!
(2!bytes)!

Record!
Length!(2!bytes)!

 Figure 12. ChangeCipherSpec Record Layout

En
cr
yp

te
d!

Content!Type!
0x17!

(1!byte)!

Version!
(2!bytes)!

Length!
(2!bytes)!

Data!

Data…!

 Figure 13. ApplicationData Record Layout

SSL/TLS: What’s Under the Hood
!

27

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

N
ot
!E
nc
ry
pt
ed

! Content!Type!
0x15!

(1!byte)!

Version!!
(2!bytes)!

Length!!
(2!bytes)!

Severity!Level!
(1!byte)!

Message!code!
(1!byte)!

!!!!!Figure!14.!!Alert!Record!Layout!

5.5. Handshake records in detail
5.5.1. ClientHello
Since the client initiated this TCP connection, it will also start the negotiation

with the server regarding TLS parameters, making suggestions that the server must either

agree to or suggest a suitable alternative in order for the connection to be successful. The

client presents the parameters shown in figure 15. The handshake header fields are

outlined in red and contain handshake type, handshake length and TLS version.

Following the header fields, are the content type specific fields. This particular record is

a ClientHello record and contains the random data that the client will use when

establishing keys later, the cipher suites that the client supports, the server name it would

like to authenticate, etc. By clicking on an individual item in the middle pane, Wireshark

will highlight the corresponding hex value for that item in the lower pane. Conversely,

clicking on any value in the lower pane in Wireshark will show the corresponding parsed

value with its identifier in the middle pane. The TLS record header is outlined in red in

figure 15 and can be mapped to the header fields shown in figure 11. These five bytes

define the Content Type (0x16 is a handshake record), TLS version (0x0301 is TLS

version 1.0), and the Length of the record following the header fields (0x00A4 or 164

decimal).

SSL/TLS: What’s Under the Hood
!

28

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

Figure 15. ClientHello

The handshake message header fields follow the TLS header fields and are

outlined in blue. Figure 15 shows a ClientHello message, identified by the 0x01 in the

handshake message type field. This is followed by the 3-byte message length field

(0x0000A0 or 160 decimal) and then the data associated with this Handshake message

type that is of variable length. Most of relates to the negotiation of cryptographic

parameters, such as, which cipher to use, whether or not to use compression on the data,

etc.

Highlighting and expanding the Cipher Suites field in the middle pane shows the

numeric representations of all the cipher suites that the client will support. Each cipher

suite is represented by a 2-byte value. Wireshark resolves this 2-byte value to the RFC

defined ciphers. A full listing of these values is maintained by IANA and can be found at

the IANA web site (Rescorla, 2013).

Figure 16 shows the ciphers supported by Firefox 21, which was used for this test.

SSL/TLS: What’s Under the Hood
!

29

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

 Figure 16. Cipher Suites supported by Firefox 21

5.5.2. ServerHello
Once the client is finished sending its proposed parameters to the server, the

server will respond with a ServerHello message (Figure 17). This portion of the TLS

handshake will inform the client which of the ciphers it has chosen from the list presented

by the client in the ClientHello message. It also passes its “random” values for key

generation later, confirms the version of SSL/TLS used and confirms which compression

method, if any, will be used on the encrypted data. For this particular session, no

compression will be used as shown by the Compression Method of “null”.

SSL/TLS: What’s Under the Hood
!

30

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

Figure 17. ServerHello message

5.5.3. Certificate
The server’s certificate is its credential for authentication. The server sends the

client its certificate that also includes the server’s public key. Either an intermediate

Certificate Authority or a root Certificate Authority digitally signs the server’s certificate.

If the server’s certificate is signed by an intermediate CA it must attach that certificate as

well. The intermediate CA’s certificate may be signed be another intermediate CA or a

root CA. All intermediate CA certificates must be attached in what is referred to as a

“certificate chain”. The certificate chain is complete when a root CA has digitally signed

a certificate. Browsers contain a store of trusted root CA’s. If a certificate from an

intermediate CA has been signed by a root CA in the browsers trusted store, then

according to this trust model the authenticating server can also be trusted. The client

verifies three things: an authority that the browser trusts has digitally signed the

certificate; the domain name on the certificate matches the domain that is presenting the

certificate; and the certificate has not expired (Schneier, 1996, Sec. 2.6).

If the certificate checks out, the client will proceed. If the cipher suite negotiated

was not a DH cipher then the server’s public key will be used to encrypt the pre-master

secret at a later stage in the handshake. If the cipher suite negotiated is a DH cipher, then

SSL/TLS: What’s Under the Hood
!

31

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

the server’s public key is not needed for anything else. There are many good resources

online for further information about certificates and Public Key Infrastructure (PKI)

including the already referenced book by Bruce Schneier, (Schneier, 1996). In the

example here, the length of the certificate is more than can be sent in 1514 byte datagram

so it is split up. The first portion is sent in the ServerHello message because that packet

was not near its maximum length. Wireshark shows the certificate in the following

handshake packet because that is the packet that reassembles the two portions of the

certificate. Figure 18 shows the certificate bytes beginning immediately following the

ServerHello. The Content Type of 0x16 and the Handshake Message Type of 0x0B

indicates that a certificate follows.

 Figure 18. ServerHello Message with first section of server certificate

SSL/TLS: What’s Under the Hood
!

32

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

The next record in the Wireshark display is the Certificate message. The second and

complete portion of the server certificate is transmitted in this packet. Expanding the

Certificate section in the middle pane in Wireshark will identify the various components

of the certificate (Figure 19).

Click on any component to see the corresponding highlighted value for that field.

Figure 19. Server certificate

5.5.4. Server to client handshake messages
The next packet contains two of the TLS handshake messages. They are

ServerKeyExchange and ServerHelloDone. The cipher chosen by the server in this

example session will use the DH key generation method. The ServerKeyExchange

message contains numeric components that will be used for the generation of the session

keys in the DH algorithm (Rescorla, 2001, p. 35). The ServerHelloDone message is a

one byte code to indicate that the server is finished with its side of the session negotiation

(Figure 20).

SSL/TLS: What’s Under the Hood
!

33

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

Figure 20. Diffie-Hellman public values from server in ServerKeyExchange message and the

ServerHelloDone Message

5.5.5. Client to server final handshake messages
The client then responds similarly, sending a ClientKeyExchange, a

ChangeCipherSpec and a Finished message, however, the Finished message is still

encrypted so Wireshark labels this “Encrypted Handshake Message”. When Wireshark is

pointed at the SSL key log file that stores the session keys and is able to perform

decryption, it will label this message Finished.

Since the client and server have decided to use the DH key generation method, the

client sends DH parameters in the ClientKeyExchange message just as the server did

above. This is followed by the ChangeCipherSpec message, a one byte code stating that

the all further transmissions will have an encrypted payload. Lastly, the client completes

its side of the TLS handshake by using the newly generated session key to encrypt a hash

of the handshake components, creating the Finished Message. The client and server can

SSL/TLS: What’s Under the Hood
!

34

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

each derive session keys at this point because they have exchanged all the necessary

information, including the DH parameters.

5.5.6. Server to client final handshake messages
The final step in the handshake is for the server to also send a ChangeCipherSpec,

followed by an encrypted hash of the handshake components so that the client can also

verify the integrity of the process. If both the client and server determine that the other’s

Encrypted Handshake Message is correct the connection will remain open and data will

be sent in encrypted ApplicationData records. If a problem is detected on either side

during the verification then the session is terminated and an alert record will be sent with

a message to indicate the problem.

At this point, removing just the “ssl.handshake” portion of the Wireshark display

filter will show all packets in the stream including the ApplicationData Packets. These

are all encrypted, so it is impossible to determine what data is being exchanged.

Wireshark needs to have access to the key log file in order to decrypt the Finished

messages from the handshake and the ApplicationData records. Navigate to the

Wireshark Preferences page using either Edit ! Preferences or the key combination

Shift-Ctrl-P. Expand “Protocols” in the leftmost column and select SSL.

Figure 21. Configuring Wireshark to use saved session keys

SSL/TLS: What’s Under the Hood
!

35

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

Enter the path to the log file as defined by the SSLKEYLOGFILE variable, which

Wireshark calls the “(Pre)-Master-Secret log file” and click Apply and OK (Figure 21).

Figure 22. The decrypted tab in Wireshark

The decrypted Finished message shown in figure 22 was called “Encrypted

Handshake Message” by Wireshark before it had access to the key log file. Now that

Wireshark can decrypt the data, it can read all the header fields, in this case, the

handshake type field is 0x14 defining this as a Finished message. The Finished message

content is a hash or digest over the master secret and all handshake messages. Expand

the record in the middle pane to view the decrypted Finished message from the client and

compare it to the decrypted Finished message from the server. The two messages are

different. This is because these messages contain a hash of the concatenation of all

handshake messages thus far so the server’s Finished message will be hashed over a

slightly different data set than the client’s Finished message. The Finished message is

encrypted with the newly generated session key. In the Decrypted tab in Wireshark, is

the handshake message type of 0x14 (20 decimal), followed by 3 bytes for the message

length field. This is followed by 0xC (12 decimal) bytes of data that represents the hash

used to verify the successful completion of the handshake. Each side makes a quick

calculation of what it believes the hash should be and compares it to what the other sent.

SSL/TLS: What’s Under the Hood
!

36

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

If those values do not match the session will not proceed. To understand how this

protects the integrity of the session, suppose that an attacker was able to intercept and

change some part of the handshake that the client sent to the server (remember, most of

the handshake is unencrypted). During the handshake verification process, the handshake

data used to calculate the hash for the Finished message consists of the data that it sent to

the server and the data that it received from the server. When the server verifies this

hash, it does its own computation of the fields that it received from the client as well as

the fields that it sent to the client. If an attacker had changed any of these fields while in

transit then those datasets would no longer match and the hash of each would be

different, causing the session to end in error (Rescorla, 2001, p. 81).

5.6. Dissecting the Application Data
 The data that follows the handshake is the ApplicationData. Adding “and

ssl.segments” to the Wireshark display filter will display only the decrypted packets from

that stream. Because it is decrypted, Wireshark can apply protocol decoders and parse

the contents that are now identified and labeled as HTTP and highlighted with the default

color of green. Figure 23 shows the unencrypted ApplicationData packets and figure 24

shows the properly decrypted and decoded HTTP data.

Figure 23. Application Data records before decryption

SSL/TLS: What’s Under the Hood
!

37

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

 Figure 24. Application Data records after decryption

Note the tabs at the bottom in Figure 24. Because TLS breaks up the data for

encryption at the application layer and then TCP may have to further break up encrypted

streams at the transport layer, there may be several tabs for a given packet where data has

been decrypted and/or reassembled. Selecting the “Decrypted SSL data” tab will show

the decrypted data in the bottom pane of Wireshark. Alternatively, by right-clicking on

any HTTP, SSL or TLS packet in the top or middle pane and selecting Follow SSL

stream and assuming Wireshark has access to the key log file, Wireshark will pop up a

box containing the TLS Application data without the packet headers and decrypted.

Wireshark is displaying data that has already been decrypted in a browser in this

example. What is Wireshark showing us that we could not see with the browser? Any

code, including scripts or values that was sent to the browser encrypted and used by the

browser to display pages has been decrypted by the browser but it has not necessarily all

been displayed. The browser does, however, have a “View Source” option that will show

the raw HTML revealing some of these scripts and values. What is not normally

displayed is the data being sent back from the browser to the server, that is, unless we

have set up a proxy such as Fiddler or Paros. This data may include things like cookies,

hidden form fields or data the user has entered into a web form such as usernames and

SSL/TLS: What’s Under the Hood
!

38

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

passwords. Often this is data used by the web application to help with session tracking

and as such is not normally displayed to the user.

Most of us know that usernames and passwords should never be sent in cleartext

because tools like Wireshark can capture that traffic and compromise those credentials.

Many websites use TLS to encrypt a session so that sensitive credentials are protected.

For example, a server login session normally starts by setting up a TLS connection with

the server after which the server sends the browser a login page. The user enters his

username and password and it is encrypted with the established session keys and sent

back to the server. For a session using the RSA key exchange method, if an attacker was

intercepting that traffic, she would also need the server’s private key in order to discover

the pre-master secret. The pre-master secret is required to generate the master secret that,

in turn, is used to generate the session keys. The session keys ultimately decrypt the

captured data. For a session using the DH key generation method, an attacker

intercepting traffic would also need the DH private components or she would not have

enough information to generate the master secret and then the session keys. Since those

private components do not cross the network, such an attack is unlikely to succeed. In

contrast, Wireshark is able to decrypt the session because it has access to the pre-master

and master secrets that the browser saved and it has captured the client and server random

values from the ClientHello and ServerHello messages, or the DH parameters from the

ClientKeyExchange and ServerKeyExchange messages.

We already know our username and password so this may not seem very

interesting, however, this method can be helpful when troubleshooting TLS connection

problems or debugging web applications. It also provides a way to view exactly what is

sent back and forth during an encrypted session that a browser does not normally display.

From a defensive standpoint, this is not a bad method to “look under the hood” and get a

better view of how an application works in order to decide whether or not to perform

transactions with a given online entity, for example, a bank. This is not the only method

to view this decrypted data, but it provides another way. In addition, it helps to

understand how the TLS protocol works by breaking down the steps in an organized

fashion. To further enhance an understanding of TLS, Wireshark offers the option to turn

SSL/TLS: What’s Under the Hood
!

39

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

on debugging mode. With this enabled, every step that Wireshark takes in the decryption

process is documented in a debug file.

5.6.1. Help from Wireshark’s debug feature
The final part of this examination of TLS traffic will demonstrate the debug

capabilities that are built into Wireshark using the same trace file, sansLogin.pcap with

logged pre-master and master secrets in the sessionkeys.log file. The first step in this

process is to create an empty debug file so that Wireshark can write the details of its

actions when reading in the trace. The file can be located anywhere but it is important to

remember that all decrypted data will be written to this file so if the data is sensitive, it

should be properly protected.

 $ touch /tmp/sansLogin.debug.txt

This can be set up on Wireshark preferences page using either Edit ! Preferences

or the key combination Shift-Ctrl-P. Expand “Protocols” in the leftmost column and

select SSL.

Figure 25. Configuring the debug file in Wireshark

Enter the path to the newly created SSL debug file and click Apply (Figure 25).

When the trace file is opened in Wireshark, the debug file will be populated with verbose

information about the steps taken by Wireshark to read in the file, reassemble packets and

decrypt the data. If the trace file is already open, the debug file will be populated

immediately after clicking Apply or OK to finish the dialogue. The debug file will

continue to be populated every time Wireshark performs any action. This file can grow

very large, very quickly. For our purposes here, loading the file once to populate the

SSL/TLS: What’s Under the Hood
!

40

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

debug file will provide adequate data for analysis. To stop the debugging, remove the

entry for the debug file in Wireshark’s preferences and click Apply or OK.

When Wireshark encounters an encrypted packet and it has been given a filename

where pre-master and master secrets have been stored it will search through the file,

looking for the correct key. There are entries that start with RSA and entries that start

with CLIENT-RANDOM. Wireshark takes a brute force approach and checks each line

to see if the index field matches the corresponding field in the packet. For example, if a

line in the key log file starts with RSA it will compare the next 16 bytes from that line in

the file to the first 16 bytes of the encrypted pre-master secret field from the

ClientKeyExchange message. If the client and server have negotiated a DH key

generation method then that particular session will not use an encrypted pre-master secret

so Wireshark will move to the next line in the file. When an entry in the key log file

starts with CLIENT_RANDOM Wireshark will compare the next 96 bytes from that line

in the file with the Random field in the ClientHello message of the TLS handshake for

that session. This process continues until a match is found or the end of the file is

reached. The debug file will have an entry for each line it checks, as well as, whether or

not it found a match. To see which cipher suite was chosen for a particular TLS session

in Wireshark enter the following display filter:

 ssl.handshake.ciphersuite && tcp.port == xxx
(xxx = the client’s TCP port number for that particular session)

Two packets are returned for this display filter, the first is the ClientHello message,

which is the client’s initial proposal to the server stating which cipher’s it supports and

the second is the ServerHello message stating the cipher that it has chosen for the session.

Each cipher suite consists of four elements: 1) Authentication method 2) Key

exchange method 3) Encryption algorithm and 4) Hash algorithm.

SSL/TLS: What’s Under the Hood
!

41

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

Figure 26. Chosen cipher suite for a TLS session

Figure 26 shows a ServerHello message with the chosen cipher suite highlighted.

The server sends the value 0x0005 to the client to identify the cipher suite and Wireshark

translates that according to the assignments at IANA (Rescorla, 2013).

For this cipher, TLS_RSA_WITH_RC4_128_SHA, the TLS session will use RSA Key

Exchange, RSA Authentication, RC4 Encryption using a 128 bit key length and SHA1

hash algorithm (Rescorla, 2001, p. 74).

Figure 27. Sample from a key log file showing entries for RSA and Diffie-Hellman Key

Exchange methods.

SSL/TLS: What’s Under the Hood
!

42

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

The format of the TLS key log file shown in Figure 27 is documented at the

Mozilla Developer’s Network website (Combs, 2012). See Appendix B for a more

thorough examination of the contents a Wireshark debug file.

6. Securing packet capture and debug files
Since TLS is often used for sensitive transactions, it naturally follows that when

capturing this traffic along with the keys used to decrypt it, security of these files is

paramount. Of primary concern is the key log file, which should be readable only to the

owner of the file. In addition, when Wireshark writes to a debug file it writes TLS

session keys, ciphertext and the corresponding decrypted plaintext to the debug file as

described in the previous section and so may also require access restrictions. Securing

these files is documented in Appendix A.

7. Conclusion
!

This paper has outlined how to capture, decrypt and analyze TLS sessions using

the built in capabilities of Wireshark. The TLS handshake was examined in depth both

using Wireshark display filters as well as the debug capability that Wireshark offers.

Based on experiments done for this paper, the browsers that currently will support export

to a key log file for this type of operation are Firefox versions 19 -22 and Chrome

versions 24 - 30. This type of analysis is useful for those who wish to understand the

TLS protocol in greater depth. Web application developers may find these tools useful

when troubleshooting an application that uses TLS. Penetration testers may find value in

examining all the data transferred back and forth during an encrypted session with targets

of their test without using a proxy.

SSL/TLS: What’s Under the Hood
!

43

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

8. References
AlFardon, N., & Paterson, K. (2013, February 4). Lucky thirteen: Breaking the

TLS and DTLS record protocols. Retrieved July 5, 2013 from

http://www.isg.rhul.ac.uk/tls/Lucky13.html

Barker, E., Branstad, D., Chokhani, S., & Smid, M. U.S. Department of

Commerce, NIST. (2010). A framework for designing cryptographic key management

systems (800-130). Retrieved from website: http://csrc.nist.gov/publications/drafts/800-

130/draft-sp800-130_june2010.pdf

Bernstein, D. J. (2013, March 12). Failures of secret key cryptography. Retrieved

June 18, 2013 from http://cr.yp.to/talks/2013.03.12/slides.pdf

Combs, G. (2012, June 4). NSS key log format. Retrieved July 21, 2013 from

https://developer.mozilla.org/en-US/docs/NSS_Key_Log_Format

Combs, G. (2013, July 4). Tshark - dump and analyze network traffic. Retrieved

July 21, 2013 from http://www.wireshark.org/docs/man-pages/tshark.html

Constantin, L. (2012, September 13). 'CRIME' attack abuses SSL/TLS data

compression feature to hijack HTTPS sessions. Retrieved July 21, 2013 from

http://www.pcworld.com/article/262307/crime_attack_abuses_ssltls_data_compression_f

eature_to_hijack_https_sessions.html

Dierks, T. & Allen, C. (1999) The TLS protocol version 1.0. (Request for

comments: 2246) Retrieved May 15, 2013 from IETF:

http://www.ietf.org/rfc/rfc2246.txt

Dierks, T. & Rescorla, E. (2006) The transport layer security (TLS) protocol

version 1.1. (Request for comments: 4346) Retrieved May 13, 2013 from IETF:

http://www.ietf.org/rfc/rfc4346

Dierks, T. & Rescorla, E. (2008) The transport layer security (TLS) protocol

version 1.2. (Request for comments: 5246) Retrieved May 15, 2013 from IETF:

http://tools.ietf.org/html/rfc5246

SSL/TLS: What’s Under the Hood
!

44

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

Dougherty, C. (2011, September 27). SSL 3.0 and TLS 1.0 allow chosen plaintext

attack in CBC modes. Retrieved June 18, 2013 from

http://www.kb.cert.org/vuls/id/864643

Eckersley, P. (2011, October 25). How secure is HTTPS today? How often is it

attacked?. Retrieved from https://www.eff.org/deeplinks/2011/10/how-secure-https-today

Housley, R., Ford, W., Polk, W., & Solo , D. (1999, January). Internet X.509

public key infrastructure certificate and CRL profile. Retrieved from

http://www.ietf.org/rfc/rfc2459.txt

Marlinspike, M. (2011, April 11). SSL and the future of authenticity. Retrieved

from http://www.thoughtcrime.org/blog/ssl-and-the-future-of-authenticity/

Mozilla Developer Network. (n.d.). Network security services. Retrieved July 27,

2013 from https://developer.mozilla.org/en-US/docs/NSS

Rescorla, E. (1999) Diffie-Hellman key agreement method. (Request for

comments: 2631) Retrieved May 15, 2013 from IETF: http://www.ietf.org/rfc/rfc2631.txt

Rescorla, E. (2001). SSL and TLS: Designing and building secure systems. (1st

ed.). Montreal, Canada: Addison-Wesley Professional.

Rescorla, E. (2011, September 23). Security impact of the Rizzo/Duong CBC

"BEAST" attack. Retrieved June 28, 2013 from

http://www.educatedguesswork.org/2011/09/security_impact_of_the_rizzodu.html

Rescorla, E. (2013, May 8). Transport layer security (TLS) parameters. Retrieved

July 21, 2013 from http://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml

Ristić, I. (2013, May 14). SSL/TLS deployment best practices. Retrieved June 23,

2013 from

https://www.ssllabs.com/downloads/SSL_TLS_Deployment_Best_Practices_1.2.pdf

Schneier, B. (1996). Applied cryptography: protocols, algorithms, and source

code in C. 2nd ed. New York: Wiley. Retrieved from Safari:

http://proquest.safaribooksonline.com

SSL/TLS: What’s Under the Hood
!

45

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

Tcpdump & Libpcap. (2013, July 10). Retrieved July 19, 2013 from

http://www.tcpdump.org/

Viega, J., Messier, M., & Pravir, C. (2009). Network security with openssl.

(Kindle Edition ed.). Reilly Media. Retrieved from http://www.amazon.com

Winpcap: Windows packet capture library. (2013, July 10). Retrieved July 24,

2013 from http://www.winpcap.org/

Wireshark Protocol Analyzer. (2013). Retrieved June 14, 2013 from

http://www.wireshark.org

SSL/TLS: What’s Under the Hood
!

46

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

Appendix A
Decrypt TLS Traffic Using Wireshark: Step-by-Step

1. Create a key log file and set environment variable
Add the following to either ~/.profile, ~/.bash_profile, or ~/.bashrc

export SSLKEYLOGFILE=/protected/folder/my_session_keys.log

Create the empty log file

$ touch /protected/folder/my_session_keys.log
$ chmod 700 /protected/folder/my_session_keys.log

Check the variable

$ ls –l $SSLKEYLOGFILE

2. Capture traffic
2.1.1. Tcpdump or tshark

Figure A-1 shows how to capture traffic using tcpdump and tshark respectively. The
command will capture all traffic on interface “eth0” (-i), IP addresses will not be
resolved to domain names (-n) and the packets will be written (-w) to a file called
packets.pcap in the current directory.

SSL/TLS: What’s Under the Hood
!

47

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

Figure A-1. Capturing network traffic with tcpdump and tshark

2.1.2. Wireshark

Select “Capture ! Options…” to view the capture dialogue. Select the network

interface and any other desired options, such as, unchecking the name resolution boxes

(figure A-2). Using “promiscuous mode” on all interfaces will capture all traffic that an

interface can “see”. Typically, this includes all traffic to and from that interface and all

broadcast traffic. This may vary if an interface is connected to a spanned switch port.

SSL/TLS: What’s Under the Hood
!

48

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

Figure A-2. Wireshark capture options

To end the capture, click on the Stop capture button from the Wireshark toolbar (figure
A-3).

Figure A-3. Wireshark stop capture and “Save As…” options

Save the captured packets to a file by selecting “File” from the Wireshark toolbar and
then “Save As …” to select a location.

2.2. Open a packet capture file in Wireshark for analysis

Open the Wireshark application and click on “File ! Open…” from the toolbar.
Navigate to the desired file.

3. TLS Analysis steps
3.1.1. Filter on TLS packets

From the Wireshark toolbar select Analyze ! Conversations and select the TCP tab.

SSL/TLS: What’s Under the Hood
!

49

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

Select an encrypted conversation form the populated list. A server port of 443 can most
likely identify encrypted conversations (figure A-4).

!
Figure!AV4.!!Conversation!list!displayed!by!Wireshark

Highlight a conversation and click on Follow Stream (figure A-5).

SSL/TLS: What’s Under the Hood
!

50

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

!
Figure!AV5.!!TCP!stream!display!in!Wireshark

Close “Follow TCP Stream” window to view just that conversation that Wireshark has
now filtered on (figure A-6).

SSL/TLS: What’s Under the Hood
!

51

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

!
Figure!AV6.!!Filtering!on!a!single!TCP!stream!in!Wireshark

3.1.2. Filter on the TLS handshake
To view just the TLS handshake from this conversation, add “&& ssl.handshake” to
the display filter (figure A-7).

Figure A-7. Isolate an SSL handshake in Wireshark

SSL/TLS: What’s Under the Hood
!

52

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

Click on the ServerHello handshake record in the top pane in Wireshark (figure A-8).

Figure A-8. ServerHello message

Expand any sections in the middle pane to view how Wireshark identifies the various
components.

3.1.3. TLS Decryption
To determine the location of the key log file type one of the following commands at the
command line

On Linux or OS X:
$ echo $SSLKEYLOGFILE

On Windows:
C:\> echo %SSLKEYLOGFILE%

Configure Wireshark to use the session keys collected by the browser in order to decrypt
the data. From the toolbar select “Edit ! Preferences ! Protocols ! SSL” (figure A-9).

SSL/TLS: What’s Under the Hood
!

53

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

Figure A-9. Wireshark’s SSL preferences dialogue box

In the Secure Sockets Layer configuration box, browse to the file containing the session
keys and click OK (figure A-10).

Figure A-10. Directing Wireshark to the key log file

SSL/TLS: What’s Under the Hood
!

54

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

Enter the display filter “tcp.port==443 && http” to show the packets that
Wireshark was able to decrypt (figure A-11).

Figure A-11. Display decrypted HTTPS packets

3.1.4. Use the SSL debug feature in Wireshark

Create an empty debug file for Wireshark to write its detailed decryption operations.

$ touch /path/to/protected/folder/my_debug_file.log
$ chmod 700 /path/to/protected/folder/my_debug_file.log

Configure Wireshark to use the debug file. From the toolbar select “Edit ! Preferences
! Protocols ! SSL” (figure A-12).

SSL/TLS: What’s Under the Hood
!

55

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

Figure A-12. Wireshark’s SSL preferences dialogue box

In the Secure Sockets Layer configuration box, browse to the newly created debug file
and click OK (figure A-13).

Figure A-13. Directing Wireshark to the debug file

SSL/TLS: What’s Under the Hood
!

56

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

Reload the capture file to populate the debug file. The reload button is on the main
toolbar in Wireshark (figure A-14).

Figure A-14. The reload packet capture button

Return to the SSL Preferences and remove the entry for the debug file to prevent this file
from growing very large.

View the debug file with any text editor to see verbose output from Wireshark regarding
its decryption operations. Appendix B shows an example debug file.

SSL/TLS: What’s Under the Hood
!

57

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

Appendix B
The Wireshark Debug File

Below is a section of the debug file (with many lines snipped for brevity) that illustrates

Wireshark’s process for finding the correct entry in the key log file and computing

session keys. This is an abbreviated entry for a single packet. Wireshark creates similar

entries for each packet that is part of a TLS conversation.

Reading!in!
$SSLKEYLOGFILE!

SSL/TLS: What’s Under the Hood
!

58

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

Correct!entry!from!key!log!
file!containing!preVmaster!
secret!and!random!values.!!
These!will!be!inputs!to!
pseudo!random!function!
(PRF)!to!generate!master!
secret.!

Master!secret!computation!

Session!key!generation,!
continued!to!next!page…!

SSL/TLS: What’s Under the Hood
!

59

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

Session!key!generation!
finished.!!Client/Server!Write!
keys!used!for!!application!
data!encryption/decryption.!

Session!key!generation!
success!message!

SSL/TLS: What’s Under the Hood
!

60

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

Example!of!decrypted!
client!Finished!message.!!
!
Finished!header!fields:!
Handshake!message!type!
=0x14!(Finished)!
!
Message!length!=!0x00000c!
(12!decimal)!
!
Verify!Data!=!b2!60!…..!
(This!is!the!decrypted!hash!
used!to!verify!integrity!of!
TLS!handshake)!

SSL/TLS: What’s Under the Hood
!

61

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

This fragment from a debug file shows frame number 208. It is a single packet

containing the ClientKeyExchange, ChangeCipherSpec and Finished elements of an TLS

handshake.

When Wireshark encounters a TLS packet, it searches the key log file for a

corresponding entry. If it finds a matching entry in the key log file, it is able to generate

“Keying material”. This is the “Key expansion” section. The “Key expansion” is a

stream divided up to create several different session keys, two of which are client and

server write keys. For a complete explanation of the various keys derived from the key

stream for a single TLS session see page 20 of RFC 2246 (Dierks & Allen, 1999).

The session keys remain in memory for the duration of the session. When an

ApplicationData message is encountered for the session, Wireshark writes the ciphertext

to the debug file and then uses the corresponding session key to decrypt the ciphertext

without recalculating the keys. It writes the hex encoded plaintext to the debug file as

well and for some embedded protocols, like HTTP, it will decode the hex encoded

plaintext to the corresponding readable characters or “decrypted app data fragment” as

shown in figure B-1.

SSL/TLS: What’s Under the Hood
!

62

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

Figure B-1. Conversion of hex encoded plaintext to readable text in the debug file, called

“decrypted app data fragment”

Wireshark works through the packets, frame by frame, decrypting packets when

possible and recording its actions in the debug file.

The display filters available in Wireshark provide a very granular and convenient

way to view particular fields in a given packet. This makes it relatively easy to find

records in a trace file containing values found in the debug file. For example, to search

for the encrypted pre-master secrets of an RSA key exchange use the display filters:

For RSA key exchange:
ssl.handshake.epms == 4722.2a2a.2f69.baf7 or
ssl.handshake.epms contains 4722

Figure B-2 shows the results of the filter in Wireshark.

SSL/TLS: What’s Under the Hood
!

63

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

 Figure B-2. Using Wireshark display filter to find encrypted pre-master secret from

 debug file

To view the handshake random values for key generation use the display filter:

ssl.handshake.random_bytes == 51cc.a885….<48 bytes
snipped>....fa04.0865
 or
ssl.handshake.random_bytes contains fa04.0865

 For a complete listing of Wireshark’s display filters is maintained at
http://www.wireshark.org/docs/dfref/.

SSL/TLS: What’s Under the Hood
!

64

!

Sally!Vandeven,!!sallyvdv@gmail.com! !

Figure B-3 shows the results of the random_bytes filter in Wireshark.

Figure B-3. Using Wireshark display filter to find a Client Random Bytes field from the

 debug file

