
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 1

Name: David R. Shelton
Submission Date: August 25, 2003
Version of Assignment: GSEC Practical Assignment Version 1.4b, Option 1
Title:
Securing the Enterprise with OpenNetwork DirectorySmart: An
Implementation Review

Abstract

This paper outlines the introduction of OpenNetwork’s DirectorySmart into the
enterprise infrastructure and application environment of a financial services
Company. Though typically labeled as a web access control product, DirectorySmart
provides a much broader framework to improve both the security of applications and
productivity of its users. Historically, limited short-term methods have partially
addressed the need for web- and client-server based user authentication and
authorization. After analyzing the security risks and business benefits, the
Company’s strategic decision to purchase and implement DirectorySmart confirmed
the need for a secure, centralized authentication and authorization management
framework. This decision included two candidate applications for DirectorySmart
integration: AMISC and PeopleSoft Time & Labor.

The Java-based AMISC application provided a good first “Proof of Concept” for
DirectorySmart, since it served a small internal user base, was web-driven, and did
not already contain extensive authentication and authorization code.
DirectorySmart’s role-based access control architecture fit well with the application,
providing both URL-based and fine-grained access control features. From an
implementation perspective, some changes in the DirectorySmart infrastructure
layout were required; however, the integration proved successful. From this exercise,
a number of security and business benefits were derived from improved access and
password management, authentication, logging, and web server access, resulting in
reduced development and administrative costs and increased user productivity.
Going forward, the use of DirectorySmart is expected to expand within the Company
to secure a variety of internal and external enterprise applications.

The History Lesson
Like many organizations, the Company’s enterprise application development
environments had expanded along with its business needs. Four years ago, client-
server applications ruled the day, and enterprise web applications had yet to be
developed. During this time, there was little need for authentication or authorization of
internal or external users via the Web, since there was neither protected content nor
personalized information that required security.

The first system involving external web user authentication was the Wholesale site.
The system allowed brokers (i.e., external customers) to log in to access the full
range of services offered by the site. The authentication mechanism used a
technique of hashing and storing a user’s password into a Microsoft SQL*Server

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 2

database when a user first visited the site. Upon his return, the user password was
rehashed and the value compared with the original stored password; if the values
matched, the user was allowed entry into the application. The hashing technique
used Macromedia’s ColdFusion Hash function, which is based on Ron Rivest’s MD5
algorithm, and takes a variable-length string and converts it into a fixed 32-byte
indecipherable string (Horvath). While this method was relatively simple to
implement, it did not inherently have the ability to place additional security
constraints—minimum character length, periodic password change, account lockout
after a certain number of attempts, expiration, login history, etc. Depending on the
type of user who logged in—broker, Wholesale personnel, administrator—the
application would grant the appropriate level of access within the application. This
“role-based” access control was developed specifically for the application.

Along a different development path, another group developed a method for
authentication and application-level access for a handful of its database-driven
applications. Though not specifically a web-based model, it involved encoding a
user’s password (using reverse hex) and storing it in a relational database. While not
truly secure, it provided a convenient method for application-specific logins.

As these development efforts came together, a new updated model was
developed for user registration, authentication, and authorization. Part of the
process included using Lucigenic Crypt, a third-party cryptographic COM object
that incorporated the Blowfish encryption algorithm that could be called to
encrypt/decrypt selected information, while storage of such information would
continue to be SQL*Server-based.
As additional large-scale applications continue to be added to the enterprise,
each one has brought its own unique method of authentication and authorization,
depending upon whether the application was internal- or external-facing, web-
based or client-server, COTS (Commercial Off-The-Shelf) or internally
developed.

The General Problems

By further examining elements of the existing application architecture, a number
of problems became evident. In some cases, these were outright security
vulnerabilities, and in others, opportunities for improvement. These were:

Lack of unified identity and access management model for applications – By not
having a common framework for identity management and access to applications
and services, there was no consistency in the method for creating, maintaining,
securing, and terminating user identities. Without this framework, it became
increasingly difficult to enforce a standard set of policies for accounts and
associated access.

Additional development – From an application development perspective,
additional resources were required to build the security as each application was
created. Each application required some form of authentication and role-based

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 3

access control. Also, additional work was needed to develop administrative
screens to manage users and to track user access to a given application.

Additional administration – Administratively, as the number of applications grew,
additional time and effort was required to provision (i.e., grant access), manage,
monitor, and deprovision (i.e., revoke access) for each application for each user.
Proper execution of these access management functions is an essential element
of a security program; for a good summary of access management principles,
see SANS Security Essentials with CISSP CBK Version 2.1 (Cole et al., p.392).
Deprovisioning became increasingly difficult, which is discussed below.

Error-prone deprovisioning – When the number of independent authentication
and authorization database stores (sometimes referred to as “silos”) for
applications grows, additional time and effort is required in order to ensure that
when a user leaves the organization, all of his access privileges are properly
removed. With separate systems, the administrator is faced with three
unpleasant alternatives. The first involves tracking each user’s authorized
applications throughout his employment. When the user leaves, the tracking log
is consulted, and the administrator goes into each of the authorized applications
and removes the user’s access. The second method doesn’t involve any
tracking; however, when a user leaves, every application is reviewed to ensure
that the individual’s access is revoked. The third method involves removing the
user from default key system entry points all users possess (e.g., Microsoft
network login, e-mail), which prevents the user from accessing other enterprise
applications. With each of these methods, it should be evident that errors can
and will occur, resulting in incomplete deprovisioning of users, and therefore a
potential vulnerability of unauthorized access. In the case of this Company, a
combination of these methods was used with the addition of periodic audits of
accounts to check for inactivity (e.g., not having logged in for 60 days) and then
taking appropriate action.

Separate authentication and authorization stores – Aside from the provisioning
management headaches of separate authentication and authorization silos,
having these reside in different locations makes it increasingly difficult to
manage. Specifically, the infrastructure needs to be designed so that each of
these silos is protected in a like manner. This means that they would need to
reside in the same location on the network (or at least on an equivalently secured
network segment). The hosts on which these silos reside would also need to be
protected similarly. If these silos are accessed through a firewall, more “holes”
would have to be created in order for the communication to occur between the
application and its respective silo. The bottom line is that as the number of
authentication and authorization stores grows, the overall security burden (and
therefore risk) increases.

Homegrown web application security – As discussed in the History section, the
development communities chose to develop in-house methods for authentication
and authorization. While this appeared to be a simple, cost-effective approach to
securing web applications, there were definite drawbacks. First, one of the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 4

authentication schemes used simple encoding of the password, which was
extremely easy to defeat. Second, there was a chance that some coding error
could be made that would allow inadvertent access. This could be said of a
commercial web access control product as well; however, a mature product with
hundreds of customers and literally millions of user accounts and no security
breaches empirically suggests that this is a strong web application security
approach. Third, the homegrown solution involved a single key (discussed
separately below) which made the application more vulnerable.

Vulnerable symmetric key – Blowfish is proving to be an excellent multi-purpose
cryptographic algorithm (Schneier), and is utilized by a number of products,
including DirectorySmart. Since it utilizes a symmetric key, it is essential to
protect the key used to encrypt and decrypt information. However, a strong
cryptographic algorithm is not a panacea and does not guarantee a secure
application (Schneier). In this case, the key resided directly on the web servers in
a separate file and was referenced by the application. This meant that if the web
server was compromised, it would be a simple matter to find the key and be able
to decrypt the password and other sensitive information. As the web application
usage grew, the same key was shared among all of the web servers.

No centralized logging or reporting – With these homegrown applications, there
was neither a common requirement nor method for recording key security events,
which is essential in the proper securing of an application. Events related to user
access, such as login successes, login failures, password changes, access to
particular application functions, etc., would not be consistently logged across
applications. Further, security-administrative events, such as user creation,
deletion, role creation, role mapping, etc. were also not recorded. As such, the
applications tended to have only a subset of the desired features and data
necessary to perform proper auditing of an application’s usage, much less a
reporting facility to present the data in a meaningful way.

The Business Needs

With the explosive growth of the Company, combined with the increased pace of
development, it became clear that a unified approach to identity and access
management was required. With this in mind, the following technical
requirements to support the business needs were identified:

Enterprise directory-oriented – Create a centralized data repository of essential
identity information, accessible by open standards-based methods, i.e., LDAP
(Lightweight Directory Access Protocol).
Centralized authentication/Single Sign-On (SSO) – Provide a common underlying
method for applications to authenticate users, providing a path towards Single
Sign-On (or at least reduced sign-on), with flexibility to support stronger forms of
authentication: X.509 certificates, smart cards, or tokens.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 5

Low implementation and operational costs – Deploy the product easily and
provide a straightforward development environment.

Leverage Active Directory – Utilize and extend existing Active directory
infrastructure, using existing user accounts within the domain.

Java/J2EE and Microsoft support – Provide an application and infrastructure
environment that supports the frameworks of Java/J2EE (Java 2 Enterprise
Environment) and Microsoft-based applications.

Fully-integrated security – Support policy management for multiple applications,
which can be configured and enforced correctly through an integrated set of
tools.

Auditing and reporting – Provide the ability to audit and report on all transactions
related to the directory, particularly for security events (logon success/failure,
logoff, attribute changes, etc.).

Self-service – Allow users to perform their own basic account management, such
as password changes, resets, or recoveries.

Self-registration – Allow external users to self-register into a central directory for
authorized applications.

Delegated administration – Provide the facility to distribute selected user
management administrative tasks to various business units, using an easy-to-use
interface.

The Decision
Over the course of the previous two years, the Security group had analyzed a
number of web access management solutions, including Netegrity SiteMinder,
Oblix NetPoint, RSA ClearTrust, Entrust GetAccess, and OpenNetwork
DirectorySmart, with a recommendation to purchase DirectorySmart. Earlier this
year, the Security group of the Company led a renewed effort to organize and
implement a web access control solution that would address a number of the
existing problems and provide a solution to the business needs. Based on a
current review of the business requirements vis-à-vis product features,
DirectorySmart once again emerged as the recommended product of choice.

Among the reasons for the recommendation of DirectorySmart, its strengths
included the following:

All-LDAP approach – DirectorySmart is among the few web access control
products that relies solely on an LDAP directory for storage of the identity and
access management information. (Originally, DirectorySmart was the first product
to hold this claim; other vendors have since followed suit with this capability.)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 6

Strong integration with Active Directory – OpenNetwork continues to enjoy a
strong working relationship with Microsoft. This support has translated into a
product that not only supports an Active Directory-based LDAP implementation,
but also embraces it. This has resulted in the product’s achieving top scores in
performance and scalability. Bruce Weiner, President of Mindcraft, an
independent testing vendor, stated that “DirectorySmart 4.7 with Microsoft
Windows 2000 Active Directory… sets the TCO/Performance and Annual
TCO/User standards against which other Web access control and identity
management solutions will be measured” (OpenNetwork).

Balanced application environment support – Among the products reviewed,
DirectorySmart provides balanced application support for both the Java/J2EE
and Microsoft environments. This is particularly evident in the API support—Java,
C/C++, and COM are supported. The other products reviewed favored a Java-
centric environment.

Parsimonious solution – When compared with the other products, the
DirectorySmart architecture presented the simplest design to implement, with the
fewest “moving parts.” The other major web access control solutions (e.g.,
Netegrity IdentityMinder/SiteMinder, Oblix NetPoint) required separate
repositories and servers to manage identity and access control information.

Costs – In comparing the costs of DirectorySmart with the other major vendors,
the price per user was quite favorable, considering the amount of functionality
that it offered. Two of the top leading vendors required purchasing dual licenses
(or a single license at effectively double the cost), one for the identity
management and another for the access control.

After presenting this information to executive Information Technology decision
makers, the product was approved for purchase and implementation.

The next decision involved which applications would be suitable candidates for
integration with DirectorySmart. Over twenty applications were identified
supporting specific business units or the entire enterprise. Interestingly, these
applications could be categorized across a number of dimensions: current versus
future; web-based versus client-server; small versus large user base; external
versus internal; Java/BEA versus IIS/ColdFusion; and internally developed
versus off-the-shelf.

Out of this discussion, two candidates emerged: the AMISC (an acronym of one
of the Company’s smaller business units) application, and PeopleSoft’s Time &
Labor. The AMISC application was chosen because the Loan Servicing business
unit development team was seeking out a centralized directory-based access
control solution, knowing that future applications could leverage the work done
on AMISC. Additionally, the existing application served a small internal user base
of ten individuals, was Java-based running on BEA WebLogic—one of the
Company’s strategic development platforms—contained only minimal
authentication code, and had a requirement for role-based access control.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 7

In contrast, PeopleSoft Time & Labor was chosen because it was a COTS
product with an enterprise focus. The application had only been deployed to a
pilot group of users, and OpenNetwork offered a connector specifically for
PeopleSoft to ease the integration. Since every employee ultimately would have
to use Time & Labor (for recording employee time and attendance), having
DirectorySmart integrated into this application would be a major milestone with
broad enterprise visibility.
The Analysis

Since AMISC was the first application to take advantage of the benefits of
DirectorySmart, this application will be analyzed more closely to understand
some of its security deficiencies and opportunities for improvement. The AMISC
application was developed for one of the Company’s subsidiaries that specialized
in selling and servicing optional products to the Company’s customers, primarily
in the form of insurance policies. This application manages the day-to-day
information flow related to these policies, augmenting the functions of a separate
mainframe application that handles the sales component of the policies from
outbound telemarketing efforts. The primary reason for creating the application
was that the mainframe application was limited in flexibility, particularly with the
servicing of the policies.

The Java-based application uses a BEA WebLogic application server to provide
the Java Runtime Environment, and most importantly, uses the BEA Web Server
to handle the presentation layer functions (i.e., serving up web pages). This point
will be revisited in the implementation considerations. The AMISC application
and data rely on a SQL*Server back-end for storage of information and stored
procedures.

The authentication functions are handled by a Java Server Page, login.jsp,
working in conjunction with a SQL*Server stored procedure. The jsp captures the
User ID and password and passes it to the database stored procedure. The
procedure encodes the password (using reverse hex), compares it with the
encoded password value stored in a SQL table (LOOKUP). If the values match,
the stored procedure sends a message back to the program that the user is
successfully authenticated.

Concerning authorization, the current application has no provision for restricting
certain functions to different classes of users, even though they can presently be
separated into Processors and Managers; all users have the same functionality.
This presents an operational risk, since Processors could update a value in a
field, a process that only Managers should be able to perform.

The DirectorySmart Solution

Since a decision was made to implement DirectorySmart as a web access
control solution, a review of its core components is in order to illustrate how it

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 8

addresses the shortcomings of the original AMISC application and other previous
web application security methods.

The core architectural components of DirectorySmart are as follows:

LDAP Directory (Directory) – This directory is the central repository for the
DirectorySmart identity management elements (e.g., users, roles) and
configuration management elements. The Directory houses virtually of the
information associated with the DirectorySmart process. Note that the Directory
does not need to be dedicated solely to DirectorySmart functions; in fact, it is
possible to integrate an existing production LDAP directory used for generalized
directory functions and extend the schema to accommodate the DirectorySmart
objects, classes and attributes. In addition to Microsoft Active Directory, iPlanet
Directory Server, IBM SecureWay Directory Server, and Novell NDS eDirectory
Server are supported.

User Management (UM) – The User Management component is the central
configuration console. Through this web-based interface, four major
DirectorySmart object types are managed: Web Services, Organizations, Roles,
and Users. The term “Web Services” is not to be confused with the more recently
coined term “Web services” (small “s”) that describes an application that provides
a Web API, supporting application-to-application communication using XML and
the Web (Manes, p.27). In DirectorySmart parlance, it simply refers to an
application protected by DirectorySmart. Users are the entities (sometimes
referred to as principals) used to access applications and infrastructure mediated
by DirectorySmart (Manes, p.233). Organizations are the method for organizing
and managing Users, Roles, and Web Services. They can be set up in a flat
structure, or into an organizational hierarchy (useful for delegated
administration), using the optional Organizational Hierarchy (OH) component.
Roles provide a way to grant a set of Users authorizations to Web Services, and
as a result, provide a method to enforce a consistent policy (OpenNetwork, p.26).
Additionally, Roles can provide a way to control a User’s access to specific
functions within a Web Service through fine-grained access, discussed below.

Web Access Control Agent (WAC) – The WAC performs a vital function, serving
to authorize and log initial and subsequent user requests to protected Web
Services. It mediates the user login process, checking and creating credentials in
the form of an encrypted browser session cookie. The Web Access Control
Agent is a web-server plug-in filter; a variety of popular web server platforms are
supported, including Microsoft IIS, iPlanet Web Server, IBM HTTP Server,
RedHat Stronghold, Oracle Web Server, and IBM/Lotus Domino.

Self Service – The Self Service module is a Web Service that performs two
essential functions in user identity management. The first, as the name suggests,
is the self-service function, i.e., the ability of a user to review and update selected
attributes about himself. User attributes such as phone number, extension, and

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 9

e-mail can be entered and updated by the user as needed (OpenNetwork, p.1).
The second function involves password management, and is the ability for a user
to perform password updates, resets, or recoveries. In the first case, if a user
wishes (or is required) to change a password, a screen is presented with three
familiar fields common to most password update processes: Current Password,
New Password, and Confirm Password. Once the user properly fills out the
Current Password and enters in the new password in the second and third fields,
the password is successfully changed. DirectorySmart supports user-defined
Password Challenge Prompts and Responses. Provided that a user fills in these
fields (e.g., Challenge Prompt: “What is your birthplace?”; Challenge Response:
“Los Angeles”), this can be used in conjunction with password resets and/or
password recovery if a user forgets a password. In such a case, a user would go
to a page, enter his User ID, Challenge Prompt, and Challenge Response; for
password resets, the password is randomly generated and presented to the user
either on the screen or sent via e-mail; for forgotten passwords, the current
password is displayed on the screen or sent via e-mail (OpenNetwork, pp.48,57-
66).

Self-Registration – This module allows users to participate in DirectorySmart
services after performing a self-registration process. The module supports two
modes: Activation and Registration. In the case of Activation, dormant users are
predefined in the Directory. When a dormant user visits the self-registration page,
he is required to put in his valid User ID (which was already preloaded by the
administrator) and a new password to activate his identity. In the second case,
Registration requires that the user not pre-exist in the Directory. By default, the
Registration mode will validate a user against an external database (of valid PIN
numbers, for example), and upon the user’s successful entering of a User ID and
password, a User object will be created in the Directory (OpenNetwork, pp.1-6)

Menu of Services (MOS) – The Menu of Services is an optional Web Service that
provides a dynamic portal with some customization and personalization
capabilities. Though not being used by the Company, the MOS provides an easy
way to deploy a dynamic (i.e., processed in real-time) web-based menu of
available applications (Web Services), based on a user’s Role and/or
Organization (OpenNetwork, p.1).

Log Collector/Reporting – The Log Collector is a servlet-based application that is
responsible for logging access, failed access, and audit events. It works in
conjunction with the WAC to record events. Access and failed access events are
generated each time a user accesses or, alternatively, fails to access, any page
protected by a Web Service. Audit events are generated each time someone
makes a change (e.g., add, modify, delete) to an object within the Directory. For
added integrity and privacy, these events can be signed and encrypted. The
events themselves are written to a relational database, such as Oracle, DB2, or
SQL*Server. The Log Collector supports three modes of logging, depending on
the degree to which an event is required to be verified that it was successfully

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 10

written to the database. The most stringent form of logging (called “strict” mode)
requires the Log Collector to confirm that an event was recorded to the database;
if it is unsuccessful, it signals to the WAC to not allow any further access to any
protected web applications (OpenNetwork, pp.1,38-39). To the report on these
activities, a set of predefined reports built in Crystal Reports come with the
product, and allow reporting on all three types of events, providing various levels
of granularity (e.g., Organizations, Web Services, Users) (OpenNetwork, p.1).

DirectorySmart APIs – The DirectorySmart APIs are a set of Application Program
Interfaces, available in C/C++, Java, and COM. The APIs allow direct access and
control to the DirectorySmart-related objects in the Directory. The APIs can work
in conjunction with Web Services to provide fine-grained access control.

In addition to DirectorySmart’s core components, two important features related
to identity and access management must be reviewed, since they pervade much
of the discussion and the security improvements offered by DirectorySmart:
Authentication and Authorization.

Authentication – As a concise definition, authentication is “the process of
confirming the correctness of the claimed identity” (Cole et al., p.A-127). In
DirectorySmart, this is presentation of valid credentials to establish the identity of
a principal. When a user requests a web page that is defined as a Web Service
and one that requires a valid Role to access the page, the WAC will check to see
if the user (and his browser) contains a valid credential in the form of a cookie. If
true, then optionally, the credential is compared against the minimum
authentication level the Web Service is set to. Four authentication levels, in
ascending order of strength are supported: Basic (User ID and Password), Cert
Only (User Certificates from a valid Certificate Authority), Cert & Basic (Both a
User Certificate and User ID and Password), and SecureID (RSA SecureID
Server). If a cookie does not exist, a standard or custom login page is presented
to the user. When the user enters the proper authentication attributes (such as
User ID and Password, in the simplest case), the WAC will query the Directory to
perform the authentication. If successful, the WAC will create the encrypted
cookie.

Authorization – Authorization is the process of granting specific access rights
within a given system or application to a user (directly or through other indirect
methods), allowing the user to perform the specific functions the authorization
permits. DirectorySmart accomplishes authorization to applications and their
components through two methods. The first method controls authorizations via
URL-based security. Specifically, if a given web application has a sub-function
(perhaps a particular web page of an application) represented by a particular
URL, one can assign a Web service to the particular URL, and grant users
access to it either directly or via a Role. The second method of authorization
defined by DirectorySmart is known as fine-grained access control. Within a
given Web Service, a particular function can be defined by giving it a Function

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 11

Name (e.g., “Purchase Goods”), a Function Code (e.g., Purch_goods), and
Function Values (e.g., Full,Limited,OneItem). After the function is defined within
the Web Service, the APIs can be used to query the function value for a given
User/Role, thereby granting proper access based on the returned function value.

The Implementation

Now that the major DirectorySmart features and functions have been reviewed,
this provides a backdrop to the implementation of DirectorySmart and the AMISC
application within the Company’s infrastructure and outlines the challenges and
considerations encountered.

Active Directory – Before the installation of DirectorySmart, the Active Directory
needs to be sufficiently prepared. This would include extending the directory
schema, setting up a Certificate Server to generate a certificate to facilitate SSL-
based LDAP connections via Port 636 to the directory, and setting up the initial
container to hold the DirectorySmart objects. (For more detailed information on
these functions, please consult the DirectorySmart “Active Directory Pre-
Installation Requirements Guide, Version 4.8.2.1” by OpenNetwork.) Microsoft’s
Active Directory requires LDAP over SSL-based communications when
performing password resets and creating Users under the User Manager (UM).

As part of the Company’s well-defined Active Directory structure, it had followed
Microsoft’s suggestions for setting up a Dedicated Forest Root Domain,
sometimes known as an “empty root” (Microsoft). This model worked well for the
Company, since it managed semi-autonomous business entities, each with its
own child tree. This had some minor implications on the installation. Since
schema extensions apply at the Active Directory forest top level, applying the
schema update to the empty root domain was not an issue. However, since the
DirectorySmart installation was not inherently designed with subordinate trees in
mind, it didn’t understand how to install the DirectorySmart objects within the
desired target domain. In this instance, the Company worked with OpenNetwork
to manually install pieces of the DirectorySmart directory object configuration to
allow the installation to finish.

Web Access Control (WAC) – The classic DirectorySmart configuration involves
the installation of WAC agents on the web servers hosting the web applications,
requiring protection by DirectorySmart. During the early discovery phase of the
project, it was revealed that the Company’s web infrastructure did not only
include Microsoft IIS web servers, but also contained extensive use of BEA’s
Web Server. Interestingly, this revealed a few faulty assumptions. First, since the
BEA WebLogic application server platform was prevalent in the enterprise as well
as IIS, it was assumed that IIS was being used in conjunction with BEA
WebLogic, with minimal use of BEA Web Server. Second, since DirectorySmart
supported the three major “flavors” of web servers (IIS, iPlanet, Apache), any
new variant would be supported. Lastly, since OpenNetwork created

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 12

ApplicationShield, a separate OpenNetwork product that connected
DirectorySmart to BEA WebLogic, it was thought that there should be a way to
install the WAC on a BEA Web Server. Unfortunately, this was not the case—one
cannot install a WAC on a BEA Web Server.

This left the implementation team with two options: either use IIS in place of BEA
Web Server, or use a reverse proxy. Since the first option required using BEA’s
IIS plug-in, this was ruled out due to past negative experiences with stability.

Reverse Proxy – The reverse proxy solution provides an elegant alternative to
installing a WAC directly on a web server. In this context, a reverse proxy is a
service that takes HTTP/S requests from the “outside” and proxies them to the
“inside,” which is the reverse of a standard forward web proxy. First, a reverse
proxy was set up using Microsoft ISA (Internet Security & Acceleration) Server.
Microsoft refers to its reverse proxy capability as publishing web sites. At a high-
level, ISA needs to be configured with the appropriate Destination Sets for each
of the internal web servers, and then Publishing Rules are created that link the
external URLs to the internal web servers (Microsoft). Once ISA is configured,
the WAC can then be installed on ISA. When an authorized user requests a
given URL, ISA receives it and sends it to the WAC; from there DirectorySmart
applies its security-filtering techniques, allowing the valid request to go through.

Using a reverse proxy solution carries with it some additional benefits and
considerations. This method does not require the installation of WACs on
individual web servers, which can impose some administrative and performance
overhead. Upgrading a WAC is now simplified, since only the WAC on the ISA
server needs to be upgraded. This is also useful in situations where a firewall sits
between the ISA server and internal web servers. Rather than opening up ports
from the outside to web servers on the inside, only the reverse proxy is allowed
to communicate directly with internal hosts (See Figure 1). Another advantage is
that client connections are terminated at the ISA server, instead of directly with
the web server. A corresponding proxy connection is created from the ISA server
to the target web server; this makes it more difficult to directly attack the target
web server. The potential downside is that for internally-based applications, one
would need to use alternative methods to secure the BEA Web Servers, since
one could attempt to directly access them, circumventing the ISA reverse proxy.
This was controlled by restricting the network access to the BEA Web Servers so
that only the ISA server could communicate with them for web requests.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 13

Application Server – Ever since DirectorySmart version 4.7, a Java-based
application server is required for DirectorySmart in order to run components such
as User Management, Configuration, Self-Service, Log Collectors, and the Menu
of Services (MOS). Given the Company’s extensive use of BEA WebLogic, it was
the obvious choice. For the initial implementation, the application server was
used to house both the DirectorySmart items as well as the AMISC code. A
future implementation will likely separate the AMISC application and the
DirectorySmart component into two separate application servers.

Application Development – The development team decided that the best way to
leverage the DirectorySmart APIs was to create a handful of encapsulated
methods of the DirectorySmart API calls, such as getRoles() and
getAllPermissions(). This would provide a layer of abstraction to the APIs and
had two benefits: provide a common set of methods to Company developers, and
prevent reworking of future applications if the DirectorySmart API changes were
to occur. The other major discussion was the use of fine-grained access control.
As of this writing, the application development team had not finished building
function codes and function values to incorporate into the AMISC Web Service
for fine-grained access control; however, they specified a high-level approach by
bundling a number of application permissions into a reasonable set of function
codes, rather than granulating a single permission (e.g., Display Button 1) to a
single function code.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 14

Other DirectorySmart infrastructure – Aside from these considerations, the
implementation of the SQL*Server Database (for the Log Collectors and AMISC
application) generally went “according to the book.” For the initial implementation,
the default log settings were used, logging successful and failed access and
audit events, with the logging mode set to Recoverable, which ensured that
events were written to the database (or a backup text log file if the database is
unavailable for later processing).

The Results

As the dust of the initial implementation settles, a number of security and
business benefits will become apparent:

Security Improvements

Improved consistent provisioning of users – By moving towards a common
directory-based identity, it becomes easier to provision and manage users, since
there will be fewer separate security administration silos to manage. This helps to
ensure that provisioning and deprovisioning will occur in a rapid and consistent
manner.

Password management – From a security perspective, password resets and
recoveries are sometimes seen as security weaknesses, since they offer
opportunities for unauthorized individuals to gain access to systems by guessing
people’s answers to predefined, easy challenge questions, leading to a limited
number of easy answers (e.g., Question: “What is your favorite color?” Answer:
“Blue”). However, in the case of DirectorySmart, the challenge question is
completely open-ended to the user, as then will be the answer. When this is
combined with its password reset and password recovery (i.e., “Forgot
password?”) functions, this reduces the risk of unauthorized resets and
recoveries. This added functionality can reduce the occurrence of the “Post-It
Note” phenomenon, where users write their password down and stick it in a
visible location by their workstation.

Common access control model – By implementing a centralized access control
product, this creates a model for managing consistent access control policies,
such as password policies, role-based security, and more granular permissions.
This is in sharp contrast to the variety of methods that came about as a result of
independent development methods to handle access control.

Improved authentication/authorization – The implementation clearly brought
about improved authentication capabilities, particularly for AMISC, given that the
former method used an encoding scheme for password storage with no
authorization abilities. The new method requires DirectorySmart to mediate the
authentication, securely pass the authentication information to the Directory, and

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 15

then deliver to the client a strong encrypted cookie-based credential. Further,
with DirectorySmart’s URL-based and fine-grained access control, it provided a
secure method for authorization to functions within the application.

Logging and auditing – The AMISC application did not have any mechanism for
logging access activity or the ability to audit application administration events.
With the Log Collector enabled, all accesses, failed accesses, and inactive or
locked accounts were logged, available for later reporting. Further, any event
related to directory changes, such as modifying an application Role, would be
logged as well, providing an audit trail of administrative changes.

Improved defense in-depth – This term is used throughout the information
security profession, and the SANS Security Essentials course devotes the entire
Section II, and specifically Chapter 7 to this topic. As one reviews the post-
implementation web security model, it is clear that additional layers of security
have been added, reducing the exposure and providing increased defense in-
depth. Specifically, the access to web content is controlled by a web access
control agent, securely tied to a directory repository, as opposed to unrestricted
access to the web server. This is further secured by the use of a reverse proxy,
discussed earlier, which now makes it possible for n-tier web applications to be
securely accessible by external participants. A final example would be the
addition of event and audit logging, providing essential security information for
monitoring and managing access and directory administration.

Business Improvements

Improved development – One of the successes of this initiative was that the
developers themselves realized the value of DirectorySmart from an application
development perspective. Specifically, they were no longer required to build
security components into each one of their applications, thus freeing them to
focus on other development efforts. In addition, they could utilize a common set
of APIs and encapsulated methods.

Reduced administrative costs - Effective self-service tools, particularly password
management, will improve user productivity and reduce administrative costs. A
recent sampling of the Company’s Help Desk indicated that the number of calls
for password resets had reached 250-300 calls per day. By giving users an easy-
to-use tool to reset their login (and their directory-enabled application) password,
this will easily reduce the call volume and lower Help Desk-related support costs.
For security administrators, this will reduce the amount of time spent on access
management functions, since there are fewer separate access management
environments to administer.

Increased user productivity – Another benefit of effective password management
tools and single sign-on technology is that users themselves become more
productive, since they are less likely to forget a password (since there are fewer

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 16

passwords to remember), and if they do forget, a password reset/recovery
mechanism gets them back to work quickly, instead of requiring the Help Desk to
reset their passwords. Another direct benefit to new users is that with a
centralized identity, it takes less time for security administrators to create their
user account to give them access to all of their authorized applications, since the
applications are tied to the singular identity. This translates into users being able
to access their applications and hence become more productive sooner.

The Future

With the initial groundwork of DirectorySmart laid, this will pave the way for future
applications using its directory-based access model. Once AMISC is fully
implemented, this will be followed by integrating further Loan Servicing web
applications. As part of the original project scope, PeopleSoft is still planned as
the second enterprise application to be integrated. The need for integration with
DirectorySmart has been increased, since the Human Resources department is
not only in the process of rolling out Time & Labor, but also planning on
deploying other PeopleSoft-driven self-service functions, particularly in the area
of Benefits. On the external front, there are a number of outward-facing web
applications serving the existing customers that will need to be eventually retrofit
with DirectorySmart authentication and authorization. For potential external
customers, the self-registration features of DirectorySmart should prove helpful in
having users create their own secure user identities as they review the
Company’s products and services.

Aside from the applications themselves, the self-service and password
management functions of DirectorySmart need to be rolled out to the enterprise
to fully achieve the value of these solutions. A number of the internal applications
have a need for delegated administration, where the business units themselves
will perform the administration. DirectorySmart, through its User Manager
interface, will provide an easy way to delegate the administration of selected
Users, Organizations, and Roles, allowing them only to manage the relevant
objects within the Directory.

Concerning the future of the product itself, as of this writing, OpenNetwork very
recently launched the next major release of DirectorySmart, now called the
Universal Identity Platform, or UIdP (OpenNetwork). This new release extends
the product to the Microsoft .Net platform; this allows major components, such as
the Universal Identity Manager (formerly UM), to run directly on a Windows 2000
or 2003 Server. The API’s are now also available for .Net. UIdP also expands the
Role-Based Access Control capabilities of the product by providing Dynamic
Roles. Perhaps the most major development of the new product is the Enterprise
edition of UIdP, which adds Microsoft’s Identity Integration Server (MIIS) and a
Universal Business Process Manager (BPM) to provide workflow and
provisioning services.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 17

Within the context of these future trends, this fits in well with the Company’s
strategy and resultant continued rapid growth. The next major enterprise security
initiative focuses on Automated Provisioning, a process that is designed to
automate the provisioning, maintenance, and de-provisioning account processes,
and will have a profound impact on improved user productivity. Having a solid
enterprise directory in place is crucial to the success of such a large undertaking,
one which this author is ready to face.

References

Horvath, Mary. “Understanding Encrypt, ToBase64, and Hash.” 2000. URL:
http://www.macromedia.com/devnet/server_archive/articles/understanding_encry
pt.html (20 Aug. 2003).

Cole, Eric, Jason Fossen, Stephen Northcutt, and Hal Pomeranz. SANS Security
Essentials with CISSP CBK Version 2.1. 2 vols. SANS Press, 2003. 392,A-127.

Schneier, Bruce. “Description of a New Variable-Length Key, 64-Bit Block Cipher
(Blowfish).” 1994. URL: http://www.counterpane.com/bfsverlag.html (25 Aug.
2003).

Schneier, Bruce. “Security Pitfalls in Cryptography.” 2003. URL:
http://www.counterpane.com/pitfalls.html (23 Aug. 2003).

OpenNetwork. “Independent Testing.” 2003. URL:
http://www.opennetwork.com/solutions/testing/ (20 Aug. 2003).

Manes, T. Anne. Web Services: A Manager’s Guide. Boston: Addison Wesley,
2003. 27,233.

OpenNetwork. “DirectorySmart User Management User Guide. Version 4.8.2.1.”
7 May 2003. 26,48,57-66.

OpenNetwork. “Self Service Guide. Version 4.8.2.1.” 7 May 2003. 1.

OpenNetwork. “Self-Registration User Guide. Version 4.8.2.1.” 7 May 2003. 1-6.

OpenNetwork. “Menu of Services Guide. Version 4.8.2.1.” 7 May 2003. 1.

OpenNetwork. “Log Collector Guide. Version 4.8.2.1.” 28 May 2003. 1,38-39.

OpenNetwork. “Crystal Reports Guide. Version 4.8.2.1.” 7 May 2003. 1.

OpenNetwork. “Active Directory Pre-Installation Requirements Guide. Version
4.8.2.1.” 6 Jun. 2003.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 18

Microsoft. “Choosing a Regional or Dedicated Forest Root Domain.” Windows
2003 Deployment Kit. 2003. URL:
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/proddocs/depl
oyguide/dssbc_logi_abak.asp (18 Aug. 2003). [Active link not possible—paste URL into
browser to view reference.]

Microsoft. “HOW TO: Securely Publish Multiple Web Sites by Using ISA Server in
Windows 2000.” Microsoft TechNet Knowledge Base Article 300435. 27 Oct.
2002. URL: http://support.microsoft.com/default.aspx?scid=kb;en-us;300435 (23
Aug. 2003).

OpenNetwork. “OpenNetwork Announces the General Availability of Universal
Identity Platform 5.0 for End-to-End Identity Management.” Press Release. 19
Aug. 2003. URL: http://www.opennetwork.com/news/press/2003/2003-08-
19_UIdP.php (25 Aug. 2003).

