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A study on hash functions for cryptography
Vladimir Omar Calderón Yaksic

Abstract

In cryptography, there are two tools needed almost for each and every system and/or
protocol: random number generators and one-way functions. Their use is then vital. This
work covers a detailed description of hash functions, as one-way functions, involved in
different cryptographic processes. The work begins defining these functions followed by
the description of their classification.

Also, some possible attacks on hash functions have been studied. Finally, the work tries
to emphasize the importance of these functions giving examples of their use in cryptogra-
phy for authentication, virus checking, digital signatures, timestamped documents, secure
socket layer connections, etc. For all this, the work states the relevance of these functions
and the need to understand them in depth.
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A STUDY ON HASH FUNCTIONS FOR CRYPTOGRAPHY

1 Overview

There exists two main tools used almost in each and every cryptographic system: ran-
dom number generators and one-way functions. One-way functions are a huge family of
functions used for confidentiality, authentication, integrity and non-repudiation. This work
explores an important type of these functions which are the hash functions.

The most famous hash functions are the MD family: MD2, MD4, MD5 and SHA[12];
but we will see there are plenty of other hash functions with many different purposes. The
main objectif of this work is to show a detailed description of hash functions and to state
the great importance we should give to these functions, just like any other element of a
cryptographic system.

The work begins describing where one-way functions are used, and that they are an
essential element in cryptography. And after giving some important concepts about the
classfication of cryptographic systems, it continues with a full description of the concepts
and properties of one-way functions.

At that point, hash functions are ready to be introduced. The work describes the con-
cepts and properties of these functions and also gives a first classification of hash functions
as of [6].

Then the work discusses different properties and possible attacks on hash functions,
considering the Shannon theorem for entropy and the Birthday Paradox in section 8.2.

Finally, various applications of hash functions are discussed showing their importance
and every-day use. The work ends with a conclusion emphasizing the relevance of hash
functions and their future; discussing also the fact that if quantum machines were to exist,
hash functions also could be brokem (indeed, Simon’s Problem and some hard-problems
have been solved with quantum algorithms years ago, see [13]).

2 Why does cryptography need one-way functions?

Confidentiality is one of the ’must have’ features of cryptographic systems. The idea is then
to transmit a message that can not be understood by other but the receiver. Following this
idea, we need functions that transform the message to make it unreadable, and, if some-
body ’hears’ the message, should not able to understand or interprete it. This means that
we need functions that can be computed one way but not the inverse: one-way functions.

Usually, when talking about these functions, the conversation turns into subjects related
to RSA, El Gamal, etc. But, an important set of one-way functions are hash functions with
one-way functions’ properties. Hash functions are now used in cryptography for authenti-
cation, integrity and non-repudiation especially.

So, cryptography needs these functions because of the main property of being hard to
compute the inverse of the function. We have to be very careful with these matters because
it involves mathematical issues which are not fully solved or known. Especially for RSA,
and the cryptography systems based on hard-problems, as long as mathematicians are
not sure if hard-problems can be reduced to ’easier’ problems, and as long as physicians
don’t build quantum machines; we can be pretty sure these one-way functions will still be
the key element in cryptography systems.

GSEC Practical Assignment 2
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A STUDY ON HASH FUNCTIONS FOR CRYPTOGRAPHY

3 Classification of cryptographic systems

Before the description of one-way functions, we will describe some concepts that classify
the different cryptographic systems. These concepts will especially be mentioned when
discussing the possible attacks on the studied functions. That’s why it’s important to define
them right from the beginning.

3.1 Unconditional security (perfect secrecy)

This category is based on the information theory published by Shannon back in the 40s. To
have perfect secrecy on a cryptographic system means that if the attacker has the plaintext
and the cypher text, it’s of no use for him to cryptanalyze it. It means that these values are
independent random variables.

To achieve this, we need a third element which will be the secret information known by
the sender (the key to crypt) and the receiver (the key to decrypt). The problem, stated also
in Shannon’s publication, is the impracticability of this solution, because it needs the key to
be as big as the message. Also, the key can not be used to exchange different messages,
meaning that we should use different keys every time.

The classic example of perfect secrecy is One-Time Pad, invented in 1917 by J. Mau-
borgne and G. Vernam.

3.2 Provable security

Cryptographic systems are said to be provably secure if the fact to break it is as difficult as
to break a generic basic hard-problem (i.e. factoring big numbers, calculate square roots
in modulo a composite, calculation of discrete logarithms on a finite group, etc).

The most famous cryptographic system in this category is Rabin’s cryptosystem. Notice
that RSA is not proven to be provable secure, just in the random oracle model.

3.3 Computational security

Most of the cryptographic systems are in this category. Computational security means
that the effort needed to break it is not available to possible attackers; or that the potential
attackers don’t have the sufficient amount of resources to break it.

4 One-way functions

As it has already been said in section 2, one-way functions are important. A function is a
one-way function if:

∀x ∈ X, f(x) = y

is easy computed, but it is virtually impossible to find a function g where g(y) = x

GSEC Practical Assignment 3
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A STUDY ON HASH FUNCTIONS FOR CRYPTOGRAPHY

The only problem in this definition is the sentence ’is virtually impossible’; it is important
to define the impossibility of a solution. There is a whole theory behind one-way functions
based on hard problems.

One-way functions are most used in asymmetric cryptography. Difficulty to find the
inverse of the function depends on the size of the key used. So, that’s why we feel safer
using a 2048bit key than a 512bit key, because we are actually in safer ground, of course,
in terms of confidentiality of the crypted messages.

Some examples of one-way functions are:

• Calculation of square roots modulo a composite:

f(x) = x2 mod n where n = pq with n, q unknown

• A one-way function can be easily built based on a block cryptography system E (like
DES):

y = f(x) = Ek(x)⊕ x where k is fixed and known; E is the function that crypts

4.1 Hard problems

Complexity theory has long studied problems like: How do we know if a program will stop
and give an answer? At first, this seems difficult, but it turns that it is not only a difficult, but
an impossible problem. That’s why we still don’t have a program that tells us if a program
will hang or not in a reasonable time.

Mathematicians have then classified the hard problems. There are the problems that
can be solved in polynomial time (or sub-exponential1), it means, that the time it would take
to solve them is known, and this time grows in a polynomial way as the problem becomes
more complicated (these are called P problems). And there are the other problems, called
NP that are problems whose solutions can be checked in polynomial time.

The question of the millenium (for which you could win a nice prize2) is to know whether
P = NP or not.

There is still another type of problems, called NP -complete. When we can reduce
any problem B ∈ NP to a problem A ∈ NP then we can say A is NP -complete. Some
NP -complete problems are the Traveling Salesman problem and the Knapsack problem
[5].

So, basically, in order to solve the big question P = NP? We should find a NP -
complete problem that can be solved in polynomial time. Then we would be able to reduce
all other NP problems to our solution and solve them. A lot of work has been made to
find an answer with little results. If sometime P = NP should be proven, we would be
able to calculate very difficult problems in polynomial time without having to develop the
computing technology.

1But, sub-exponential doesn’t mean polynomial
2http://www.claymath.org/Millennium_Prize_Problems/

GSEC Practical Assignment 4
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A STUDY ON HASH FUNCTIONS FOR CRYPTOGRAPHY

5 Hash functions

A hash function is a function of the form:

h(x) = y where x ∈ Z and y ∈ Zn

which has some interesting properties:

• The output of the functions is usually smaller than the input (Zn).The input can be
any size while the output is usually of a fixed size.

• To calculate the function is an easy and fast operation

The result of the hash function is also called the digest. The following figure shows
these two properties of hash functions:

Figure 1: Input, output and properties of hash functions

These functions are used in many contexts, this work will explore the use of hash func-
tions in general and their use in cryptography later in a more detailed way.

5.1 Cyclic redundancy checks

A CRC is an additional information given in a message that is being transmitted, Because
of the redundancy added to the message, it is possible to recover some errors that might
have appeared while transmission [7]. But, this does not mean that we can check integrity,
because malicious agents can change the information in a way the CRC would not be
affected.

5.2 Reed Solomon

These are hash functions used to detect errors while transmitting information over a chan-
nel. These are very powerful error detection codes, they are in fact an extension of cyclic
codes. They are not built on binary values but a large set of symbols [8].

GSEC Practical Assignment 5
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A STUDY ON HASH FUNCTIONS FOR CRYPTOGRAPHY

5.3 Properties

As we have seen, hash functions tend to reduce the input we give. This means that,
potentially, there is a possibility that we find two inputs with the same output. The important
thing here is to state the word ’potentially ’ in a way we can use it for cryptographic issues.
This means that more properties have to be given in order to have a hash function ready
to use in the cryptographic world.

5.3.1 Preimage resistance

This property means that if we are in possesion of the resulting digest y, it is computatio-
nally impossible for us to find the x that was the input of the hash function h(x) = y.

5.3.2 Weak collision resistance

This property means that, given two values x and its image y, then it is computationally
impossible to find a x′ 6= x where h(x) = h(x′). So, we do not choose the message nor the
digest, and we have to search a different message with the same digest.

5.3.3 Collision resistance

It means that it is computationally impossible to find x and x′ with x 6= x′ where h(x) = h(x′).
Notice that now we can choose the messages, that’s why this property is also called strong
collision resistance.

5.4 Keyed and unkeyed hash functions

There are two main types of hash functions, the ones depending not only on the input
message but also a message called the key. This key is well known for the one calculating
the result of the hash function. And the others which only need the message to be hashed.
These two types are called: keyed and unkeyed hash functions respectively, see [6].

An application of the keyed hash functions are the message authentication codes, also
called MACs; which are widely used in cryptography. And, an application of unkeyed hash
functions is the modification detection codes; also very used in cryptography matters. The
work explores these two types in the following sections.

6 Modification Detection Codes (MDC)

These are hash functions that do not use any key to be computed. Depending on the
properties they have, they can be subdivided in:

1. One Way Hash Function : These are functions that provide preimage resistance and
weak collision resistance properties.

GSEC Practical Assignment 6
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A STUDY ON HASH FUNCTIONS FOR CRYPTOGRAPHY

2. Collision Resistant Hash Function : These are hash functions with weak collision
resistance and collision resistance properties. Notice that if the function is collision
resistant then it is also weak collision resistant.

An important thing to notice here is that the fact to have a one-way function does not
guarantee us to have a one-way hash function, this is because the latter imposes supple-
mentary restrictions on source and image domaines.

In [6], the author gives the following classification for MDCs:

1. Based on block cyphers : The idea is to use an already existing block cypher system
to add new properties (hashing) without affecting the performance significantly.

2. Customized hash functions : These are hash functions created from scratch. These
will be discussed in section 9.

3. Based on modular arithmetic : These functions use the modulo operation to reduce
the result and form a hash function.

7 Message Authentication Codes (MAC)

These are a family of hash functions dedicated to authenticate messages. The function
depends on the message and a secret key. The important properties of MACs, as stated
in [6] are:

• Compression : Like hash functions, but applied to Hk, where k is the secret key.

• Easy to compute : The nice property of almost all hash functions.

• Computation resistance : Without knowing the secret key, it is computationally im-
possible to get to know what Hk(x) corresponds to a chosen x, even if we have got
samples of the algorithm results.

The third property implies key non-recovery (the key k is safe). But, it is important to
notice that, viceversa, this is not true.

Just like MDCs, MACs can be classified in three groups:

1. MACs based on block cyphers : Mostly based on DES-CBC.

2. MACs based on MDCs : Natural way to build MACs, but, careful analysis is needed,
see examples in section 9.1 and [6].

3. Customized MACs : Algorithms especially created for authentication. Examples:
MAA (Message Authenticator Algorithm), MD5-MAC.

A schema showing the described classification can be seen in the following figure.
Notice that the figure does not include the other applications given to hash functions which
can be keyed or unkeyed.

GSEC Practical Assignment 7
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A STUDY ON HASH FUNCTIONS FOR CRYPTOGRAPHY

Figure 2: Classification of hash functions

8 Possible attacks on hash functions

In this section we will describe shortly how a possbile attack can be made on hash func-
tions. First, we have to choose a property of hash functions and try to break it. This
proceeding is valid because most of the properties stated have not yet been proven, or,
involve the word probable. Here we show the way to attack the weak collision resistance
property.

8.1 Attack on weak collision resistance

The problem is the following: given a digest and the message that produced it, find another
message that will produce the same digest.

We will try to compute the number of times we should try, to have a good probability to
find the answer to the problem. Good probability will be given by a probability of 0.5.

Let’s say we have x and h(x), and choose a value x1, the possibility that we have
h(x) = h(xi) is 1

n
. So, for m values, the possibility of not having a collision is:

(1− 1

n
) · ... · (1− 1

n
) = (1− 1

n
)
m

(1− 1

n
)
m

= 1−m
1

n
+

(
m
2

)
1

n2
−

(
m
3

)
1

n3
+ ...

(1− 1

n
)
m

≈ 1− m

n
for big values of n

We are looking to have a value of 0.5, so, we would have:

1

2
≈ 1− m

n

m ≈ n

2
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A STUDY ON HASH FUNCTIONS FOR CRYPTOGRAPHY

We have that for a digest of n bits (2n possible values), we would need to test 2n/2 =
2n−1 values to have a probability of 0.5 to solve the problem. That’s why we have to be
aware of the type of resources the attackers have to cryptanalyze our messages. If we
consider 128 bits will be enough, or if it’s needed 256 bits for our digest’s size.

8.2 Birthday paradox

It’s a simple principle that comes from a simple problem. How many people have to be in
a room, to have a probability bigger than 0.5 that two persons have been born the same
day? The calculation, after some mathematic work, gives us the formula:

m =
√

2(ln2)n ∼= 1.17
√

n

where n is the number of results in the image (for the birthday paradox, n would be
365). And m would be the number of persons we need. This gives us m = 22.3. So, if we
have 23 people in a room there is a good chance that we find two born the same day.

For cryptography, we can do the calculation with m ≈
√

n, and replace n for the number
of possible results of the digest. If the digest has b bits, then n = 2b. And, to have a good
probability of having the same digest with two different messages, we would need to try
m = 2b/2 times.

9 Implementation of MDCs and MACs

In this section we will describe some implementations of hash functions already in every-
day use. Some of them have already been broken and shouldn’t be used like MD4, but are
described anyway because of their historic importance.

9.1 Dedicated Modification Detection Codes

As we have seen, implementations of MDCs can be built on block cyphers, from scratch or
modular aithmethic. Here it continues the description of the most famous implementations
of hash functions. Other implementations would be: Matyas-Meyer-Oseas, MDC-2, MDC-4
and MASH (Modular Arithmethic Secure Hash).

9.1.1 The MD family

These are MDCs created especially for 32 bits machines. The digest is at least of 128 bits.
These are MD which are computed this way:

• Depending on the size of the message, we pad some bits if necessary, and divide
the message in blocs.

• A set of constants is applied to add dispersion to the message.

• A set of rounds are sequentially applied to the blocs.

GSEC Practical Assignment 9
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A STUDY ON HASH FUNCTIONS FOR CRYPTOGRAPHY

• The result of the round is reinserted as input for the next round

MD2

The Message Digest Algorithm, it is described in RFC-1319 [1] in detail. The size of blocs
is 16 bytes. Of course, the description given in [1] was made on 1992. This algorithm has
been broken and should not be used for new applications. Maybe only for compatibility
purposes. The digest is 128 bits long.

MD4 and MD5

MD4 and MD5 are described in RFC-1320[10] and RFC-1321[11] respectively. These
algorithms include 4 constants as input for the first block3 to hash. So, basically the input
is always 512 bits from the block and 128 bits from constants. The result is a digest of 128
bits, which is included as input to hash the next bloc.

MD4 has 3 rounds while MD5 has 4 rounds. MD4 should not be used because it has
been broken. And MD5 should not be considered for future applications.

9.1.2 SHA1

The Secure Hash Algorithm is based on MD4 and it is described on RFC-3174[4]. It works
on blocs of 512 bits also, but, instead of using 4 constants, it uses 5 constants. So, if each
constant was 32 bits long (128 bits in total), for SHA-1 the length of the result is 5x32 bits
long (160 bits).

SHA-1 is considered to be sure for the moment.

9.1.3 RIPEMD

RIPEMD is a MDC created in the framework of the EU project RIPE. The digest is of 160
bits long (RIPEMD-160), which is considered to be sure until 2005 approximately. There
exists also versions of RIPEMD to get digests of 128 bits, just a possible substitute for MD4
and MD5; 256 and 320 bits, used mostly for applications that need larger digests.

It was developed by Dobbertin, Bosselaers and Preneel. Dobbertin is responsible for
finding flaws on MD4.

The following table shows different hash functions in action:

Hash function Message Digest
MD5 GSEC Security Essentialsabdf287462660fa9439116eb0f3b942c
SHA1 GSEC Security Essentialsb21e96c49176798b34ca13d2c3f82abbf6c26502
RIPEMD-128 GSEC Security Essentialsced73690a0b56a6750803b1fa3d59da3
RIPEMD-160 GSEC Security Essentialsced73690a0b56a6750803b1fa3d59da3c8670140

Table 1: Examples of messages and digests of hash functions

3blocks are 512 bits size

GSEC Practical Assignment 10
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A STUDY ON HASH FUNCTIONS FOR CRYPTOGRAPHY

9.2 Dedicated Message Authentication Codes

MACs are widely used today, the most used are the ones created from already built MDCs,
because they are computed faster than the ones based on DES-CBC. However, there exist
lots of others MACs, reflecting the large family they form, for example: MAA, MD5-MAC
and CRC-based MAC.

9.2.1 CBC-MAC

This is a hash function based on DES-CBC, by eliminating the intermediate cyphertexts.
The key’s size is 56 bits (112 using the optional part). The digest is 64 bits long (which is
not considered safe anymore).

9.2.2 HMAC-MD5, HMAC-SHA1 and HMAC-RIPEMD

The HMAC family are MAC functions based on MDCs. The digest’s size is then of the
underlying hash function. The key used is not larger than 64 bytes (a 512 bits block). It
uses two constants ipad and opad to compute the hash function in conjunction with the
key and XOR operations. Basically, the HMAC function is as secure as the hash function
used to compute it.

Also, this algorithm accepts the truncation of the digest down to 80 bits. The perfor-
mance of this algorithm, when the message is large, tends to be as fast as the underlying
hash function.

9.3 Performance

Performance measures have been made with the standard command speed of the com-
mand openssl , detailed in [9]. The execution of this command gives the number of calcu-
lations the computer can make with a determined algorithm. The command performs the
calculations for 3 seconds4.

All measures are in 1000s of bytes per second processed. The following are two tables
showing the performance of different hash functions in two different machines. All timings
are compared with the one performed by MD2.

HF/block size 64 bytes 256 bytes 1024 bytes 8192 bytes
MD2 1754.39k 1.0 2464.39k 1.0 2725.55k 1.0 2818.05k 1.0
MD4 26959.42k 15.3 77394.81k 31.4 145022.45k 53.2 193320.28k 68.6
MD5 22334.63k 12.7 66966.36k 27.2 131811.67k 48.4 184606.72k 65.5
HMAC(MD5) 14093.50k 8.0 46245.97k 18.8 108043.95k 39.6 177919.32k 63.1
SHA1 20952.26k 11.9 51399.42k 20.9 82104.32k 30.1 99304.03k 35.2
RIPEMD160 17604.76k 10.0 39678.38k 16.1 57750.87k 21.2 66701.99k 23.7

Table 2: Performance on AMD Athlon 1050Mhz, 256Mb RAM running Linux RH9

4In the case of hash functions only, for cypher algorithms it uses 10 or 15 seconds
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HF/block size 64 bytes 256 bytes 1024 bytes 8192 bytes
MD2 2945.83k 1.0 4026.75k 1.0 4389.94k 1.0 4598.09k 1.0
MD4 36987.28k 12.6 98147.80k 24.4 160098.78k 36.5 193180.01k 42.0
MD5 38200.07k 13.0 104595.93k 26.0 184259.52k 42.0 233499.77k 50.8
HMAC(MD5) 21001.75k 7.1 68866.59k 17.1 151759.20k 34.6 227412.65k 49.5
SHA1 22561.54k 7.7 52878.08k 13.1 81529.17k 18.6 97498.45k 21.2
RIPEMD160 22330.28k 7.6 45506.56k 11.3 64100.69k 14.6 72015.87k 15.7

Table 3: Performance on Pentium IV 2000Mhz, 512Mb RAM running Linux RH9

We can observe here that MD2 is a very slow algorithm, even if it belongs to the MD
family, it has a very different algorithm for its computation, see section 9.1.1.

An important observation is that MD5 is faster (in table 3 only) than the obsolete (and
already broken) MD4. Also, it turns that the difference of speed is bigger as the algorithms
work on bigger blocks. So, normally, MD5 is much faster than MD4 when computing the
digest of big messages (think of files for example). This can also be because of the MD4
and MD5 implementations in OpenSSL.

An interesting observation is that, while all algorithms get a better performance in the
fast machine5, SHA-1 gets similar performance. This means that if we get to have much
better machines, RIPEMD160 (goes faster on faster machines) would get to be as fast as
SHA-1, because it seems its performance does not depend significantly on the speed of
the machine.

10 Other applications of hash functions

In the following sections there are examples of hash functions executing as one of the
elements for cryptographic systems. This list is non-exhaustive but it lets us perceive the
relevance and wide usage we can and should give to hash functions.

10.1 The UNIX example

UNIX keeps the passwords in a file that can be accessed by anyone. The information (the
password), is not the password itself but the result of a hash function. The problem is that,
we will always get the same result for the same input (brute force attacks can easily be
accomplished with a password dictionary file).

For this reason, UNIX adds a random number, called salt, to the password, before the
computation of the hash function, see [14] for details on specification. These are called
randomized hash functions because they depend on a random number, the salt.

5The one used for table3
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10.2 A word about One-Time Pad

The one-time pad is the perfect secrecy system for cyphertext only attacks. It means that
it is of no use for the cryptanalyst to have the cyphertexts. The problem is that it uses
the Shannon theorem of information, which states that, if a secret key is used, it needs to
be at least the same size than the message itself. Also, the key can only be used once.
Normally, the cyphertext is obtained with:

Ek(x) = y = x⊕ k

which is a hash function based on k (cyphertext is y and message is x). This sys-
tem is interesting because of its property of perfect secrecy, but it’s not suitable for real
applications because of the potentially large sizes of keys to manage.

10.3 Digital signatures

Digital signatures are a huge subject in cryptography. These are used for signing a docu-
ment (of course), but with the good properties that the signer can tell when something has
not been signed by him AND that he can not deny his signature in a signed document. A
performance issue is the fact of signing documents of different sizes: for little documents
it will be faster than for large documents. As long as we would like to be able to sign all
documents in the same time, what is usually done is to hash the message first with a hash
function6.

10.3.1 Timestamps

Timestamped documents are at the heart of the legal use of electronic documents. To
know when a document has been signed for example, the timestamp also is included in
the message to be hashed [3].

10.4 Virus checking

To know if a file has been infected with a virus means to know if it has been, even in a
slightly way, modified. That’s why we can use the digest of the unmodified and safe file to
compare it to the digest of the possible infected file. If it turns that both digest are equal
then we can say that the file has not been modified, then that it is virus-free.

This mechanism is used also by developers and software companies when distributing
their software. It is simple and it is robust (depending on the hash function used).

10.5 Secure Socket Layer connections

Secure Socket Layer (SSL) provides server authentication to clients. It’s the facto standard
for communication on the Internet. During the SSL handshake (detailed in [2]), once the
parts have negotiated the protocol, these have to select also the hash methods to use for

6In formal, we say the space of the messages is reduced with a hash function
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authentication. The client can choose the type of hash function to use, usually MD5 or
SHA-1 (which are MACs).

11 Conclusion

As we have seen, hash functions form a wide family of functions, although their use has
many years with CRC, etc; these functions play a major role in cryptography. Mathemati-
cians have showed us that we can rely on functions with properties involving the words
’probably’ and ’very difficult’, like the properties involving collision resistance and weak
collision resistance.

Cryptography has then been able to use the properties of hash functions and specially
MDCs and MACs to create the widely used MD5, SHA, RIPEMD-160, CBC-MAC, MD5-
MAC. And also, their use is extended, to authentication, virus checking, digital signatures,
etc.

Performance tests of the most famous hash functions used in cryptography have been
made with the speed option of the OpenSSL command. We can now process 233Mb
using MD5 in blocks of 8kb. But, we have seen that the use of a better machine does not
increase that much the performance (compare tables 2 and 3), and in some cases it’s even
similar (SHA-1).

In this work, hopefully, we have stated the importance of hash functions in cryptography,
usually left aside because of the famous RSA, DES, etc. Among the many uses of hash
functions, maybe the most important would be digital signatures, because of the economic
and social impact (in many countries, digitally signed documents are already taken as legal
documents). A good thing to notice is that we have not seen many new hash functions
proposed the last years, this is a good thing, because it means that old hash functions are
still robust enough for our purposes.

For the future, maybe cryptography is the most anxious field of science to see a phys-
ical quantum machine. Many of the algorithms we use should be re-structured simply
because, with quantum machines, there already exist algorithms that can solve hard pro-
blems. Quantum machines also promise to have secure channels for key exchange of
unlimited size.
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