
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Don Quigley
SANS GIAC Version 1.4b, Option 2

Programmatic Management of Active Directory Groups

Abstract

Management of security group memberships in midsize and larger organizations
has always been a problematic issue. If individuals are not in the correct groups,
they usually need to call the company's security department, explain the issue,
and get approval to gain access to the security group before they can perform job
related tasks. For large companies with high turnover this can result in hundreds
of security requests per week. The impact to the bottom line of a company due
to lost productivity and salaries for the additional help desk personnel required to
handle these requests can be significant. How much money a large company
loses due to these inefficiencies can been seen in a recent article from CIO
Magazine:

"Jonathan Penn, a research director for Cambridge, Mass.-based Giga
Information Group, says provisioning can save as much as 50 percent of
all IT time spent on user account management, such as creating new
accounts, changing accounts and disabling accounts." [1]

Even if we ignore the additional cost required to manually process security
requests, manually maintaining security rights can lead to an auditing nightmare.
Few organizations actively monitor the membership of security groups. Even
though an employee's job responsibility may change over time, access to
applications and data that is no longer required is seldom removed.

I currently work at a company with a base of 160,000+ active computer users.
Using some homegrown Perl code that I have written along with our
metadirectory solution, we have automated our group provisioning/de-
provisioning process where possible. We are currently averaging around 300
automated Windows 2000 group adds/deletes per day. This paper goes into
some detail to explain the solution that was developed and includes the Perl
code in the appendices (although more up to date code and documentation can
be found at my website after September 10, 2003: www.donquigley.net).
Although the code is designed to work with Critical Path's MetaConnect product
as a constructed attribute, I have also included a program that can be used to
"manually" call the subroutine so the only real requirements to use the code is an
LDAP [4] accessible data store and Perl.

Before

My company has a user base of well over 160,000 users. The users include
employees, consultants (10,000+), and agents (users with system accounts and
access to some of our systems but who are not direct employees). In an
environment like this, some form of identity management is an absolute

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

necessity. The need for some manner of programmatically determining
authorization based on business data is fairly well laid out in a recent white paper
from PriceWaterhouseCoopers [4]:

"It’s not about just knowing who to let in and who to keep out. That
decision is usually pretty clear. It’s also about control. Technology controls
– like authorization or authentication, for example. Just as importantly, it’s
about process controls – the rationalized business rules and logic that
constrain users, attributes and roles are just as critical as the technical
architecture."

To help address this need, we have implemented a fairly complete metadirectory
system that automatically provisions and de-provisions ids to our 43 production
NT 4.0 domains, miscellaneous NT 4.0 testing domains, UNIX, Lotus Notes, and
our internal white pages. The information used to provision for these accounts is
mostly derived from our HR database, our external associate database, and our
subcontractors database.

As part of our provisioning process into NT 4.0, we have a customized Perl
application that automatically provisions/deprovisions users into groups. This
program is relatively straightforward and simple to use. It reads in a set of
criteria files in a format similar to:

{attributeName1#attributeName2# ... #attributeNameN}
value1#value2 #valueN NT4ProgrammaticGroupName

When a user's entry is processed by our metadirectory, the user's information
stored in our metadirectory is compared to this list of criteria. If the user meets
the requirements, the user is added to the group and the group name is added to
the user's multi-valued grouplist attribute in the metadirectory. If the user has a
group listed in the grouplist attribute and they no longer meet the requirements
for this group, the user is automatically removed from the group.

Initially, this form of automated group population would only appear to have a
limited impact. In practice, however, this simple piece of code is saving our
company a lot of money every year. On an average day, the automated group
process automatically provisions or deprovisions users into 100+ groups.

Programmatic groups have helped us to partially address an issue we call "group
proliferation". Analysts on projects creating new web-based applications at my
company often use NT groups to limit who has access to an application. If these
analysts are not aware of an NT group or set of groups that already contain all of
the users that need access to the group, they will have a new group created. It is
extremely hard (especially with 3000+ system's employees actively working on
creating new applications) to keep track of what groups have already been
created and why.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Many times an analyst will find a group that contains all of the users that need
access to the application in addition to a couple of extra users that do not need
access to it. Rather than trying to figure out if the two extra users should no
longer be in that group (which requires determining what the group was originally
intended for), many analysts will take the easy route and have a new group
created.

This group proliferation can quickly lead to an administrative and security
nightmare. At one point in time we had 23,121 active accounts and 7273 groups
in one of our production NT 4.0 domains. This type of group proliferation can
lead to quite a few security risks. Determining what type of access is granted by
each group and whether or not all of the users in that group should be there is a
nightmare. Left to itself, group proliferation will result in a lot of users that have
access to applications and data that they no longer need or should never have
had access to in the first place.

Programmatic groups go a long way towards fixing the problem. With a
programmatic group, the security analyst will try to determine if there is any
information in any of our employee information stores (the HR database, the
corporate white pages, etc) that all of the users needing access to an application
or set of data have in common. This list of identifying information is then given to
the directory team. More often than not, there will already be an existing
programmatic group with the same set of criteria. This prevents an additional,
unnecessary group from being created. Additionally, this means that anyone no
longer needing access to data or an application because their job has changed
will automatically be removed from the group. One of the major problems with
manually maintained groups is that although organizations are really good at
identifying groups a user needs to be added to (users will call the helpdesk to
complain about lack of access), organizations usually do a very bad job of
removing users from groups they no longer need to be members of (users almost
never call the help desk to say they have too much access) [3].

During

Like many other organizations, my company has recently started migrating from
Windows NT 4.0 to Windows 2000. As part of this migration, I have taken the
opportunity to try to address some of the limitations of our existing NT 4.0 group
code. Since Active Directory also gives us more options when dealing with
groups, a lot more changes needed to be added to the programmatic group
code. After developing a list of everything we wanted to change and all of the
new features we wanted to add to the group code it was decided that I should
just re-write the whole thing.

One of the first decisions we had to make was whether or not to always remove
users automatically from groups if they no longer met the criteria or if we should

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

only remove them programmatically if they had been added programmatically. In
our NT 4.0 environment, we often had users manually placed into our
programmatic NT 4.0 groups. According to our HR records, these users that
were manually added to these groups had nothing in common with the users that
were programmatically added. This was mostly due to one fact that has always
plagued our metadirectory team and resulted in a lot of Perl code to handle
special exceptions. Namely, the primary purpose of the information contained in
the HR database is to determine how much a person gets paid and where in the
organization's hierarchy they fit. A person's actual job responsibility is
determined by their manager. This means we might have a programmer in one
office that is also in charge of hiring consultants for the office even though he's
not in management. HR does not know and does not care that one of his job
responsibilities is hiring consultants -- this additional duty assigned to the
programmer by his manger has no bearing on his pay or employee benefits.
This means, however, that we cannot programmatically give him access to the
application that we use to hire consultants since there is a disparity between his
HR defined job responsibilities and his manager assigned job responsibilities.

Because there is (and never will be) a data store that accurately reflects all of an
employee's job responsibilities, it was decided that we should only
programmatically remove users from groups that they were programmatically
added to. This allows us to manually add users to a security group without
having to worry about them getting taken out of the group every morning. To
keep track of which groups a user was programmatically added to a new attribute
in Active Directory called jegrouplist was created. This attribute would contain a
list of all of the groups that a user had been added to programmatically. The
jegrouplist attribute would also contain the group name and date of any groups
that a user had programmatically been removed from.
Unfortunately, this also meant that users would not be removed from groups
when their job positions changed if they were added manually. To help alleviate
this, every group in our organization has at least two users assigned to monitor
it's membership for accuracy. This did not work very well when these group
owners were supposed to monitor the membership of 10-20 groups with 2000+
users per group. Using programmatic groups, these group owners only need to
verify that user's added manually to these groups still need access. Needless to
say, group owners are much more willing to thoroughly examine the access
needs of a handful of users in a small number of groups than they were when
they had to examine the access rights of hundreds or thousands of users. The
end result is that, as an unexpected benefit of programmatic group management,
manually maintained group memberships are monitored much more closely than
they have been in the past.

Another decision we had to make was how flexible we wanted the code to be
when finding groups to programmatically populate. By default, my code will
always build programmatic groups in the ou=programmatic, ou=groups branch.
If a group with the same name already exists in a different branch, the group

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

creation will fail. At this point in time, it would have been fairly easy to have the
code add users to the pre-existing group even though the group was in the wrong
location. It was decided that with the Win2k's ability to delegate, this would be a
bad idea. If a not-so-trustworthy user knew we were going to create the
UberUser group that has access to all date everywhere, they could create a
group called UberUser in a branch that they had admin rights to (only a small
number of users have any administrative rights to the programmatic group OU).
This would allow that user to grant herself access to this group anytime she felt
like. Although for the most part we believe that all of our 160,000+ users have
the company's best interests at heart, there's that one person on the third floor
with the shifty eyes that we don't quite trust so we decided that all groups not
located in the programmatic group OU would have to have their DN fully
specified before we would touch them. This way, if that person does create a
group in an improper location, we'll notice in the error log that the code was not
able to add anyone else to that group. And, as always, even if we do not notice
all of the failed security group adds, our users will be more than happy to call us
up and ask us why they don't have access to do their job.

Our new group code also needed to take into account several other options
available to us with Active Directory. We had the option of creating 3 different
types of groups (6 if we decided to include the ability to programmatically create
mail groups), we could nest groups, and groups could be nested across domains.
Since these are all good features, we felt that the new group code should be able
to support them.

Finally, we also had to address the maximum group size limitation in Active
Directory. An Active Directory group should not contain more than 5000 users
[6]. With 160,000 users we have the potential to exceed this. To compensate for
this limitation I added a check for a numeric group indicator. If this indicator is
present, the code will add a number to the base name of the group specified. If
more than 900 users are in that group, a new group will be created with the same
name but a different number (i.e. AllEmployee1, AllEmployee2, etc). These
numeric groups are then nested into another group (i.e. AllEmployees) that can
be used to grant access to resources.

Before I step through how the group code functions, I need to mention a few
things the metadirectory product that we are using: Critical Path's MetaConnect.

At a high level, the MetaConnect product has 3 parts that we will be concerned
with in the paper. The first part are the connector views or CVs. The connector
views are external systems that MetaConnect connects to. MetaConnect can
read information from connector views, write information to connector views, or
both. The metaview is MetaConnect data store. Information read in from the
connector views is written to the metaview. Finally, we have the most important
part which is the join engine. The join engine "joins" all of the data coming in
from the CVs and writes it to the metaview. The join engine is also responsible

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

for updating information in the client CVs when information in the metaview
changes.

MetaConnect uses a change based process rather than a batch based process.
This means that user entries are only looked at if something changes. If a user's
HR information does not change for a month, MetaConnect will not attempt to do
anything with the user's entry for that month. The advantage of this is that our
metadirectory only has to process 3000-4000 entries a day rather than all
160,000 entries every day. The disadvantage of this is that when we implement
new criteria we need to force MetaConnect to look at any entries that might be
impacted by the new criteria. To force MetaConnect to examine an entry, we
usually just change the value of the entry's accountList attribute.

So to tie all of this together, let's look at a user who has moved to a different job
within the company. HR will enter the user's new information into their database.
Based on the database's change log, MetaConnect will notice that the entry has
changed. So the join engine will read in the user's entry from the HR CV,
process it, and write the change to the metaview. MetaConnect will now notice
that the information for the user has changed in the metaview. This will trigger
the join engine to look at the user's metaview entry. The join engine will then
determine which client CVs contain that user's information and will update those
data stores based on the information contained in the metaview and any special
rules (like our group code logic).

Although the information we retrieve from HR does not always contain all of the
information we wish it would, using HR as a data source does have one
advantage and allows us to avoid what appears to be a common problem at
other companies.

"We typically find that about 40 percent of the valid users in
the enterprise are people who no longer work there," says
Jeff Drake, director of security strategy at IBM Tivoli in
Austin, Texas. "Companies are very good at getting you out of
the payroll system when you leave, but they're very poor at
removing accesses to apps that you were granted." [2]

As this quote from Jeff Drake shows, payroll is very good at removing users in a
timely fashion. Since our id and group provisioning process is tied into our
payroll/HR system, our list of active users is always very accurate. Even if HR
cannot provide you with any user information other than employment status, it
has been our experience that it is worth whatever effort is required to get HR tied
into your provisioning system

So now that we know how MetaConnect works at a very high level, we can start
looking at how the code works and how it could be used at your organization.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The programmatic group program first reads in it's configuration file
(b2econfig.txt). The file looks like this:

group_criteria_directory = [main working directory]
win2kgroup_directory = [directory containing group criteria files]
max_group_size = [maximum size of numeric groups]
mv.win2kdc = [Metaview server name or IP]
mv.username = [FQDN of user to connect to MV as]
mv.password = [Encrypted MV password]

[cv].default_base = [Base name of directory]
[cv].default_user_base = [Default location for programmatic groups]
[cv].win2kdc = [Server name or IP for this cv]
[cv].username = [User to connect to cv as]
[cv].password = [Encrypted password for this cv]
[cv].description = [Human readable description of cv]
[cv].cvname = [Internal Join Engine name for cv]
[cv].fileextension = [File extension for cv's group criteria files associated]
[cv].timeout = [LDAP connection timeout for this cv]

The first block of lines are universal settings and will appear only once in the
configuration file. The second set of lines are CV specific. Most of the settings
are pretty much self-explanatory. The [cv] name is intended to be the user
friendly name of the CV. Anything that doesn't contain a '.' or '=' can be used as
the [cv] name. The [cv].timeout value is the total amount of time that a
connection is assumed to be valid in seconds. So if this were set to 600
seconds, then any operation occurring more than 600 seconds after the last bind
will automatically drop the old connection to the CV and create a new one. The
group code also detects invalid LDAP handles and will re-bind on any connection
related errors so, in theory, a timeout value isn't absolutely essential to the code
but it makes me feel better to have one.

One additional item to note is that the [cv].fileextension is actually used in a
regular expression match against files in the group criteria directory. This means
that instead of

CorporateDomain.fileextension = 2kCDgrp

you could use:

CorporateDomain.fileextension = (2kCDgrp|2kallcvgrp|2kallprodgrp)

Once the configuration file is read in, the program will examine the user attributes
passed to it by the join engine. One of the attributes passed to the join engine is
the destination CV. Unfortunately, the maximum length of an internal CV name
in MetaConnect is limited to 6 characters. To make the configuration file a little

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

easier to read we define a friendly CV name for each CV. If there is no
[friendlycv].cvname = [unfriendlycv] setting corresponding to the unfriendly cv
that the code is currently looking at, the code will return. Otherwise, it will use
the friendly cv name to determine which settings should be used while
processing the current user.

Now the code will look at all of the files in the group criteria directory and will read
in any files with file extensions matching the [cv].fileextension setting and build a
list of programmatic groups that the user should be populated into.

Group Criteria File Parsing

Group Criteria files will look like this:

{employeeType}
10 == PRIMARY ! NAME:BLAH_G ! TYPE:G ! NUMERIC:Y \

== SECONDARY ! NAME:EMPLOYEE_DLG

{officeNum#locationNum#unitNum}
12#02#LGL == PRIMARY ! NAME:CORPLAW_G ! NUMERIC:N

{companyNum#unitNum}
1#5 == PRIMARY ! NAME:ACCOUNTING
2#5 == PRIMARY ! NAME:PHSYICAL_SECURITY
5#5 == PRIMARY ! NAME:HR

{departmentNum}
398673 == PRIMARY ! NAME:A_TEST_NONNUM_G ! NUMERIC:N \

== SECONDARY ! NAME: B_TEST_NONNUM_DLG

{st#mgrCode}
IL#3[157] == PRIMARY ! NAME:UNIT_%UNITNAME% ! NUMERIC:N

The first line ({st#mgrCode}) is the header line. This contains the list of attributes
that we are trying to match for separated by a '#'.

Underneath that we have one line for each set of criteria that we are using to
determine group membership.

 In the last example, if a user had an st value of IL and a mgrCode of 37, then our
constructed header would be IL#37. So our constructed regular expression
would be:

IL#37 =~ /IL#3[157]/i

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

In this example, the regular expression match would be successful so the user
would be added to the group.

After the first set of '==' we will have a list of primary and secondary groups along
with some information on how they should be built.

The Primary Group is the group that users are added to. The Secondary
Group(s) are the group(s) that the Primary Group will be nested into.

We can only have one Primary group listed for each set of criteria. We can have
multiple Secondary groups associated with a Primary group (in other words we
could have a Primary global group that gets nested into 35 Secondary domain
local groups).

The format for a group criteria line is:

regex == primary group specifications == secondary1 specs == secondary2
specs == ... == secondary specs

Each group that is specified in the group criteria line is separated by an '=='.
Each specification within a group's specs is separated by a '!'.

To specify a Primary group, we need to indicate that it is a primary group by
putting the word PRIMARY by itself in the specs. At a minimum, we also need to
specify the name of the group by adding a spec that looks like: NAME:
GroupName.

{empType#officeNum}
G#68 == PRIMARY ! NAME: IlinoisInternal_G

Optionally, we can also specify the group type (Global, Local, Universal, Mail
Global, Mail Local, Mail Universal => G|L|U|MG|ML|MU), a unique base dn for
the group, and whether or not the group is numeric (Y/N).

{empType#officeNum}
10#13 == PRIMARY ! NAME: IllinoisInternal_G ! TYPE: G ! \
 NUMERIC: N ! BASE: ou=UselessGroups,c=us

For the Primary Group, we will default to Numeric Global and create the group in
the default group dn specified in our configuration file.

To specify a Secondary group, we need to indicate that it is a secondary group
by putting the word SECONDARY by itself in the specifications. We must also
specify the name of the group by adding a specification like: NAME: GroupName

{empType#officeNum}

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

10#13 == PRIMARY ! NAME: IlinoisInternal_G \
== SECONDARY ! NAME: Illinois_DLG

We can also optionally specify a BASE and TYPE for any Secondary groups.
Secondary Groups will default to a domain local group built in the default group
dn specified in the configuration file.

As you can probably guess, these lines could start getting really long if we fully
specify everything and we're nesting into one or more groups. To help with this,
you can use the line continuation symbol by itself to indicate that the line is
continued on the next line. So we could have a line like:

10 == PRIMARY ! NAME:A_ATTRIB_%OFFICENUM%_G \
! TYPE:G ! NUMERIC:Y \

== SECONDARY ! NAME:A_ATTRIB_%MANAGERID%_DLG \ !
TYPE:L \

== SECONDARY ! NAME:A_ATTRIB_%OFFICENUM%_DLG \
! TYPE:L

This should make things a bit easier to read. We can also add comments at the
end of each continuation:

10 == PRIMARY ! NAME:GROUP_G ! TYPE:G ! NUMERIC:Y \ # Blech
== SECONDARY ! NAME:A_ATTRIB_%MANAGERID%_DLG \

! TYPE:L \ # Double-Blech
== SECONDARY ! NAME:A_ATTRIB_%OFFICENUM%_DLG \

! TYPE:L

You can have white space between the '\' and the '#'. The downside to being
able to use line continuation characters is that we will not be able to build any
groups that have a '\' or '\#' in their name or their base dn.

NUMERIC GROUPS

If a Primary group is specified as numeric or numeric is left undefined (the code
defaults to Numeric:Y), the group code will add a number to the specified group
name in front of the last '_' or, if there is no '_', it will append the number to the
end of the group name. The group code always begins searching for groups with
available space starting at the number 1. The group code will add the user to the
first numeric group that has less than the maximum number of users in it.

ATTRIBUTES IN GROUP NAMES

You can also specify one or more attributes in group names (both Primary and
Secondary groups). To do this, place a '%' before and after the attribute name.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The group code will substitute the value of the user's attribute when creating the
group name.

For multi-valued attributes, multiple groups will be created. If a multi-valued
attribute is specified for both a primary and secondary group, the values for the
attributes will be 'tied' together. For instance, if we had a Primary group of:

Multi_State_%st%_G

and a Secondary group of:

State_%st%_DLG

and the user's st values were IL and MO, we would get:

Multi_State_IL_G nested into State_IL_DLG
Multi_State_MO_G nested into State_MO_DLG
Multi_State_IL_G NOT nested into State_MO_DLG
Multi_State_MO_G NOT nested into State_IL_DLG

This will also work if a Primary and one of it's Secondaries contains multiple
multi-valued attributes.

Cross Domain Nested Groups

We also have the need to nest global groups in one domain into local groups in
another domain. This can be accomplished with:

{workcode}
.* == PRIMARY ! NAME:P_%workcode%_G ! TYPE:G \

== SECONDARY ! NAME:External\P_%workcode%_DLG

Basically, we're just putting the name of the domain in front of the group name.

NAME: [Domain_Name\]GroupName

In the example above, if we have a user with a workcode of 121234 in the Corp
domain, the userid will be placed into the global P_121234_G global group in the
Corp domain. The P_121234_G domain local group in Corp will then be nested
into the P_121234_DLG group in the External domain.

The domain name specified must either be the user friendly CV name (as defined
in the b2econfig.txt file) or it can be the actual CV name as used by the Join
Engine.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

It should be noted that the groups are not immediately nested. If the global
group has just been created by the group program in Corp, the External domain
may not know that it exists yet and Active Directory will not allow you to add the
Corp P_121234_G group to the External P_121234_DLG group. To account for
this, we store the nesting relations in a .db file that is processed by our
crossdom-group.pl script. When crossdom-group.pl is run, it will nest all of the
groups that it can. Any groups that it cannot nest will not be deleted from the .db
file so we can attempt to nest them again after replication has occurred.

After parsing through the group criteria files, we now have a proposed group list
of all of the Primary programmatic groups that a user should belong to. We also
have another list of Secondary groups that the Primary groups should be nested
into.

Now we compare this proposed group list to the list of groups that user is
currently in. If the user is currently in a group that is not listed in the current
jegrouplist attribute, we will add the group to the jegrouplist attribute (no need to
do an ldap modify).

If the user is not currently in a group listed in jegrouplist, the group code will
attempt to add the user to the group. If the add fails because the group does not
exist, the group code will attempt to create this group and then add the user
account to it. If the creation attempt succeeds, the group code will attempt to
nest the newly created group into any Secondary groups associated with it. If the
nesting fails because the Secondary group does not exist, the group code will
create the Secondary group and then nest. If the nested group is in a separate
CV and the nesting operation fails (due to replication delays between the two
domains), the nesting information will be written out to a DB file that can later be
processed by our crossdom-group.pl script.

It should be noted here that normally the group code will only attempt to nest
Primary groups into Secondary groups if the Primary group has just been created
by the group program. This also that Secondary group(s) will not be created if
the Primary group already exists. If the Primary group already exists, the group
code will not do an LDAP search to verify that the Secondary group exists and
has been nested into. This is by design to allow the Join Engine to run faster. If
you intend to use this code in a smaller environment, you can modify the code so
it always performs this check. In our environment, we are occasionally required
to perform a check on all 160,000+ users. Even adding a quarter of a second to
the time required to process a user can add more than two hours to our run time
(assuming we have four threads running at the same time). If we are doing this
full refresh during the day because of enterprise wide security issues, this
additional 2 hours can have a quite an impact the company's bottom line.

The group code can be forced to check for proper nesting and Secondary group
existence, however. If the user's MV accountList attribute has a value of 2112 or

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

2113 when the user entry is processed by the Join Engine, the group program
will attempt to create the Secondary group and nest the Primary group into it
whether or not the Primary group already exists.

Next, the Group code will remove the user from any groups listed in the current
jegrouplist attribute that have criteria the user no longer meets. When the group
is removed, the value is replaced with the group name and a timestamp for
auditing purposes. If the user cannot be removed from a group (i.e. directory
error or the group was deleted manually), the group will not be removed from the
jegrouplist attribute. We do this so that the next time the user is processed the
group code will attempt to remove the user again. For this reason, groups should
not be manually deleted until all of their users are removed programmatically. If
you make it a habit to delete groups manually before all users are removed by
the join engine's group code, you can end up with a lot of orphaned jegrouplist
entries.

 Manual Group Runs

Group population can occur programmatically outside the MetaConnect process.
This can be useful if you do not want the Join Engine's performance to be
affected during a mass group update. This can be even more useful if you don't
have a Join Engine To manually update a group of users you will need to use
the program man-jegrouplist2.pl. The program will prompt you to specify the
target's user-friendly CV name (as listed in the b2econfig.txt file) and an LDAP
search filter. The LDAP search filter will be used to search the Metaview and
retrieve a list of users. If you don't have a Metaview, you can have the program
use any LDAP directory by setting the mv.* parameters in the b2e_config.txt file
to point to your LDAP directory. The users found as a result of this search will
then be run through the same group code. This will perform all of the standard
group maintenance tasks on these users that the join engine's group code
normally would and will update their jegrouplist attribute.

AFTER

We have currently had our programmatic group code in production for almost 6
months now. Although we are only halfway through our Windows 2000 roll out,
we have already programmatically created and populated over 32,700
programmatic groups with a little over 90,000 migrated Windows 2000 users.

Many of the security groups are based on an office's physical location so
confidential customer information cannot be shared between different offices.
The company I work at actually has more physical locations to provide customer
support than there are McDonalds in the U.S. These locations usually have 3-5
users in them and experience a turnover rate of more than 110%. Because of
the high turnover, we usually have over 100 group adds and 100 group deletes
for the groups associated with these physical locations every day. These are

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

users that, in the past, would have had to request access and have it manually
granted by an administrator.

Not only has the automatic population of physical location groups resulted in a
cost savings of at least $5000 per work day (it costs the company approximately
$25 for any internal technical support calls), but this has made our environment
much more secure. It is not uncommon for a single user to move from one
physical location to another multiple times in the year. In the past, these users
were only removed from their old physical location groups if the manager at the
location remembered to fill out the forms to get their access removed or during
an audit. This resulted in some users retaining access to confidential customer
information even though there was no longer any business need for them to have
that access. With our new automated group provisioning process, these users
are automatically being removed in a timely manner if they move offices or quit.
This has also eliminated the problem of users being manually added to the wrong
group. Additionally, a simple ldap search:

((&(!(jegrouplist=groupName))(memberof=FQDN_of_group)))

 can help us identify any users in a group that were not added programmatically
(the rogue admin problem).

We have also had a similar success with groups that are being populated based
on job information rather than physical location. Although these groups make up
less than 2% of the total groups managed to date, these have historically been
the most difficult groups to manage. With the new group code, we have already
doubled the number of groups that we are able to programmatically manage
even though we are not quite to the half-way point in our migration. As a result of
being able to use regexes in our group criteria and having more options available
to us (such as cross-domain nesting), we are currently managing
programmatically a little over 80% of our groups that are not based on physical
locations.

Now that manually maintained access groups have become the exception rather
than the rule, we are better able to audit the membership of these groups on a
periodic basis. For example, in one of our old NT domains we had over 6000
groups that were manually maintained. In the equivalent Windows 2000 domain,
we now have only 117 groups that are manually maintained despite the fact that
the Windows 2000 domain has more users in it.

Another benefit of the new code is how the user base views our security
department. In the past, if a user did not have access to an application, the help
desk would need to determine what security group restricted access to that
application. Then the help desk would need to find the individuals responsible for
the membership of that group and get their approval to add the user to the group.
For a new employee or an employee that had changed jobs, this process could

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

be repeated several times before the user had all of the access they needed.
With the new group code, the user has access to almost everything they need for
their new job just as soon as HR enters the user's new information into their
database. From the user's perspective, the security department is now a helpful
department that gets all of their access set up before they need it instead of a
department that is preventing them from being able to do their job. Since these
users are now happy (or, at the very least, less angry) with security, they are also
more willing to work with security when issues arise rather than trying to work
around security.

In summary, the programmatic group code has done quite a few things for my
company. It is saving a lot of money every year in administrative costs. Users
are rarely in security groups that they should not be in. We rarely encounter
users that cannot get work done because they are not in the security groups that
they need to be in. And, finally, users are much happier with the security
department.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

References

[1] Levinson, Meridith. "Who Goes There?". 1 December 2002. URL:
http://www.cio.com/archive/120102/et_article.html (8/25/2003)

[2] Margulius, David L. "Tackling Security Threats from Within". 28 April 2003.
URL:http://mail.toadworld.org/PublicFolders/Misc%20Newsletters/TEST%20
CENTER%20REPORT%20from%20InfoWorld.com,%20April%2028,%20200
3.EML (8/25/2003)

[3] Carter, Gerald. LDAP System Administration. O'Reilly & Associates.
March 2003.

[4] PriceWaterhouseCoopers. "The Value of Identity Management for the
Communications Industry". 2003. URL:
http://www.pwcglobal.com/Extweb/service.nsf/8b9d788097dff3c9852565e00
073c0ba/9a7f8cade2d39dbc85256cde006a1d1c/$FILE/IdMForCommInd.pdf

[5] Blank-Edelman, David N. Perl for System Administration. O'Reilly &
Associates. July 2000.

[6] Microsoft. "Exchange 2000 Resource Kit: Chapter 4 - Active Directory
Design". 2003. URL:
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prodtech
nol/exchange/exchange2000/reskit/part2/c04names.asp (8/25/2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Appendix A: Win2kgroups.pl

This is the primary program used to programmatically add and removed users from
Active Directory groups. This program is designed to be used as a constructed from
within Critical Path's MetaConnect program. It can also be used in conjunction with the
man-jegrouplist2.pl program found in Appendix B.

 1 # win2kgroups.pl
 2 # V 1.1
 3 # Created by Don Quigley
 4 # quigley@techie.com
 5 # 4/1/2003
 6
 7 # If this is used with Critical Path's MetaConnect product, this can be set up as
 8 # a constructed attribute. Otherwise, this can be called from man-sfjegrouplist2.pl
 9
 10 package ProgGroup2;
 11 require "ldap-conn.pl";
 12 use Net::LDAP;
 13 use Net::LDAP::Util qw(ldap_error_name
 14 ldap_error_text) ;
 15
 16 # Need to add ability to nest groups across domains
 17 # Need to create negative name generation routines (I tried using an anti-name
generation routine,
 18 # but every time an anti-name touched a name it blew up the join engine).
 19 # Ought to add a check for EOF at a continuation line in the criteria file
 20
 21
 22 sub sf2kGroup {
 23 my @returned_list;
 24
 25 eval {
 26
 27 my %Details = (); # User attributes passed from join engine
 28 my %Setting = (); # Configuration settings from config file
 29 my %CVNames = (); # Map of Join Engine CV name to user friendly CV name
 30 my %proposed_groups = (); # Groups MetaConnect thinks user should be
in
 31 my %negative_groups = (); # Groups MetaConnect should not place user
into
 32 my %current_jegrouplist = ();# Groups MetaConnect has placed user into
 33 my %current_memberof = (); # All groups that the user is currently a
member of
 34 my %primary_group = ();
 35 my %secondary_group = ();
 36 my %constructed_secondary_info = ();
 37 my %constructed_primary_info = ();
 38
 39
 40 #################
 41 # GET USER INFO #
 42 #################
 43 # Read in all of the attributes passed to us by the join engine
 44 # Multi-valued attributes are stored in the key as a tab delimited string
 45 foreach $element (@_) {
 46 $element =~ tr/a-z/A-Z/;
 47 my ($attrib, $val) = split(/: /, $element);
 48 $val =~ s/\s+$//;
 49 if(exists $Details{uc($attrib)}) {
 50 $Details{$attrib} .= "\t" . $val;
 51 } else {
 52 $Details{$attrib} = $val;
 53 }
 54 }
 55
 56 # These are added in so we can use CV/MV names as a criteria
 57 my $userdn = $Details{'CV.DN'};
 58 $Details{'CV.CV'} = $Details{'CV'};
 59 $Details{'MV.MV'} = $Details{'MV'};
 60

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 61
 62
 63
 64 ##############################
 65 # READ IN CONFIGURATION FILE #
 66 ##############################
 67 # Open up our file that contains all of the configuration information we need.
 68 open(IN,"b2e_config.txt") || ProgError(4,"Can't open b2e_config.txt");
 69 # Read in the b2e_config.txt configuration settings
 70 while (<IN>) {
 71 if (/^\[/ or /^\s*$/) {next;} # Let's ignore blank lines and header
lines (lines with [text]
 72 chomp;
 73 s/\s*#.*$//; # Get rid of whitespaces in front of #
(beginning of comments)
 74 my @line = split(/\s*=\s*/,$_,2);
 75 $line[0] =~ tr/a-z/A-Z/;
 76 $line[1] =~ tr/a-z/A-Z/;
 77 $Setting{$line[0]} = $line[1];
 78 if ($line[0] =~ /(^\S+)\.cvname/i) {
 79 my $temp = uc($1);
 80 $CVNames{uc($line[1])} = $temp;
 81 }
 82 }
 83 close(IN);
 84
 85 ###############################
 86 # DEFINE CV SPECIFIC SETTINGS #
 87 ###############################
 88 if (! exists $CVNames{$Details{'CV.CV'}}) {
 89 return ""; # We don't know nothing about this CV. It ain't not in our
config file
 90 }
 91
 92 my $cvname = $CVNames{$Details{'CV.CV'}};
 93 my $server = $Setting{"$cvname.WIN2KDC"};
 94 my $username = $Setting{"$cvname.USERNAME"};
 95 my $basedn = $Setting{"$cvname.DEFAULT_BASE"};
 96 my $userbasedn = $Setting{"$cvname.DEFAULT_USER_BASE"};
 97 my $fileextension = $Setting{"$cvname.FILEEXTENSION"};
 98 my $maxsize = $Setting{'MAX_GROUP_SIZE'};
 99
 100 my $ldap = B2EGenLDAP::GetLDAP($CVNames{$Details{'CV.CV'}}); # Retrieve
connection to our LDAP server
 101
 102
 103 ###
 104 # GET FILENAMES OF GROUP CRITERIA FILES #
 105 ###
 106 my @files;
 107
 108 # Change directories to the working directory defined in the config file
 109 unless (chdir($Setting{'GROUP_CRITERIA_DIRECTORY'})) {
 110 ProgError(1,"Can't change to directory $setting{'WIN2KGROUP_DIRECTORY'}");
 111 die;
 112 }
 113
 114 # Open up the directory that all of the group files are in and populate the
@files array
 115 # with the names of all of the group files
 116 unless (opendir(GROUP_DIR,$Setting{'WIN2KGROUP_DIRECTORY'})) {
 117 ProgError(1,"Can't open directory $setting{'WIN2KGROUP_DIRECTORY'}");
 118 die;
 119 }
 120
 121 # Get a list of all of the 2kgrp files in the group directory
 122 foreach my $file (sort readdir(GROUP_DIR)) {
 123 if ($file !~ /$fileextension$/i) {next;}
 124 $file = $Setting{'WIN2KGROUP_DIRECTORY'}."\\$file";
 125 push(@files,$file);
 126 }
 127
 128 ##########################
 129 # INITIALIZE GROUP LISTS #

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 130 ##########################
 131
 132 foreach my $temp (split (/\t/,$Details{'CV.JEGROUPLIST'})) {
 133 $current_jegrouplist{uc($temp)} = 1;
 134 }
 135
 136 foreach my $temp (split (/\t/,$Details{'CV.MEMBEROF'})) {
 137 $temp =~ s/,.*//;
 138 $temp =~ s/cn=//i;
 139 $current_memberof{uc($temp)} = 1;
 140 }
 141
 142
 143 ##
 144 # READ IN CONFIG FILES AND FIND MATCHING LINES #
 145 ##
 146
 147 foreach $file (@files) {
 148
 149 my $builtline = ""; # Used to build up the current line
 150 my @headers = (); # Used to store match criteria
 151 my $user_header_values = "";
 152
 153 open(IN,$file) || ProgError(1,"Can't open file $file");
 154 while(<IN>) {
 155
 156 if (/^#/ || /^\s*$/) {next;} # If the line contains just whitespace or
starts with
 157 # a # (indicating a comment
line) we ignore it
 158
 159 s/\s*$//; # Get rid of trailing whitespace --> super-chomp
 160
 161 if (/^\{.*/) { # If line starts with '{', then it's telling us attribute
names
 162 # So we take these attribute names in the order
that they are
 163 # given to us and create a string containing the
corresponding
 164 # attribute values for the user we're looking at.
For instance,
 165 # for [userid#recordtype] we would construct a
string
 166 # that looks like bob15#Employee
 167 tr/a-z/A-Z/; # Make everything uppercase
 168 s/\}.*$//; # Get rid of everything after the }. Now we can
add comments
 169 s/[\{\}]//g; # Get rid of any { and }. We'll assume we won't be
given any attributes
 170 # with a { or } in the name.
 171 @headers = split(/#/,$_); # List of attributes names are delimited
by a #
 172
 173 # We replace all of the attribute names with the attribute values for
the user
 174 # so we can then use the string to do a regex match. It should be
noted that if
 175 # we have a multi-valued attribute, there will be tabs in this string
since we're
 176 # storing multivalued attributes in %Details as a tab delimited string
 177 $user_header_values = "";
 178 foreach $header (@headers) {
 179 # If CV or MV isn't specified in the filter, we'll assume we're
talking about the MV
 180 if ($header !~ /^CV./i && $header !~ /^MV./i) {
 181 $header = 'MV.'.$header;
 182 }
 183 if ($user_header_values eq "") {
 184 $user_header_values = $Details{$header};
 185 } else {
 186 $user_header_values =
$user_header_values.'#'.$Details{$header};
 187 }
 188 }
 189 next;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 190 }
 191
 192 # If we get here, we're looking at a criteria line.
 193 if (/\\\s*$/ || /\\\s*#/) { # This criteria line continues onto the
next line
 194 $line = $_;
 195 $line =~ s/\\$//;
 196 $line =~ s/\\#.*$//;
 197 $builtline = $builtline.$line;
 198 next;
 199 }
 200
 201 # If we get here, we're looking at a fully built criteria line.
 202 $line = $builtline.$_;
 203 if ($line =~ /^\s*$/) {next;}
 204 $builtline = "";
 205 $line = uc $line;
 206
 207 # Now we see if the criteria match.
 208 # We wrap the regex evaluation in an eval so that an invalid regex in an
 209 # input file doesn't crash the program.
 210 my ($regex,$actions) = split(/\s*==\s*/,$line,2);
 211 eval {
 212 if ($user_header_values =~ /$regex/i) {
 213 $primary_group{$actions}{'ACTION'} = 1;
 214 }
 215 };
 216 if ($@) {
 217 ProgError(3,"Error in regex group check: $user_header_values compare
to $regex");
 218 }
 219 }
 220 close(IN);
 221 }
 222
 223 ############################
 224 # DONE WITH REGEX COMPARES #
 225 ############################
 226
 227 # Now we have a list of group lines that matched the regex criteria. Now we
need to act on the information
 228 # contained in the group lines.
 229
 230 #########################
 231 # FULLY POPULATE HASHES #
 232 #########################
 233
 234 # Cycle through each line that was read in that meets the regex criteria
 235 foreach my $line (keys %primary_group) {
 236 my %temp_primary_group = ();
 237 my %temp_secondary_group = ();
 238 # Split out the specifications for each group listed
 239 foreach my $specs (split (/\s*==\s*/,$line)) {
 240 if ($specs =~ /^\s*PRIMARY[\s!]+/i) { # primary group stuff
 241 foreach (split(/\s*!\s*/,$specs)) { # Look at each of the specs
 242 my($setting,$value) = split(/\s*:\s*/,$_);
 243 $setting = uc $setting;
 244 if ($setting =~ /^PRIMARY$/i) {
 245 next;
 246 }
 247 $primary_group{$line}{$setting} = $value;
 248 }
 249 } else { # assume secondary
group
 250 my %temp_temp_secondary_group = ();
 251 foreach (split(/\s*!\s*/,$specs)) { # Look at each of the specs
 252 my ($setting,$value) = split(/\s*:\s*/,$_);
 253 $setting = uc $setting;
 254 $temp_temp_secondary_group{$setting} = $value;
 255 }
 256 my $basename = $temp_temp_secondary_group{'NAME'};
 257 my $temp_userbasedn = $userbasedn;
 258 if ($basename =~ /(.+)\\/) {

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 259 my $temp_cv = $1;
 260 if (exists $Setting{"$temp_cv.DEFAULT_USER_BASE"}) {
 261 $temp_userbasedn = $Setting{"$temp_cv.DEFAULT_USER_BASE"};
 262 } elsif (exists $CVNames{$temp_cv}) {
 263 $temp_cv = $CVNames{$temp_cv};
 264 $temp_userbasedn = $Setting{"$temp_cv.DEFAULT_USER_BASE"};
 265 } else {
 266 ProgError(3,"$basename does not have a valid cv");
 267 next;
 268 }
 269 }
 270 $temp_secondary_group{$basename}{'TYPE'} =
$temp_temp_secondary_group{'TYPE'} || "L"; # Default to DLG
 271 $temp_secondary_group{$basename}{'BASE'} =~ s/\s*,\s*/,/g;
 272 $temp_secondary_group{$basename}{'BASE'} =~ s/\s*=\s*/=/g;
 273 $temp_secondary_group{$basename}{'BASE'} =
$temp_temp_secondary_group{'BASE'} || $temp_userbasedn; # Default basedn for groups
 274 }
 275 }
 276 $primary_group{$line}{'TYPE'} = $primary_group{$line}{'TYPE'} || "G"; #
Default to global
 277 $primary_group{$line}{'NUMERIC'} = $primary_group{$line}{'NUMERIC'} || "Y"; #
Default to Yes
 278 $primary_group{$line}{'BASE'} =~ s/\s*,\s*/,/g;
 279 $primary_group{$line}{'BASE'} =~ s/\s*=\s*/=/g;
 280 $primary_group{$line}{'BASE'} = $primary_group{$line}{'BASE'} || $userbasedn; # Default to default dn
 281
 282 foreach $group (keys %temp_secondary_group) {
 283 $secondary_group{$line}{$group}{'TYPE'} =
$temp_secondary_group{$group}{'TYPE'};
 284 $secondary_group{$line}{$group}{'BASE'} =
$temp_secondary_group{$group}{'BASE'};
 285 #$secondary_group{$line}{$group}{'GROUPS'} = [];
 286 }
 287
 288 $primary_group{$line}{'2NDARY'} = $secondary_group{$line};
 289 undef %temp_primary_group;
 290 }
 291
 292 # OK, now our %primary_group and %secondary_group hashes are almost fully
populated. The only thing
 293 # left to do is construct the actual group name(s) and place them into the hash.
We do this at the same
 294 # time we add users to the groups since we need to do some lookups for numeric
groups.
 295
 296
 297 ########################
 298 # GENERATE GROUP NAMES #
 299 ########################
 300
 301 # Keep track of what groups each primary group should be nested into.
 302 my %nesting_relationships = ();
 303
 304 foreach $line (keys %primary_group) {
 305 # Call out to get a list of groupnames.
 306

&BuildGroupName(\%Details,\%Setting,\%{$primary_group{$line}},$secondary_group{$
line},
 307 \%nesting_relationships,\%negative_groups,\%proposed_groups,
 308

\%constructed_secondary_info,\%constructed_primary_info,$line);
 309
 310 # Now we have all of the group names created. We also have the nesting
relationships defined.
 311 # $nesting_relationships{primary-group} = [groups to be nested into]
 312
 313 }
 314
 315 #########################
 316 # PUT USERS INTO GROUPS #
 317 #########################
 318
 319 foreach my $group (keys %proposed_groups) {

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 320 if ($group =~ /^\s*$/) {next;} # Ok, this is the cheap way to do it
 321
 322 if (exists $current_memberof{$group} && $Details{'MV.ACCOUNTLIST'} !~ /211[23]/)
{ # User is already in this group
 323 next;
 324 }
 325
 326 my $numeric_flag = 0;
 327 if ($constructed_primary_info{$group}{'NUMERIC'} =~ /^Y/i) {
 328 foreach my $current (keys %current_memberof) {
 329 $current =~ /(.+)\d([_\w])$/;
 330 $current = $1.$2;
 331 if (exists $current_memberof{$current}) {
 332 $numeric_flag=1;
 333 last;
 334 }
 335 }
 336 }
 337
 338 if ($numeric_flag == 1 && $Details{'MV.ACCOUNTLIST'} !~ /211[23]/) { #THIS
MAYBE NOT A GOOD IDEA
 339 next;
 340 } # User is already in this numeric group
 341
 342 my $res =
Luser2Group($userdn,$group,\%constructed_primary_info,\%constructed_secondary_info,
 343
\%nesting_relationships,\%Setting,$cvname,\%Details,\%CVNames,$maxsize,\%proposed_groups)
;
 344
 345 if ($res ne "YEP") {
 346 ProgError(3,"Can't add $userdn to $group: $res");
 347 # Take the user out of the proposed_groups list so we'll try to add them
again
 348 # the next time we process the account
 349 delete $proposed_groups{$group};
 350 next;
 351 } else {
 352 my $tempid = $userdn;
 353 $tempid =~ s/,.*//;
 354 my $tempgroup = $group;
 355 $tempgroup =~ s/,.*//;
 356 ProgError(5,"ADD: $tempid ==> $tempgroup : $userdn ==> $group");
 357 }
 358
 359 }
 360
 361 # Now we should have a list of all of the groups that we have programmatically
determined that
 362 # the user should be in. Now we want to compare this list to the previous list
of of
 363 # programmatically determined groups. We want to remove the user from any
groups that they
 364 # should no longer be a member of
 365
 366 ############################
 367 # DELETE USERS FROM GROUPS #
 368 ############################
 369
 370 foreach $key (keys %current_jegrouplist) {
 371 if ($key =~ /#\d+$/) { # If group name has a date in it, that means we were
removed
 372 $proposed_groups{$key} = 1;
 373 next;
 374 }
 375 if ($key =~ /^cn=/i) { # The old jegrouplist had the FQDN of the group
 376 $key =~ s/^cn=//i;
 377 $key =~ s/,.*$//;
 378 }
 379 if (! exists $proposed_groups{$key}) {
 380 # If a value is returned from the delete user subroutine, that means the
user wasn't
 381 # really removed so we won't remove the group from the list of programmatic
groups

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 382 # We should probably check periodically to see if any programmatic groups
were manually
 383 # deleted without first de-provisioning all of the users. Otherwise the
manually deleted
 384 # group will always be in this list
 385 my $temp = DeleteUserFromGroup($key,\%Setting,$userdn,$cvname);
 386 if ($temp != 1) {
 387 $proposed_groups{$key} = 1; # If delete fails keep group in list
 388 } else {
 389 my $tempdate = &GetDate;
 390 $tempdate =~ s/ .*$//;
 391 $key = $key."#$tempdate";
 392 $proposed_groups{$key} = 1;
 393 my $tempid = $userdn;
 394 $tempid =~ s/,.*//;
 395 my $tempgroup = $key;
 396 $tempgroup =~ s/,.*//;
 397 ProgError(5,"DELETE: $tempid ==> $tempgroup : $userdn ==> $group");
 398 }
 399 }
 400 }
 401
 402 # Now we want to get rid of any duplicate group#date entries (we only want to
keep the most
 403 # recent removal).
 404
 405 my $prevkey = "";
 406 foreach $key (sort keys %proposed_groups) {
 407 if ($key =~ /#\d+-\d+-\d+$/) {next;}
 408 my $prevtemp = $prevkey;
 409 my $newtemp = $key;
 410 $prevtemp =~ s/#\d+-\d+-\d+$//;
 411 $newtemp =~ s/#\d+-\d+-\d+$//;
 412 if ($newtemp eq $prevtemp) {
 413 delete($proposed_groups{$prevkey});
 414 }
 415 $prevkey = $key;
 416 }
 417
 418 foreach $key (keys %proposed_groups) {
 419 push(@returned_list,$key);
 420 }
 421
 422 # Return a list of all MetaConnect managed groups that the user should be in
 423 my $count = @returned_list;
 424
 425 # Return nothing if we don't have any programmatic groups. This will make
MetaConnect
 426 # remove the attribute from the user's entry
 427 if ($count == 0) { # No programmatic groups
 428 return("");
 429 }
 430
 431 };
 432 if ($@) {
 433 ProgError(2,"sub died with $@");
 434 }
 435 return(@returned_list);
 436 }
 437
 438 sub BuildGroupName
 439 {
 440 my ($Details_ref,$Setting_ref,$primary_group_ref,$secondary_group_ref,
 441 $nesting_relationships_ref,$negative_groups_ref,$proposed_groups_ref,
 442 $constructed_secondary_info_ref,$constructed_primary_info_ref)
 443 = @_;
 444
 445 my (@secondary_groups);
 446 my $primary_group_base = $$primary_group_ref{'BASE'};
 447 my $primary_group_basename = $$primary_group_ref{'NAME'};
 448 my $primary_group_type = $$primary_group_ref{'TYPE'};
 449 my $primary_group_numeric = $$primary_group_ref{'NUMERIC'};
 450

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 451 my %group_attributes = (); # Used to keep track of attributes used to
construct global group
 452 # names. These values will be used when
naming secondary groups
 453
 454 my $test = $primary_group_basename;
 455 $test = s/,.*//;
 456 $test = s/^\w+=//;
 457 if (exists $$negative_groups_ref{$test}) {return "";}
 458
 459 my @primary_groups =
PrimaryGroupConstruct($primary_group_basename,$Details_ref,\%group_attributes);
 460
 461 foreach $group (@primary_groups) {
 462 my $test = $group;
 463 $test = s/,.*//;
 464 $test = s/^\w+=//;
 465 if (exists $$negative_groups_ref{$test}) {
 466 next;
 467 }
 468 $$proposed_groups_ref{$group} = 1;
 469 $$constructed_primary_info_ref{$group}{'TYPE'} = $primary_group_type;
 470 $$constructed_primary_info_ref{$group}{'BASE'} = $primary_group_base;
 471 $$constructed_primary_info_ref{$group}{'NUMERIC'} = $primary_group_numeric;
 472
 473 foreach my $secondary_group (keys %$secondary_group_ref) {
 474 my @secondary_groups =
SecondaryGroupConstruct($group,$secondary_group,$Details_ref,\%group_attributes);
 475 foreach my $sec_group (@secondary_groups) {
 476 if ($sec_group =~ /^\s*$/) { next; } # Shouldn't need this, but
doesn't hurt to have it
 477 $$nesting_relationships_ref{$group}{$sec_group} = 1;
 478 $$constructed_secondary_info_ref{$sec_group}{'TYPE'} =
$$secondary_group_ref{$secondary_group}{'TYPE'};
 479 $$constructed_secondary_info_ref{$sec_group}{'BASE'} =
$$secondary_group_ref{$secondary_group}{'BASE'};
 480 }
 481 }
 482 }
 483 }
 484
 485 sub PrimaryGroupConstruct
 486 {
 487 my ($group,$Details_ref,$grp_attrs) = @_;
 488
 489 if ($group !~ /%[^%]+%/) { # Group name doesn't contain any attributes
 490 return ($group);
 491 }
 492
 493 $group =~ /%([^%]+)%/;
 494 my $attr = $1; # We get the attribute name from the previous match
 495 if ($attr !~ /^CV\./i && $attr !~ /^MV\./i) {
 496 $attr = 'MV.'.$attr;
 497 }
 498
 499 my @groups;
 500
 501 foreach $val (split(/\t/,$$Details_ref{$attr})) {
 502 my $tempgroup = $group;
 503 my $tempattr = $attr;
 504 $tempattr =~ s/^[MC]V\.//;
 505 $tempgroup =~ s/%[MC]?V?\.?$tempattr%/$val/i;
 506 push(@groups,$tempgroup);
 507 foreach $tempkey (keys %$grp_attrs) {
 508 $$grp_attrs{$tempgroup}{$tempkey}=$$grp_attrs{$group}{$tempkey};
 509 }
 510 $$grp_attrs{$tempgroup}{$attr}=$val;
 511 }
 512
 513 my @final_groups;
 514
 515 foreach $group (@groups) {
 516 my @tempgroups = PrimaryGroupConstruct($group,$Details_ref,$grp_attrs); # me
so clever

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 517 push(@final_groups,@tempgroups);
 518 }
 519
 520 return @final_groups;
 521 }
 522
 523 sub SecondaryGroupConstruct
 524 {
 525 my ($primary_group,$secondary_group,$Details_ref,$grp_attrs) = @_;
 526
 527 if ($secondary_group !~ /%([^%]+)%/) { # Group name doesn't contain any
attributes
 528 my @temp_group;
 529 $temp_group[0] = $secondary_group;
 530 return (@temp_group);
 531 }
 532
 533 my $attr = $1; # We get the attribute name from the previous match in the if
statement
 534 if ($attr !~ /^CV\./i && $attr !~ /^MV\./i) {
 535 $attr = 'MV.'.$attr;
 536 }
 537
 538 my @groups;
 539
 540 if (exists $$grp_attrs{$primary_group}{$attr}) {
 541 my $tempattr = $attr;
 542 $tempattr =~ s/^[MC]V\.//;
 543 $secondary_group =~
s/%[MC]?V?\.?$tempattr%/$$grp_attrs{$primary_group}{$attr}/i;
 544 push(@groups,$secondary_group);
 545 } else {
 546 foreach $val (split(/\t/,$$Details_ref{$attr})) {
 547 my $tempgroup = $secondary_group;
 548
 549 my $tempattr = $attr;
 550 $tempattr =~ s/^[MC]V\.//;
 551 $tempgroup =~ s/%[MC]?V?\.?$tempattr%/$val/i;
 552 push(@groups,$tempgroup);
 553 }
 554 }
 555
 556 my @final_groups;
 557
 558 foreach $group (@groups) {
 559 my @tempgroups =
SecondaryGroupConstruct($primary_group,$group,$Details_ref,$grp_attrs); # me so
clever
 560 push(@final_groups,@tempgroups);
 561 }
 562
 563 return (@final_groups);
 564 }
 565
 566
 567
 568 sub DeleteUserFromGroup
 569 {
 570 my ($group,$Setting_ref,$userdn,$cv) = @_;
 571 my $ldap = B2EGenLDAP::GetLDAP($cv);
 572
 573
 574
 575 my $filter = "(cn=$group)";
 576 my $scope = "sub";
 577 my $basedn = $$Setting_ref{"$cv.DEFAULT_BASE"};
 578
 579 my $res = $ldap->search(base => $basedn, scope => $scope,filter => $filter);
 580 if (&ldap_connect_error($res->code)) { # Will return false if there's a problem
with the ldap handle
 581 $ldap = B2EGenLDAP::RefreshLDAP($cv);
 582 $res = $ldap->search(base => $basedn, scope => $scope,filter => $filter);
 583 }
 584
 585 if ($res->is_error) {
 586 $mesg = ldap_error_name($res->code).": ".ldap_error_name($res->code)."-
".ldap_error_text($res->code)."\t\n";
 587

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 588 ProgError(3,"Search $filter to delete $userdn from -- not removing user from
$group: $mesg\n");
 589 return();
 590 }
 591
 592 my $count = $res->count;
 593 if ($count != 1) {
 594 ProgError(3,"Got back $count results for $filter. Not removing user from
$group\n");
 595 return;
 596 }
 597
 598 my $entry = $res->pop_entry;
 599 my $group_dn = $entry->dn;
 600
 601 $res = $ldap->modify($group_dn, delete => {'member' => $userdn});
 602 if (&ldap_connect_error($res->code)) { # Will return false if there's a problem
with the ldap handle
 603 $ldap = B2EGenLDAP::RefreshLDAP($cv);
 604 $res = $ldap->modify($group_dn, delete => {'member' => $userdn});
 605 }
 606
 607 if ($res->is_error) {
 608 $mesg = ldap_error_name($res->code).": ".ldap_error_name($res->code)."-
".ldap_error_text($res->code)."\t\n";
 609
 610 ProgError(3,"Delete call $filter to remove $userdn from -- not removing user
from $group: $mesg\n");
 611 return();
 612 }
 613
 614 return(1);
 615
 616 }
 617
 618 sub Luser2Group
 619 {
 620 my
($userdn,$group,$constructed_primary_info_ref,$constructed_secondary_info_ref,
 621

$nesting_relationships_ref,$setting_ref,$cv,$Details_ref,$CVNames_ref,$maxsize,$
proposed_groups_ref) = @_;
 622
 623 my $ldap = B2EGenLDAP::GetLDAP($$CVNames_ref{$$Details_ref{'CV.CV'}});
 624
 625
 626 # Now that we're adding, we'll check to see if the group is numeric. If it is,
we'll
 627 # figure out which number should be added to the group name
 628
 629 my $groupnum = "";
 630 if ($$constructed_primary_info_ref{$group}{'NUMERIC'} =~ /^Y/i) {
 631 $groupnum =
DetermineGroupNum($group,$maxsize,$cv,0,$setting_ref,$$constructed_primary_info_ref{$grou
p}{'BASE'});
 632 if ($groupnum eq "FAIL") {
 633 return "fail";
 634 }
 635 }
 636 my $newgroup = $group;
 637 $newgroup =~ s/(_[^_]*)$/$groupnum$1/;
 638
 639 if ($newgroup ne $group) {
 640 $$proposed_groups_ref{$newgroup} = 1;
 641 delete $$proposed_groups_ref{$group};
 642 }
 643
 644 $newgroup =~ s/.*\\//; # Get rid of cv if groupname is something like
opr\P_StupidGroup_G
 645 my $group_dn =
"cn=".$newgroup.",".$$constructed_primary_info_ref{$group}{'BASE'};
 646
 647 my $res = $ldap->modify($group_dn, add => {'member' => $userdn});
 648 if (&ldap_connect_error($res->code)) { # Will return false if there's a problem
with the ldap handle
 649 $ldap = B2EGenLDAP::RefreshLDAP($cv);
 650 $res = $ldap->modify($group_dn, add => {'member' => $userdn});

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 651 }
 652
 653 if (($res->code && $res->code != 68) || $$Details_ref{'MV.ACCOUNTLIST'} =~
/211[23]/) { # 68 is LDAP_ALREADY_EXISTS == someone else has added the user already so
we're good
 654 $mesg = ldap_error_name($res->code).": ".ldap_error_name($res->code)."-
".ldap_error_text($res->code)."\t\n";
 655 my $type = $$constructed_primary_info_ref{$group}{'TYPE'};
 656
 657 # If we build the global, we should go ahead and nest/create the locals
 658 if (BuildADGroup($cv,$group_dn,$type,$setting_ref) =~ /CREATED/i ||
$$Details_ref{'MV.ACCOUNTLIST'} =~ /211[23]/) {
 659 # Cycle through each nested group associated with the primary group
 660 foreach $nested (keys %{$$nesting_relationships_ref{$group}})
 661 {
 662 my $nested_cv = $cv;
 663 if ($nested =~ /(.+)\\/) { # group names has a back slash ==> cv-
name\groupname
 664 $nested_cv = $1;
 665 }
 666 my $nested_ldap = B2EGenLDAP::GetLDAP($nested_cv);
 667 my $type = $$constructed_secondary_info_ref{$nested}{'TYPE'};
 668 my $local_group_dn = "cn=".$nested;
 669 $local_group_dn = $local_group_dn.",";
 670 $local_group_dn =
$local_group_dn.$$constructed_secondary_info_ref{$nested}{'BASE'};
 671 my $local_group_add_dn = $local_group_dn;
 672 $local_group_add_dn =~ s/.*\\//;
 673 if ($local_group_add_dn !~ /^cn=/i) {
 674 $local_group_add_dn = "cn=".$local_group_add_dn;
 675 }
 676 $res = $nested_ldap->modify($local_group_add_dn, add => {'member' =>
$group_dn }); # Add primary to nested group
 677 if ($res->code && $res->code != 68) { # 68 is LDAP_ALREADY_EXISTS ==
someone else has added the user already so we're good
 678 # If we can't add, maybe the group doesn't exist so let's try to
create it
 679 my $results =
BuildADGroup($nested_cv,$local_group_add_dn,$type,$setting_ref);
 680 if ($results =~ /CREATED/i) {
 681
 682 # If we created the secondary (nested) group, let's go ahead
and try to add
 683 # the primary group to it again.
 684 $res = $nested_ldap->modify($local_group_add_dn, add =>
{'member' => $group_dn});
 685 if (&ldap_connect_error($res->code)) { # Will return false if
there's a problem with the ldap handle
 686 $nested_ldap = B2EGenLDAP::RefreshLDAP($nested_cv);
 687 $res = $nested_ldap->modify($local_group_add_dn, add =>
{'member' => $group_dn});
 688 }
 689 if ($res->code && $res->code != 68) {
 690 ProgError(3,"Can't nest $group_dn into
$local_group_add_dn");
 691 }
 692 } elsif ($results =~ /EXISTS/i && $nested_cv ne $cv) {
 693 ProgError(3,"Probably domain replication issue -- creating
batch\n");
 694 my $dbfile = $cv."2".$nested_cv.".nested.db";
 695 my %db;
 696 dbmopen (%db,"e:\\data\\cp\\scripts\\$dbfile",0666);
 697 $db{$group_dn} = $local_group_add_dn;
 698 dbmclose %db;
 699 } else {
 700 ProgError(3,"Can't create nested group $local_group_add_dn");
 701 }
 702 }
 703 }
 704 }
 705
 706 my $res = $ldap->modify($group_dn, add => {'member' => $userdn});

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 707
 708 if (&ldap_connect_error($res->code)) { # Will return false if there's a problem
with the ldap handle
 709 $ldap = B2EGenLDAP::RefreshLDAP($cv);
 710 $res = $ldap->modify($group_dn, add => {'member' => $userdn});
 711 }
 712
 713 if ($res->code && $res->code != 68) { # 68 is LDAP_ALREADY_EXISTS == someone
else has added the user already so we're good
 714 $mesg = ldap_error_name($res->code).": ".ldap_error_name($res->code)."-
".ldap_error_text($res->code)."\t\n";
 715 ProgError(3,"Can't put user $userdn into $group_dn -- continuing processing:
$mesg\n");
 716 return("fail");
 717 }
 718 }
 719 return('YEP');
 720 }
 721
 722 sub DetermineGroupNum
 723 {
 724 my ($group,$maxsize,$cv,$num,$Setting_ref,$basedn) = @_;
 725
 726 my $testgroup = $group;
 727 $num++;
 728 $testgroup =~ s/(.*)(_[^_]*)$/$1num2/;
 729
 730 if ($num > 150) { # Depending on how many users you have and your max group
size setting, you may need
 731 # need to change this number. This is just here to keep us
out of an infinite loop
 732 # It should be safe to remove this check, but it doesn't hurt
to have it.
 733 ProgError('3',"Numeric Group Max Limit Reached: 150 for $group\n");
 734 return("FAIL");
 735 }
 736
 737 my $ldap = B2EGenLDAP::GetLDAP($cv);
 738
 739 my $filter = "(cn=$testgroup)";
 740 my $scope = "sub";
 741
 742 my $res = $ldap->search(base => $basedn, scope => $scope,filter => $filter);
 743 if (&ldap_connect_error($res->code)) { # Will return false if there's a problem
with the ldap handle
 744 $ldap = B2EGenLDAP::RefreshLDAP($cv);
 745 $res = $ldap->search(base => $basedn, scope => $scope,filter => $filter);
 746 }
 747 if ($res->is_error) {
 748 $mesg = ldap_error_name($res->code).": ".ldap_error_name($res->code)."-
".ldap_error_text($res->code)."\t\n";
 749
 750 ProgError(3,"Search $filter to add user to numeric $testgroup -- $mesg\n");
 751 return('FAIL');
 752 }
 753
 754 my $count = $res->count;
 755
 756 if ($count == 0) {
 757 return($num);
 758 }
 759
 760 my $entry = $res->pop_entry;
 761 my @temp = $entry->get_value('member');
 762 my $size = @temp;
 763 if ($size > $maxsize) {
 764 $num = DetermineGroupNum($group,$maxsize,$cv,$num,$Setting_ref,$basedn);
 765 }
 766 return($num);
 767
 768 }
 769 sub ProgError
 770 {
 771
 772 my ($level,$msg) = @_;
 773 chomp($msg);

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 774 my $time = &GetDate;
 775 $time =~ /([^\s]*)\s+(.*)/;
 776 $date = $1;
 777
 778
 779 if ($level == 5) {
 780 my $file = ">>MDS-JEGRP-INFO-$date.log";
 781 open(PROGERR,$file);
 782 my $fh = select(PROGERR);
 783 $| = 1;
 784 select($fh);
 785 print PROGERR "$time: Group: $msg\n";
 786 close(PROGERR);
 787 } else {
 788 my $file = ">>MDS-JEGRP-ERR-$date.log";
 789 open(PROGERR,$file);
 790 my $fh = select(PROGERR);
 791 $| = 1;
 792 select($fh);
 793 print PROGERR "$time: Level: $level Error: $msg\n";
 794 close(PROGERR);
 795 }
 796 if ($level == 2) {
 797 #print OUT "Level 2 -- die now\n";
 798 }
 799 return;
 800 }
 801
 802
 803 sub GetDate
 804 {
 805 #If you're not putting this in MetaConnect log folder or if you are not using
MetaConnect
 806 #you may want to change the gmtime call to localtime
 807 my @localtime=gmtime(time()); # Get time and don't convert it from GMT but still
call it localtime to be confusing
 808 $localtime[5] += 1900; # Add 1900 to year.
 809 $localtime[4]++;
 810 if ($localtime[4] < 10) {
 811 $localtime[4] = "0".$localtime[4];
 812 }
 813 if ($localtime[3] < 10) {
 814 $localtime[3] = "0".$localtime[3];
 815 }
 816 if ($localtime[2] < 10) {
 817 $localtime[2] = "0".$localtime[2];
 818 }
 819 if ($localtime[1] < 10) {
 820 $localtime[1] = "0".$localtime[1];
 821 }
 822 if ($localtime[0] < 10) {
 823 $localtime[0] = "0".$localtime[0];
 824 }
 825 my $date = $localtime[5].$localtime[4].$localtime[3]."
".$localtime[2].":".$localtime[1].":".$localtime[0];
 826 return($date);
 827 }
 828
 829 sub ldap_connect_error
 830 {
 831 my $code = $_[0]; # ldap return code
 832 my @connect_errors = (0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x50,0x51,
 833 0x52,0x55,0x58,0x59,0x5a,0x5b,0x5c,0x5d);
 834 my $errflag = 0;
 835 foreach $err (@connect_errors) {
 836 if ($code == $err) {
 837 $errflag = 1;
 838 }
 839 }
 840 return $errflag;
 841 # Probably don't need most of these, but hey, can't hurt
 842 # LDAP_TIMELIMIT_EXCEEDED (0x03)
 843 # LDAP_ADMIN_LIMIT_EXCEEDED { 0x0b } # V3

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 844 # LDAP_UNAVAILABLE_CRITICAL_EXT 0x0c
 845 #sub LDAP_INAPPROPRIATE_AUTH () { 0x30 }
 846 #sub LDAP_INVALID_CREDENTIALS () { 0x31 }
 847 #sub LDAP_INSUFFICIENT_ACCESS () { 0x32 }
 848 #sub LDAP_BUSY () { 0x33 }
 849 #sub LDAP_UNAVAILABLE () { 0x34 }
 850 #sub LDAP_UNWILLING_TO_PERFORM () { 0x35 }
 851 #sub LDAP_LOOP_DETECT () { 0x36 }
 852 #sub LDAP_OTHER () { 0x50 }
 853 #sub LDAP_SERVER_DOWN () { 0x51 }
 854 #sub LDAP_LOCAL_ERROR () { 0x52 }
 855 #sub LDAP_TIMEOUT () { 0x55 }
 856 #sub LDAP_USER_CANCELED () { 0x58 }
 857 #sub LDAP_PARAM_ERROR () { 0x59 }
 858 #sub LDAP_NO_MEMORY () { 0x5a }
 859 #sub LDAP_CONNECT_ERROR () { 0x5b }
 860 #sub LDAP_NOT_SUPPORTED () { 0x5c }
 861 #sub LDAP_CONTROL_NOT_FOUND () { 0x5d }
 862 }
 863
 864
 865
 866
 867 sub BuildADGroup
 868 {
 869 my ($cv,$group,$grouptype,$setting_ref) = @_;
 870
 871 if ($grouptype =~ /^G/i) { # AD Global Security group
 872 $grouptype = '-2147483646';
 873 } elsif ($grouptype =~ /^L/i) { # AD Local Security group
 874 $grouptype = '-2147483644';
 875 } elsif ($grouptype =~ /^U/i) { # AD Universal Security group
 876 $grouptype = '-2147483640';
 877 } elsif ($grouptype =~ /^MG/i) { # AD Global Distribution group
 878 $grouptype = '-4294967294';
 879 } elsif ($grouptype =~ /^ML/i) { # AD Local Distribution group
 880 $grouptype = '-4294967292';
 881 } elsif ($grouptype =~ /^MU/i) { # AD Universal Distribution group
 882 $grouptype = '-4294967288';
 883 } else {
 884 ProgError(3,"Invalid grouptype $grouptype specified for $group");
 885 return();
 886 }
 887
 888 $object = B2EGenLDAP::GetObj($cv);
 889
 890 my $base = $$setting_ref{"$cv.DEFAULT_BASE"};
 891 $group =~ s/,$base//i;
 892 if ($group !~ /^cn=/i) {
 893 $group = "cn=".$group;
 894 }
 895
 896 my $groupobject = $object->Create("Group",$group);
 897 if (Win32::OLE->LastError()) {
 898 $error = Win32::OLE->LastError();
 899 ProgError(3,"Can't create Win32::OLE group object to create group $group --
continuing run: $error");
 900 return();
 901 }
 902
 903 $groupobject->Put("Description","Metaconnect Managed Group");
 904 if (Win32::OLE->LastError()) {
 905 $error = Win32::OLE->LastError();
 906 ProgError(3,"Can't put description into Win32::OLE group object to create group
$group -- continuing run: $error");
 907 return();
 908 }
 909
 910 my $cn = $group;
 911 $cn =~ s/^CN=//i;
 912 $cn =~ s/,.*$//;
 913 $groupobject->Put("cn",$cn);
 914 if (Win32::OLE->LastError()) {
 915 $error = Win32::OLE->LastError();

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 916 ProgError(3,"Can't put CN into Win32::OLE group object to create group $group --
continuing run: $error");
 917 return();
 918 }
 919
 920 $groupobject->Put("sAMAccountName",$cn);
 921 if (Win32::OLE->LastError()) {
 922 $error = Win32::OLE->LastError();
 923 ProgError(3,"Can't put sAMAccountName into Win32::OLE group object to create
group $group -- continuing run: $error");
 924 return();
 925 }
 926
 927 $groupobject->Put("groupType",$grouptype);
 928 if (Win32::OLE->LastError()) {
 929 $error = Win32::OLE->LastError();
 930 ProgError(3,"Can't put groupType into Win32::OLE group object to create group
$group -- continuing run: $error");
 931 return();
 932 }
 933
 934 $groupobject->SetInfo();
 935 if(Win32::OLE->LastError()) {
 936 $error = Win32::OLE->LastError();
 937 if ($error =~ /The object already exists/i) {
 938 return "EXISTS";
 939 }
 940 ProgError(3,"Can't SetInfo on Win32::OLE group object to create group $group --
continuing run: $error");
 941 return();
 942 }
 943
 944 undef $groupobject;
 945 return "CREATED";
 946 }
 947 1;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Appendix B: Man-jegrouplist2.pl

 1 # ma-jegrouplist2.pl
 2 # V 1.1
 3 # Created by Don Quigley
 4 # quigley@techie.com
 5 # 4/1/2003
 6
 7 package SF2KGROUP;
 8
 9 use Net::LDAP;
 10 use Net::LDAP::Util qw(ldap_error_name
 11 ldap_error_text) ;
 12 use Carp;
 13 use Win32::OLE;
 14 require "win2kgroups.pl";
 15
 16 open(IN,"b2e_config.txt");
 17 while (<IN>) {
 18 if (/^\[/ or /^\s*$/) {next;} # Let's ignore blank lines and header
lines (lines with [text]
 19 chomp; # The politically correct implentation of
chop chop
 20 s/\s*#.*$//; # Get rid of whitespaces in front of #
(beginning of comments)
 21 my @line = split(/\s*=\s*/,$_,2); # heh.
 22 $line[0] =~ tr/a-z/A-Z/;
 23 $setting{$line[0]} = $line[1];
 24 }
 25 close(IN);
 26
 27 print "Enter search filter to find users to process:\n";
 28 $filter = <STDIN>;
 29 chomp $filter;
 30
 31 print "Valid CV's are: ";
 32 foreach $key (sort keys %setting) {
 33 if ($key =~ /DESCRIPTION/i) {
 34 $view = $key;
 35 $view =~ s/.DESCRIPTION//i;
 36 print "$view: $setting{$key}\n";
 37 }
 38 }
 39 print "Enter the name of the CV you wish to populate: ";
 40 my $cv = <STDIN>;
 41 chomp $cv;
 42 $cv = uc $cv;
 43 print "\n\n";
 44 print "Server: $setting{$cv.'.WIN2KDC'}\n";
 45 print "BaseDN: $setting{$cv.'.DEFAULT_BASE'}\n";
 46 print "Is this correct? [yN]: \n";
 47 $temp = <STDIN>;
 48 if ($temp !~ /^\s*y/i) {die;}
 49
 50
 51 my ($server,$username,$password,$ldap,$basedn,$userbasedn);
 52
 53 # GET INFO FOR DESTINATION SERVER
 54 $server = $setting{$cv.'.WIN2KDC'};
 55 $username = $setting{$cv.'.USERNAME'};
 56 $password = $setting{$cv.'.PASSWORD'};
 57 $ldap = Net::LDAP->new($server,port => '389');
 58 $basedn = uc($setting{$cv.'.DEFAULT_BASE'});
 59 $userbasedn = uc($setting{$cv.'.DEFAULT_USER_BASE'});
 60
 61 # Decrypt password
 62 # @pad is our 'one-time' pad that we use over and over. Note: Passwords longer than
1000 characters will be problematic
 63 my @pad = ();
 64 my $i = 0;
 65 my @c = split(/\s+/,$password);
 66 my @d;
 67 foreach $padval (@c) {

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 68 $padval = $padval - $pad[$i];
 69 $d[$i] = $padval;
 70 $i++;
 71 }
 72 $password = pack("C*",@d);
 73
 74 @pad = ();
 75 $i = 0;
 76 @c = split(/\s+/,$setting{'MV.PASSWORD'});
 77 @d =();
 78 foreach $padval (@c) {
 79 $padval = $padval - $pad[$i];
 80 $d[$i] = $padval;
 81 $i++;
 82 }
 83 $setting{'MV.PASSWORD'} = pack("C*",@d);
 84 # THIS IS THE HASH THAT WILL STORE GROUP NAMES AND MEMBERS
 85 # The key will be the group name and the value will be an array reference.
 86 # The array will contain a list of users.
 87 my %prop_programmatic_groups = ();
 88 my %nested_ldg = ();
 89
 90 my $ldpuser = $username;
 91 $ldpuser =~ s/[^\\]*\\//;
 92 $ldap = Net::LDAP->new($setting{'MV.WIN2KDC'},port => '389') || die "cannot mv";
 93 $ldap->bind(dn => $setting{'MV.USERNAME'},password => $setting{'MV.PASSWORD'},version
=> '3') || die "Bind failed\nerk\n";
 94
 95 # NOW WE WANT TO SEARCH THROUGH AND FIND USER ENTRIES.
 96
 97 print "searching on $filter\n";
 98 $searchobj = $ldap->search(scope => 'sub',filter => $filter,base => 'o=state
farm,c=us');
 99
 100 foreach $entry ($searchobj->entries) {
 101 # Put all of the attributes into a hash. We add MV. so it fits better with our
 102 # existing criteria logic
 103 my @attrs;
 104 push(@attrs,"cv: $cv");
 105 my $dn = $entry->dn;
 106 print "$dn\n";
 107 foreach $attr ($entry->attributes) {
 108 my @temp = $entry->get_value($attr);
 109 foreach $val (@temp) {
 110 push(@attrs,"MV.$attr: $val");
 111 my @jegrouplist = SF2KGROUP::sf2kGroup(@attrs);
 112 $res = $ldap->modify($dn,replace => {'sfjegrouplist' => \@jegrouplist});
 113
 114 if ($res->code && $res->code != 68) { # 68 is LDAP_ALREADY_EXISTS ==
someone else has added the user already so we're good
 115 $mesg = ldap_error_name($res->code).": ".ldap_error_name($res-
>code)."-".ldap_error_text($res->code)."\t\n";
 116 print $mesg,"\n";
 117 }
 118 }
 119 }
 120 }
 121

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Appendix C: Ldap-conn.pl

This subroutine is used to make LDAP connections to all of the directories specified in
the b2e_config.txt file. These connections will be persistent across calls to the subroutine
so that if win2kgroups.pl is used as a constructed attribute within MetaConnect, there
won't any performance degradation caused my multiple binds/unbinds.

 1 # ldap-conn.pl
 2 # V 1.1
 3 # Created by Don Quigley
 4 # quigley@techie.com
 5 # 4/1/2003
 6
 7 package B2EGenLDAP;
 8
 9
 10 BEGIN { # Hopefully the begin will force this to run when metaconnect starts up
 11
 12
 13 use Net::LDAP;
 14 use Net::LDAP::Util qw(ldap_error_name
 15 ldap_error_text) ;
 16 use Carp;
 17 use Win32::OLE;
 18 my %ldap = ();
 19 my %Setting = ();
 20 my %oOpenDSObject = ();
 21 my %CVNames = ();
 22 my %object = ();
 23
 24
 25
 26 ##############################
 27 # READ IN CONFIGURATION FILE #
 28 ##############################
 29 # Open up our file that contains all of the configuration information we need.
 30 open(IN,"b2e_config.txt") || ProgError(4,"Can't open b2e_config.txt");
 31 # Read in the b2e_config.txt configuration settings
 32 while (<IN>) {
 33 if (/^\[/ or /^\s*$/) {next;} # Let's ignore blank lines and header
lines (lines with [text]
 34 chomp;
 35 s/\s*#.*$//; # Get rid of whitespaces in front of #
(beginning of comments)
 36 my @line = split(/\s*=\s*/,$_,2);
 37 $line[0] = uc $line[0];
 38 if ($line[0] !~ /.+\.password/i) {
 39 $line[1] = uc $line[1];
 40 }
 41 $Setting{$line[0]} = $line[1];
 42 if ($line[0] =~ /(^\S+)\.cvname/i) {
 43 $CVNames{$line[1]} = $1;
 44 }
 45 }
 46 close(IN);
 47
 48
 49 my @pad = ();
 50
 51 foreach $cv (values %CVNames) {
 52
 53 Win32::OLE->Initialize(Win32::OLE::COINIT_MULTITHREADED);
 54
 55 my $server = $Setting{"$cv.WIN2KDC"};
 56 $ldap{$cv}{'port'} = $Setting{"$cv.PORT"} || 389;
 57 $ldap{$cv}{'password'} = $Setting{"$cv.PASSWORD"};
 58 $ldap{$cv}{'username'} = $Setting{"$cv.USERNAME"};
 59 $ldap{$cv}{'timeout'} = $Setting{"$cv.TIMEOUT"} || 120;
 60 $ldap{$cv}{'time'} = 0; # used to be time
 61 $ldap{$cv}{'ldpuser'} = $ldap{$cv}{'username'};
 62
 63

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 64 # Decrypt password
 65 # @pad is our 'one-time' pad that we use over and over.
 66
 67 # Note: The @pad array needs to be defined as a set of numbers between 1-999.
 68 # The array needs to contain at least as many elements as there are characters
 69 # in the longest password that will be used.
 70
 71 # Obviously, the more passwords you use this pad to "encrypt", the less secure
it
 72 # will be. Plus the pad that you use is stored in plain text in all of the
programs.
 73 # At least it's better than being in cleartext in the config file. The best
 74 # solution is to tie the passwords to a hardware crypto device.
 75
 76
 77 my $i = 0;
 78 my @c = split(/\s+/,$ldap{$cv}{'password'});
 79 my @d;
 80 foreach $padval (@c) {
 81 $padval = $padval - $pad[$i];
 82 $d[$i] = $padval;
 83 $i++;
 84 }
 85 $ldap{$cv}{'password'} = pack("C*",@d);
 86 }
 87
 88 sub GetLDAP
 89 {
 90 my $cv = $_[0];
 91
 92 foreach $key (keys %CVNames) {
 93 if ($key =~ /^$cv$/i) {
 94 $cv = uc $CVNames{$key};
 95 }
 96 }
 97
 98 $cv = uc $cv;
 99
 100 $a = time;
 101 $b = $ldap{$cv}{'time'};
 102 $c = $ldap{$cv}{'timeout'};
 103 if ((time - $ldap{$cv}{'time'}) > $ldap{$cv}{'timeout'}) {
 104 RefreshLDAP($cv);
 105 }
 106 return ($ldap{$cv}{'ldap'});
 107 }
 108
 109 sub RefreshLDAP
 110 {
 111 my $cv = uc $_[0];
 112
 113 # If passed friendly name, need to convert to unfriendly name
 114 foreach $key (keys %CVNames) {
 115 if ($key =~ /^$cv$/i) {
 116 $cv = uc $CVNames{$key};
 117 }
 118 }
 119
 120 my $server = $Setting{"$cv.WIN2KDC"};
 121
 122 $error = 0;
 123 if ($ldap{$cv}{'time'} != 0) { # If 0, we haven't bound to this directory yet
 124 if ($ldap{$cv}{'ldap'} -> unbind) {
 125 $ldap{$cv}{'time'} = 0;
 126 }
 127 }
 128
 129 $error = 0;
 130 $ldap{$cv}{'ldap'} = new Net::LDAP($server,port => $ldap{$cv}{'port'}) or $error
= 1;
 131 if ($error == 1) {
 132 B2EGenLDAP::ProgError(3,"Can't connect to $server on cv $cv-- continuing");
 133 }
 134 $ldpuser = $ldap{$cv}{'username'};
 135 $ldpuser =~ s/[^\\]*\\//;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 136 $ldap{$cv}{'ldap'}->bind(dn => $ldpuser,password => $ldap{$cv}{'password'},
version => 3) or
 137 B2EGenLDAP::ProgError(3,"Can't bind to
$server");
 138
 139 $ldap{$cv}{'time'} = time;
 140
 141 my $adspath = "LDAP://".$server;
 142 $oOpenDSObject{$cv} = Win32::OLE->GetObject("LDAP:");
 143 if (Win32::OLE->LastError()) {
 144 $error = Win32::OLE->LastError();
 145 B2EGenLDAP::ProgError(3,"Can't open OLE object for $cv on Refresh in ldap-
conn.pl -- continuing run: $error");
 146 }
 147
 148 $object{$cv} = $oOpenDSObject{$cv}-
>OpenDSObject($adspath,$ldap{$cv}{'username'},$ldap{$cv}{'password'},'1');
 149 if (Win32::OLE->LastError()) {
 150 $error = Win32::OLE->LastError();
 151 B2EGenLDAP::ProgError(3,"Can't open OLE object for $cv on Refresh in ldap-
conn.pl -- continuing run: $error");
 152 }
 153 }
 154
 155
 156
 157 sub GetObj
 158 {
 159 my $cv = $_[0];
 160 foreach $key (keys %CVNames) {
 161 if ($key =~ /^$cv$/i) {
 162 $cv = uc $CVNames{$key};
 163 }
 164 }
 165
 166 $a = time;
 167 $b = $ldap{$cv}{'time'};
 168 $c = $ldap{$cv}{'timeout'};
 169 if ((time - $ldap{$cv}{'time'}) > $ldap{$cv}{'timeout'}) {
 170 RefreshLDAP($cv);
 171 }
 172
 173 return $object{$cv};
 174 ###
 175 ###
 176 my $server = $Setting{"$cv.WIN2KDC"};
 177 $oOpenDSObject{$cv} = Win32::OLE->GetObject("LDAP:");
 178
 179 my $adspath = "LDAP://".$server;
 180 $object{$cv} = $oOpenDSObject{$cv}-
>OpenDSObject($adspath,$ldap{$cv}{'username'},$ldap{$cv}{'password'},'1');
 181 if (Win32::OLE->LastError()) {
 182 $error = Win32::OLE->LastError();
 183 B2EGenLDAP::ProgError(3,"Can't open OLE object to $cv -- continuing run:
$error");
 184 }
 185 return $object{$cv};
 186 }
 187
 188
 189 sub ProgError
 190 {
 191 my ($level,$msg) = @_;
 192 chomp($msg);
 193 my $time = &GetDate;
 194 $time =~ /([^\s]*)\s+(.*)/;
 195 $date = $1;
 196
 197
 198 if ($level == 5) {
 199 my $file = ">>MDS-JEGRP-LDP-$date.log";
 200 open(PROGERR,$file);
 201 my $fh = select(PROGERR);
 202 $| = 1;
 203 select($fh);

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 204 print PROGERR "$time: Group: $msg\n";
 205 close(PROGERR);
 206 } else {
 207 my $file = ">>MDS-JEGRP-LDP-$date.log";
 208 open(PROGERR,$file);
 209 my $fh = select(PROGERR);
 210 $| = 1;
 211 select($fh);
 212 print PROGERR "$time: Level: $level Error: $msg\n";
 213 close(PROGERR);
 214 }
 215 if ($level == 2) {
 216 die;
 217 }
 218 return;
 219 }
 220
 221 sub GetDate
 222 {
 223 my @localtime=gmtime(time()); # Get time and don't convert it from GMT but still
call it localtime to be confusing
 224 $localtime[5] += 1900; # Add 1900 to year.
 225 $localtime[4]++;
 226 if ($localtime[4] < 10) {
 227 $localtime[4] = "0".$localtime[4];
 228 }
 229 if ($localtime[3] < 10) {
 230 $localtime[3] = "0".$localtime[3];
 231 }
 232 if ($localtime[2] < 10) {
 233 $localtime[2] = "0".$localtime[2];
 234 }
 235 if ($localtime[1] < 10) {
 236 $localtime[1] = "0".$localtime[1];
 237 }
 238 if ($localtime[0] < 10) {
 239 $localtime[0] = "0".$localtime[0];
 240 }
 241 my $date = $localtime[5].$localtime[4].$localtime[3]."
".$localtime[2].":".$localtime[1].":".$localtime[0];
 242 return($date);
 243 }
 244 }
 245 1;
 246
 247

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Appendix D: Genpwd.pl

This program is used to create the "encrypted" passwords stored in the b2e_config.txt
file. It is important that the @pad array is identical to the ones stored in ldap-conn.pl and
man-jegrouplist2.pl.

 1 # genpwd.pl
 2 # V 1.1
 3 # Created by Don Quigley
 4 # quigley@techie.com
 5 # 4/1/2003
 6
 7 # Used to generate the "encrypted" passwords stored in the b2e_config.txt file
 8 # used by the Win2kGroups.pl program.
 9
 10 # Note: The @pad array needs to be defined as a set of numbers between 1-999.
 11 # The array needs to contain at least as many elements as there are characters
 12 # in the longest password that will be used.
 13
 14 # Obviously, the more passwords you use this pad to "encrypt", the less secure it
 15 # will be. Plus the pad that you use is stored in plain text in all of the
programs.
 16 # At least it's better than being in cleartext in the config file. The best
 17 # solution is to tie the passwords to a hardware crypto device.
 18
 19 # Usage: perl genpwd.pl "password_to_encrypt"
 20
 21 @pad = ();
 22
 23 my $a = $ARGV[0];
 24 @b = unpack("C*",$a);
 25 $i = 0;
 26 my @c;
 27 foreach $letterval (@b) {
 28 $letterval = $letterval + $pad[$i];
 29 $c[$i] = $letterval;
 30 $i++;
 31 }
 32 print join " ",@c;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Appendix E: Sample b2e_confix.txt File

Location of required perl scripts and log files
group_criteria_directory = e:\groups\scripts
Location of group criteria files
win2kgroup_directory = e:\groups\scripts
Set max. size of numeric groups to 900
max_group_size = 900
Server name of LDAP instance storing our join of user information
mv.win2kdc = bigdude.mycomp.com
LDAP user to bind to directory as
mv.username = cn=manager
"Encrypted" password for user to bind as
mv.password = 157 910 403 205 930 454 1047 386

Information for our connector view
This connector view is the employee domain in our forest
Base dn for domain
employee.default_base = dc=employee,dc=mycomp,dc=com
Default dn under which programmatic groups are created
employee.default_user_base = ou=prog,ou=groups,dc=employee,dc=mycomp,dc=com
DC in employee domain to which all updates will be made
employee.win2kdc = superdude.employee.mycomp.com
employee.username = employee\MetaDirAcct
employee.password = 122 914 404 187 910 454 1043 396 415 199 354 562
employee.description = Production AD Connector to the Employee Domain
Define the internal CV name used by MetaConnect
employee.cvname = emp
employee.fileextension = empgrp
How many seconds we should use an LDAP handle to this CV before
unbinding and binding again. Any setting over 5 minutes or so should
have a negligible impact to performance.
employee.timeout = 300

agent.default_base = dc=extagents,dc=mycomp,dc=com
agent.default_user_base = ou=prog,ou=groups,dc=extagents,dc=mycomp,dc=com
agent.win2kdc = coffeedude.extagents.mycomp.com
agent.username = extagents\MetaDirAcct
agent.password = 122 914 404 187 910 454 1043 396 415 199 354 563
agent.description = Production AD Connector to the External Agent Rep Domain
agent.cvname = ext
agent.fileextension = extgrp
agent.timeout = 300

