
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec


©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Managing vulnerabilities exposed by Windows services
The Butler did it…in my office…with an open window.

GSEC Practical Requirements (v1.4b) (August 2002)

James R Williams
August 28, 2003

1.0 Abstract

The butler did it…in my office…with an open window.  This “Murder Mystery”
analogy may seem a strange way to view the vulnerabilities of Windows services.
Nonetheless, the analogy provides a very simple way for us to look at the
Windows business class operating system, its “services” in particular.  In order to
fully grasp the items of discussion we need to be able to understand how the
Windows operating system works.  To do this we need to further our analogy by
taking a look at the suspects and the location of our murder mystery.  First we
have the Windows operating system, a house if you will, “The House of
Windows”.  The work we do in this house, that is to say the applications we use,
and the documents we create we will call our “office”.  All of the methods used to
access the operating system will shall consider “windows”.  While doors may
seem a more appropriate analogy, you will rarely find a house with more than two
or three doors, but most houses contain several windows of varying shapes and
sizes, much like the Windows services.  Finally let’s refer to the operating system
functionalities as servants. These are the individuals that make “The House of
Windows” usable.  For instance, we can consider the operating system shell, in
the case of Windows “Windows Explorer”, the nanny.  The nanny over seas
everything we do, and applies restrictions on our behavior.  The file system we
will refer to as the housekeeper, it helps us organize, maintain, and categorize all
that we deal with.  Most importantly we will refer to Windows services as the
butler.  In the case of our murder mystery analogy, the butler is the force keeping
the house that is Windows functioning.   The office where you work, in this case
the Windows operating system itself, is the location where the crime will be
committed.  Finally the open window, the vulnerability or exposure, is what lets a
person or program with malicious intent into “The House of Windows” to commit
the crime.  Our friend the butler, the Windows Service, is a necessary and helpful
part of the modern day personal computer.  However, if you don’t keep a close
watch on this butler, he’ll leave the ‘window” open when it is raining.  Until
recently the Windows service has been a stable and functional part of the
Windows business class operating system.  Vulnerabilities in the Windows
services have gone either undetected, or have just been overlooked in lieu of
larger vulnerabilities.  With the advent of the “W32.Blaster.Worm” virus in August
of 2003, the ability to manipulate Windows Services has come into the spot-light
as a method for creating havoc and masking malicious activity.

The intent of this document is to identify the vulnerabilities exposed by the
Windows services, and to learn how to secure “The House of Windows” from



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

these vulnerabilities.  For the purposes of our discussion we will be primarily
focusing on the Windows XP Professional and Windows 2000 operating systems.
As the newest of the Microsoft “business” class operating systems, Windows XP
and Windows 2000 have the widest variety of tools, and available settings to
manipulate a service into an exposure.  That is not to say that much of what we
discuss will not apply to older Microsoft operating systems as well (Windows NT
4.0), as much of what we will discuss is backwards compatible, and some
historical perspective is required.  To fully examine the impacts generated by
vulnerabilities in a Windows service we will be taking a look at what makes up a
Windows service, the risks posed by the Windows services, how these risks
occur, tools for manipulating Windows services, and finally we will review the
solutions and resolutions to these vulnerabilities.

2.0 Windows Services – Definition.

Returning to our analogy of “The House of Windows”, let’s take a look at who the
butler is and why we hired him.  In other words, “What is a Windows service?”
The Windows service is the foundation on which Microsoft built its flagship
business operating system.  The Windows services are used to maintain the
operating system functionality as well as to control the extremely sensitive areas
of the operating system.  Controlled by the Windows “kernel”, or brain, the
Windows services are a collection of applications used to manage the operating
system both during the boot-up cycle, as well as during use.  Many of the basic
Windows services control how the operating system interacts with other entities.
In past operating systems (Windows 3.1) and in many of the “home” PC
operating systems (Windows 95’, Windows 98’, and Windows Me) Microsoft
relied on a loose collection of virtual device drivers and dynamic link libraries
(DLL’s) to manage functionality.1  In “home” PC operating systems and in older
versions of Windows there was also no inherent security.  All files were executed
or run under the context of the user.  Failure of these applications and functions
would often result in a system “crash”, or a reboot of the operating system to
restart the program.  With the advent of the Windows “business” class operating
system and the use of Windows services, it became possible to give over a
degree of control to the operating system and allow these features to run under
an “elevated” right known as “System”.  Under the current Windows “business”
class operating systems there are four levels of privilege.  The “user” privilege
grants access to run applications and use the basic functionality of the system.
“Power user” privileges are granted to those users who require more control over
the system but do not need completely unrestricted access.  “Administrator”
privileges are reserved for those individuals who will be responsible for installing
hardware, software, and administrating the system.  The final level of access,
System or “Local System” is reserved for services and operating system
functions that run at the highest level of access to administrate those areas of the
operating system protected under normal use.  Running the service under
“LocalSystem” privileges separated the activity of the user from the operating
                                               
1 Microsoft Press, Microsoft Windows 98 Resource Kit



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

system.   This separation along with the advent of 32-bit applications stabilized
the program running as a Windows service, and helped to create a faster more
crash resilient operating system.  It is very important to understand how changing
the control of operating system functions from the “user” context to an elevated
right affects the operating system.  This change is the key in some cases to the
vulnerabilities we will be discussing throughout this document.  Looking at an
example we can review the “spooler” service, or officially the “Print Spooler”
service.  This service controls how the Windows operating system interacts with
printing tasks and devices.  A small executable, using the core operating system
dynamic link libraries, this service maintains control of all printer related activities
and data going to and from the printer.  As a core feature to the operating system
the Print Spooler service runs with “LocalSystem” privileges, having access to
not only the physical ports of the PC where hardware devices may be connected,
but also to the network based “virtual” ports used for network printing.  That is
how a simple feature of the operating system, came to possess the highest level
of privileges available to the operating system and still maintain access to all
physical and virtual ports on the PC.  The spooler service is just one example of
the many imbedded services in the Microsoft Windows operating system.2
Curiously Windows imbedded services are not the only type of service.  Many
applications, particularly on the server platform, are installed as a service.  This is
done so that the application can run under the control of the operating system
without requiring a user to log in to the system.  Many other applications are
written as services simply to take advantage of the “service manager” which
governs the services for the operating system and ensures stability of the
application.

2.1 Windows Services – Risks and Vulnerabilities.

Now that we’ve addressed what a Windows service is, let’s move on to the risks
that are posed by Windows services.  Going back to our “Murder Mystery”
analogy “Did the butler leave the window open?”  The realistic truth to that
question is yes, the window is open.  There are two types of “open window” that
must be addressed when discussing the riskd associated with Windows services.
First and probably most visible are failures in individual services which allow
them to be manipulated by a malicious program.  As we discussed in the
previous section of the document a service is nothing more than a program that
is run in a segregated and controlled environment.  Unfortunately, most of those
programs run in the “controlled” environment are granted the enhanced privilege
of “LocalSystem”.  This means these applications when vulnerable grant an
extremely high level of access to anyone who knows how to take advantage of
defects or “bugs” in the program.  An interesting example of this type of
vulnerability was the “W32.Blaster.Worm” virus released in August of 2003.  The
virus was written and designed to exploit the Windows RPC (remote procedure
call) service.3  This specific vulnerability of this service allowed requests sent to
                                               
2 Glossary of Windows 2000 Services, Web Site
3 Microsoft Security Bulletin MS03-026, Web Site.



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

the RPC service on port 135 to run code on the system with “LocalSystem”
privileges. The part of this virus that seemed to cause the most damage was the
unintended effect of repeated requests on port 135.  The service, running under
“LocalSystem” privileges is by default set to restart the system on failure.  As the
virus spread, systems which were being broadcasted with TCP/IP packets on
port 135 were constantly rebooted while they remained on the network.  While
this was most likely not the intention of the virus author, the chaos created by this
“side effect” helped to slow down properly patching systems and efforts to clean
up the virus.  The second type of “open window” related to the Window services
are malicious services themselves.  As yet an unexploited area of Windows
services, creating and installing your own service, remains a viable risk.
Installing an application, which runs in the background as part of the operating
system with elevated “LocalSystem” privileges, leaves a malicious programmer
the perfect sleeper virus.  It is possible with very little knowledge, and a couple of
tools from the Windows 2000 resource kit to configure and install a service to run
any application you choose with “LocalSystem” rights.

2.2 Windows Services – Vulnerabilities: How and Why They Exist.

The discussion of risks posed by Windows service vulnerabilities brings us to the
next logical step in fully understanding these exploitations.  How were these
vulnerabilities created and why do they exist?  In other words, “Why would the
butler leave this many “windows” open?”  The answer to this question is as
diverse as the number of “windows” within the operating system.  Simply put the
first kind of Windows service vulnerability we discussed is the result of a defect in
an application’s code, or an unforeseen use of a feature in the application.  Since
the birth of the Microsoft “business” operating system, Windows services have
been plagued with vulnerabilities and the resulting need for patches (hot-fixes).
For instance, take the 1999 vulnerability exposed in our friend the Print Spooler
service.4  This vulnerability took advantage of “open buffer’s”, unrestricted
memory spaces, to allow an application to be run under the “LocalSystem”
credentials.  API’s (Application Programming Interfaces) used by the Print
Spooler had no restrictions on the memory space they could use.  Therefore, a
random string of data would crash the service.  However, the vulnerability existed
in that a properly manufactured string of data could be used to run an application
on the remote system with the credentials of the service, in this case
“LocalSystem” rights.  In another case the “RunAs” service in Windows 2000 was
shown to be vulnerable to a denial of service type attack in November of 2001.5
This vulnerability was low risk as “administrator” rights were required to perform
the denial of service attack required to shutdown the service.  This does
however, serve as another example of how vulnerabilities can be found and
exploited within an existing Windows service.  How does this happen?  Simple,
developers are not perfect, and no test group can be as diverse or critical as the
consumer market.  Even with proper testing and security hardening procedures
                                               
4 Microsoft Security Bulletin (MS99-047), Web Site.
5 Denial of Service Vulnerability in Windows 2000 RunAs Service, Web Site



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

in place, mistakes happen.  The real issue relating to this type of Windows
service vulnerability is how often and how fast patches can be delivered to the
systems, which we will address later in this document.  The other type of the
Windows service vulnerability is a different issue all together.  With the stability
and functionality built into the Windows service, it is little wonder that
administrators and developers would want to take advantage of this feature.
Added to the stability of the Windows service, is the ability to use the elevated
“LocalSystem” rights to allow “user” level individuals the ability to perform specific
functions on the operating system.  Microsoft allows us to take advantage of the
Windows service through a series of resource kit utilities.  We will discuss these
utilities in greater detail in the following section.  For now using a Windows
service can, for a security administrator, be a life saver.  Take for example the
case of the Windows operating system command line tool “nbtstat.exe”.  This tool
is used to obtain information about a systems network connection, NetBIOS
names, and WINS cache.  A vulnerability was found with the “NetBT” service
which allowed NetBIOS address spoofing to occur on a Windows network using
WINS (Windows Internet Naming Service).  This vulnerability is an example of a
defect in an application as we discussed earlier.6  However, the resultant patch
for this vulnerability, through an inadvertent change to a shared DLL (dynamic
link library), restricted the use of nbtstat to only those individuals with
“administrator” level access.  On a large network where client (workstation) level
security access restriction is in place (everyone is not an administrator) it
becomes a problem for most users in the course of troubleshooting problems to
execute the nbtstat command line tool.  Through the use of Windows services, it
is possible to put a GUI (graphical user interface) application on the system for
the individual to use.  This GUI when run as a service with “LocalSystem”
privileges allows the individual to perform the functionality of “nbtstat” without
exposing the vulnerabilities of the full “nbtstat” tool.  While this is an example of
how we use a Windows service to assist in administration and support of the
Windows operating system, it is easily turned into a vulnerability.   By simply
replacing my GUI with an application that records IP addresses or passwords, we
can change a helpful operating system tool into a malicious application.  What’s
more, with a service running under “LocalSystem” credentials I have the ability to
disable all “administrator” level access to the system.  This would prevent anyone
from stopping or uninstalling the service.  That is assuming anyone noticed the
service running on the system as it is running silent in the background of
Windows.  With the preceding examples we can see how vulnerabilities are
created in a Windows service, both through defective code, as well as self written
malicious services.

2.3 Windows Services – Service Tools.

Now that we have a better understanding of the risks posed by Windows services
let’s take a detailed look at some of the tools available for manipulating Windows
services.  To return to our “Murder Mystery” theme, “How did the all of these
                                               
6 Microsoft Security Bulletin (MS00-047), Web Site



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

“windows” get opened without anyone noticing?”   How do you manipulate
Windows services?  All of the methods available for manipulating Windows
services are too numerous to address in this document.  What we will discuss
here is the primary methods used by non-developers to manipulate the Windows
Service.  Most imbedded applications (those included with the Microsoft
operating system) or application designed to run as a service are built that way at
design time.  As we’ve discussed earlier running applications as a Windows
service can have tremendous benefits.  Additionally, any developer with the
knowledge of an object oriented programming language, like C++, can simply
design his application from the get go to run as a service.  However, if you’re only
development experiences consists of Visual Basic, if you have no development
experience, or if you do not possess the source code of your application there
are still methods for running your application as a service.   Microsoft provides a
resource kit tool called “srvany.exe”.  This simple resource kit utility can be used
to run any executable as a service, provided you follow all the steps necessary.7
Simply put the tool, when the service is installed, handles the request from the
service manager and executes the application specified in a registry entry
created for the tool.  This “tricks” Windows into believing the code that it is
running was in fact written and designed to run as a service.  To use the “srvany”
tool, you need to install the “srvany.exe” file on the workstation and install a
service (refer to the use of Instsrv.exe detailed below), of your choosing, pointing
to the srvany executable.  This tool has gone relatively unnoticed by system
administrators because you must create and configure a registry key to run your
program as a service.  Knowing where to create this key and what type of
information to publish in the key is not documented very clearly in any of the
Windows resource kits.8   “Srvany.exe” is a wonderful tool, and can be a great
help in administering a Windows environment.  However, by default the service
runs with “LocalSystem” privileges and is non-interactive (hidden from the user).
This means that services created with the “srvany” tool are left relatively
unmonitored.  The risk associated with this tool, is that the registry key storing
the path and file name of the executable to be run as a service can be edited by
anyone with privileges to the registry key. This would allow that person to run any
designated application with “LocalSystem” privileges.  Tools such as “instsrv.exe”
and “sc.exe” are available from the resource kit as well.  These tools are used
extensively to install, delete, and manipulate the settings of a service.  To install
a service using the “instsrv.exe” utility and the “srvany.exe” utility the following
command line would be run:

Instsrv  MyServiceName C:\winnt\system32\srvany.exe

The “MyServiceName” entry above represents the name of my service as it
would appears in the registry hive with the other services.  The path
“C:\winnt\system32\srvany.exe” is the path to the location of the “Srvany” tool.
Additionally the “Srvany” tool can be renamed and stored with the associated
                                               
7 Minasi, (This old resource kit.) Srvany, Web Site.
8 Minasi, (This old resource kit.) More about Srvany, Web Site



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

application it is launching as a service.  The “sc” tool can be used to further
manipulate the service in altering any number of parameters.  Microsoft has
provided us with an excellent document on their web site (Retrieving Service
Properties) detailing the “service properties” and how they interact with the
Windows GUI for editing services.  One extremely valuable use of the “sc” tool is
the “config” function which allows you to switch the “interactive” property of a
service allowing it to interact with the users desktop.  This technique can prove
most useful when capturing keystrokes from an unsuspecting user.  Another tool
used to manipulate the Windows services is a resource kit utility called
“subinacl.exe”.  The “subinacl” tool is traditionally used to set file permissions on
Windows files and folders.  However, among the options available to the
“subinacl” tool is the ability to set permissions on a Windows service.  Using such
a tool, it is possible to revoke the access of the “administrator” to perform tasks
on the service.  This includes starting and stopping the service, as well as
uninstalling the service.  Furthermore the “subinacl” utility also possesses the
ability to set permissions on registry keys as well.  This would allow the installer,
of the service, to manipulate access to the registry keys storing the information
required to run the service.  Fortunately for the security administrator the
“subinacl” tool can be used to his advantage.  Using its registry features, an
administrator can restrict access to the registry keys which store the information
the service manager uses to launch the service.  The “subinacl” tool can be put
to excellent use by restricting the “start/stop” privileges of a service from those
users who would not need to interact with the service in this manner.

3.0 Conclusion

Having looked at what comprises a Windows service, the risks involved with
Windows service vulnerabilities and how these vulnerabilities work, and finally
having reviewed some of the major tools used to manipulate the Windows
services, we come to the next and last step in addressing these vulnerabilities.
Using our “Murder Mystery” analogy we must decide what to do with our friendly
butler.  What resolutions or solutions are available to address Windows service
vulnerabilities?  As with all methods of securing vulnerabilities, no single solution
is available.  We’ve looked at several examples of defective code which, through
no intentional fault, have created several vulnerabilities having some costly risks.
While better coding methods, and more extensive testing may address some of
the issues we have reviewed, these would still not address exploited features of
a service that were never intended be used in a malicious way.  Furthermore,
that would still not have addressed the use of the Windows service to execute
malicious code either.  The only solution to these types of vulnerability is to layer
multiple methods of protection together.  This multi-layered solution while still not
exploit free would provide the best means to protecting systems for Windows
service exploits while allowing the systems to remain functional for the user.  The
best method to attempt to manage Windows service vulnerabilities would have to
come in a phased approach.  First we must secure the “user”, then we must
secure the operating system, and finally we must secure the services



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

themselves.  Let’s begin by taking a look at the first phase of the solution:
“Securing the user”.  One of the main issues facing the Windows “business” class
operating system is that many users have more rights then they need to perform
their job duties.  In many cases, this is accepted as the “norm”.  Bringing about
change is always a difficult task.  Microsoft has made our task more difficult in
that to install hardware on a Windows XP system requires administrative
privileges.  However, simply restricting users to only logging in with
“administrative” rights when necessary drastically reduces the risk associated
with an individual allowing Windows service vulnerabilities to exploited.  The
“VBS_Loveletter” virus, arguably one of the most costly viruses in the last 5
years, still had to be executed by a user.  Had the VBS_Loveletter virus installed
its own hidden service the ramifications could have been even worse.  Restricting
a user’s access level prevents this type of “accident” from becoming a “business”
tragedy.  Reducing the risk of the individual user executing malicious code with
“administrator” rights is paramount in reducing the number of exploits available
with Windows services.  Having secured the “user” we should now move on to
the next phase of our solution: “Securing the operating system”.  At the time this
document was written, the W32.Blaster.Worm virus and its variants are still listed
as a “severe” risk.9  This virus and its variants take advantage of an RPC service
vulnerability documented by Microsoft on July 16th 2003.  Almost a full month
before the first version of the “W32.Blaster.Worm” virus was released.  Since it is
difficult to test code, especially Windows services, for every possible outcome
and vulnerability, it is imperative that we patch the exploits we know about as
soon as possible.  With the release of the Windows 2000 and Windows XP
operating systems many new methods of software distribution are available.  In
cases of high risk vulnerabilities, distribution methods such as Windows login
scripts and group policy startup scripts are fast and accurate methods for
deploying patches.  While testing and deploying hot-fixes and security patches is
time consuming and difficult, it is important to take a proactive initiative for
preventing Windows service exploits.  With the rapid growth of high speed
internet access the availability and capacity to exploit vulnerabilities is growing.
As we’ve seen with the “W32.Blaster.Worm, the time between vulnerability
assessment and virus delivery is rapidly shrinking.  In the past it was possible to
deploy vulnerability solutions on a reactive basis, today that is no longer an
option.  We’ve defined phases one and two of our solution to securing Windows
services.  Let’s move on to the final phase:  “Securing the Service”.  Securing
Windows services requires a change in focus.  Currently most software installs
that use a Windows service are not reviewed.  This means that if a service
executes under the “LocalSystem” credential, but only needs run with the user’s
credentials, the system administrator is unaware.  Many developers will allow the
service to run under the default security privilege (“LocalSystem”), simply out of
convenience.  By utilizing the “subinacl” resource kit tool, we can prevent the
average “user” from having access to manipulate this type of service.  Most users
do not require any privileges greater than Start/Stop to use an application.
Where imbedded Windows services are concerned most users require no
                                               
9 Symantec, Latest Virus Threats, Web Site



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

access.  Imbedded services are, generally speaking, either “automatic” (launched
at boot-up time or log in) or “dependent” (started by another service).  When
dealing with services written and installed by the system administrator, it is
important to closely review how the general “user” will interact with the service.  It
is also important, when using the “srvany” resource kit, to secure the registry key
for the service that stores the program path to be executed.  In an environment
which is constantly undergoing development and which can pose high level of
risk with exposed vulnerabilities, the Windows service must be secured.  We
know what a Windows service is, the risks involved, how and why Windows
service exploits come to exist, some tools for managing Windows services, and
the appropriate resolution for securing windows services. Looking at our “Murder
Mystery” analogy, “What should we do with our friend the butler?”  We can’t fire
him, get rid of the Windows service, because we need him to run “The House of
Windows”.  However, we still cannot leave him working unsupervised.  The best
solution then is to close the “windows”, and only let the butler open one, when we
allow him to.



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

References:

1.) Microsoft Press. Microsoft Windows 98’ Resource Kit.  Redmond: Microsoft
Press, 1998.  494

2.) Microsoft.  “Glossary of Windows 2000 Services”. 31 July 2001. URL:
http://www.microsoft.com/windows2000/techinfo/howitworks/management/w2kservices.asp  (28
August 2003)

3.) Microsoft.  “Buffer Overrun In RPC Interface Could Allow Code Execution
(823980)”. Microsoft Security Bulletin MS03-026.  25 August 2003.  URL:
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/MS03-
026.asp (28 August 2003)

4.) Microsoft.  “Patch Available for "Malformed Spooler Request" Vulnerability”.
Microsoft Security Program: Microsoft Security Bulletin (MS99-047).  04
November 1999.  URL:
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/MS99-
047.asp (28 August 2003)

5.) SecuriTeam.  “Denial of Service Vulnerability in Windows 2000 RunAs
Service”.  15 November 2001 URL:
http://www.securiteam.com/windowsntfocus/6K00F1535I.html (28 August 2003)

6.) Microsoft.  “Patch Available for 'NetBIOS Name Server Protocol Spoofing'
Vulnerability”. Microsoft Security Bulletin (MS00-047).  27 July 2000.  URL:
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/MS00-
047.asp (28 August 2003)

7.) Minasi, Mark. “(This old resource kit.) Srvany".  February 2000 URL:
http://www.winnetmag.com/Articles/Index.cfm?ArticleID=7959 (28 August 2003)

8.) Minasi, Mark. “(This old resource kit.) More about Srvany".  March 2000 URL:
http://www.winnetmag.com/Articles/Index.cfm?ArticleID=7959 (28 August 2003)

9.) Knowles, Douglas. “W32.Blaster.Worm”.  28 August 2003. URL:
http://securityresponse.symantec.com/avcenter/venc/data/w32.blaster.worm.html


