
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

© 2016 The SANS Institute Author retains full rights.

A Black-Box Approach to Embedded Systems
Vulnerability Assessment

GIAC GSEC Gold Certification

Author: Michael Horkan, mhorkan4223@gmail.com
Advisor: Chris Walker

Accepted: November 28, 2016

Abstract

Vulnerability assessment of embedded systems is becoming more important due to

security needs of the ICS/SCADA environment as well as the emergence of the Internet

of Things (IoT). Often, these assessments are left to test engineers without intimate

knowledge of the device's design, no access to firmware source or tools to debug the

device while testing. This gold paper will describe a test lab black-box approach to

evaluating an embedded device's security profile and possible vulnerabilities. Open-

source tools such as Burp Suite and python scripts based on the Sulley Fuzzing

Framework will be employed and described. The health status of the device under test

will be monitored remotely over a network connection. I include a discussion of an IoT

test platform, implemented for Raspberry Pi, and how to approach the evaluation of IoT

using this device as an example.

© 2016 The SANS Institute Author retains full rights.

A Black-Box Approach to Embedded Systems Vulnerability Assessment 2
	

Michael	Horkan,	
mhorkan4223@gmail.com	 	 	

1. Introduction
With a continually growing emphasis on the security of ICS (Industrial Control

Systems), SCADA (Supervisory Control And Data Acquisition), and IoT (Internet of

Things) comes a developing interest in the vulnerability assessment of embedded devices.

Standard security test techniques such as network and file fuzzing, protocol analysis, and

vulnerability scanning are viable approaches. What makes embedded devices a unique

challenge as compared to Linux- or Windows- based servers is their specialized, often

custom, real-time operating systems, and the limited interface options that they expose.

Debugging running firmware on these devices often requires specialized tools - both

hardware and software. There are industry-standard recommendations detailing the need

for hacking embedded device hardware when possible (Searle). These tools are often not

available to test engineers due to availability and cost.

Hardware hacking may not be an option for a variety of reasons. JTAG (Joint Test

Action Group) interfaces, used by manufacturers for development and debug purposes,

may be secured or disabled. On-board firmware may also be encrypted, preventing

dumping and analysis. (Rippel, 2016)

For these reasons, test engineers often face the task of evaluating the security profile

of embedded devices while not having access to the software under the hood. This leaves

test engineers with the task of evaluating the security of embedded systems using only the

interfaces that the device presents to users. They lack the benefits of developer access,

source code, design documentation, and specialized debug tools. This is called “black

box” testing (the inverse is “white box” or “crystal box”).

In the following sections, I will demonstrate test strategies for uncovering security

vulnerabilities in embedded systems when disassembly and data dumping are impractical

options. I will use a business-class Ethernet switch as a test target for these strategies. It

is important for automated testing to account for the “health” of the device during test

cases. Without the ability to install a debugger in the device’s operating system, testers

must use alternative methods of evaluating device health. These methods will focus on

the target’s ability to continue to provide essential services, while network packets are

directed to the target with improper payloads.

© 2016 The SANS Institute Author retains full rights.

A Black-Box Approach to Embedded Systems Vulnerability Assessment 3
	

Michael	Horkan,	
mhorkan4223@gmail.com	 	 	

Testing for network response is not the ideal way to determine that a process has

failed. However, if a tester can isolate a test case that results in a denial-of-service

condition, supplying a proof-of-concept script and a packet capture of the test case to a

firmware developer is an effective way of addressing a potential vulnerability.

DISCLAIMER: The techniques described in this paper should never be attempted

against systems running in production. They could result in damage to equipment,

production resources, the environment, or human life depending upon the application of

the control system. They should be performed only against embedded systems in a test

bed staging environment.

2. The Test Target
2.1. Test Setup

In the following example I provide, I use a Cisco Catalyst 2950 managed Ethernet

switch as the target for security evaluation. The test setup diagram follows:

Device	Under	Test	(Switch)

Linux	Test	VM Windows	Test	VM

Health	Monitors Test	Traffic

	

Figure	1	Test	Setup	

© 2016 The SANS Institute Author retains full rights.

A Black-Box Approach to Embedded Systems Vulnerability Assessment 4
	

Michael	Horkan,	
mhorkan4223@gmail.com	 	 	

2.2. Device Profile
The switch supports the following interfaces:

• Telnet (TCP port 23)

• HTTP (Hyper-Text Transfer Protocol, TCP port 80)

• SNMP (Simple Network Management Protocol, UDP port 161)

So far in the evaluation, the use of Telnet can be flagged as an issue that future

releases of the product’s firmware must resolve.

Figure 2 shows the device’s home web page.

Figure	2	Device	Under	Test	Home	Web	Page	

© 2016 The SANS Institute Author retains full rights.

A Black-Box Approach to Embedded Systems Vulnerability Assessment 5
	

Michael	Horkan,	
mhorkan4223@gmail.com	 	 	

3. Vulnerability Assessment Strategies
3.1. Protocol and Packet Analysis

A network-based vulnerability analysis begins with a simple examination of the

protocols that the device uses under normal operating conditions.

 The use of insecure, plain-text protocols such as Telnet, SNMP (versions 1 and

2c), and FTP is a problem. Security best practices advise against their use. An attacker

performing a simple snoop of the network traffic – either using a data tap, a span port on

a switch, or a man-in-the-middle attack – can extract unencrypted credentials from these

protocols.

Figure 3 shows a Wireshark display of a packet capture of an SNMP read to the

switch. The community string is plainly readable.

Figure	3	Packet	Capture	of	SNMP	Read	showing	plain-text	community	string	

Many embedded devices employ custom web servers as configuration interfaces. To

analyze HTTP/HTTPS traffic to and from such devices, Portswigger’s Burp Suite and

OWASP’s Zap are excellent choices as web proxies. Both products are fully-featured

web proxies, capable of decoding traffic, replacing packet fields, blocking or

© 2016 The SANS Institute Author retains full rights.

A Black-Box Approach to Embedded Systems Vulnerability Assessment 6
	

Michael	Horkan,	
mhorkan4223@gmail.com	 	 	

transparently logging web traffic. Zap is free. Burp Suite comes in a free version and in

a rather inexpensive (roughly three-hundred US dollars) professional edition.

Setting up Burp Suite on the Windows Test VM, a tester can capture HTTP requests

to the switch’s web server. Figure 4 shows the result of a proxy history during login to

the web server. The HTTP Basic Authentication string is in Base64 format as

“0mxpZmVqYWNrZXQ=”. This string decodes to plain text as “lifejacket”.

Figure	4	Burp	Proxy	History	Showing	Web	Server	Login	

3.2. Network-Based Fuzz Testing
Fuzz testing is the practice of delivering deliberately improper, often randomized,

input to a software application in order to determine if the application is vulnerable to

buffer overflow errors or other undesirable effects. Many network-based software

exploits take advantage of buffer overflows to compromise the security of software

servers and embedded devices that consume malformed packets. Network packets that

an application consumes can be injected with bad data – “fuzzed” – and the target

application monitored to determine if correct operation has ceased. We can use fuzzing

tools customized to the three identified network protocols to check for buffer overflow

errors in the switch’s firmware. Standard network fuzzing tools such as Spike, Sulley

© 2016 The SANS Institute Author retains full rights.

A Black-Box Approach to Embedded Systems Vulnerability Assessment 7
	

Michael	Horkan,	
mhorkan4223@gmail.com	 	 	

Fuzzing Framework, and sfuzz are good choices for these test cases. These tools have

extensive online documentation available, and are customizable and free.

To begin, I will use Sulley Fuzzing Framework to mutate an HTTP GET method

request to the switch’s home page. The authenticated request in HTTP plain text is as

follows:

GET / HTTP/1.1

Accept: text/html, application/xhtml+xml, */*

Accept-Language: en-US

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64;
Trident/7.0; rv:11.0) like Gecko

Accept-Encoding: gzip, deflate

Host: 192.168.101.140

Authorization: Basic OmxpZmVqYWNrZXQ=

DNT: 1

Connection: close

I created a Sulley Python script to fuzz every text field individually, leaving

delimiters such as spaces, carriage returns, colons, and slashes intact. See Appendix A

for the script listing “http_GET_sulley_session.py”.

The second fuzzed network packet was modeled using the Linux Net-SNMP toolset

“snmpset” command. The command line for setting the device’s Location (OID

iso.3.6.1.2.1.1.6.0) is:

snmpset –v2c –c life_write 192.168.101.140 1.3.6.2.1.1.6.0 s
“Casa_del_Horkan_2”

The SET command was modeled using Sulley. See the code listed in Appendix A as

“snmp_write_sulley_session.py”.

The test is being employed to check for conditions which will cause the device under

test to cease functioning as it should. A buffer overflow will almost always cause a

software crash. In order to detect this condition, it is necessary to periodically probe the

device’s essential services for signs of failure. I refer to the scripts that check these

services as “health monitors”.

© 2016 The SANS Institute Author retains full rights.

A Black-Box Approach to Embedded Systems Vulnerability Assessment 8
	

Michael	Horkan,	
mhorkan4223@gmail.com	 	 	

3.3. Health Monitors
During fuzz testing, it’s necessary to verify the health of the device by continually

testing the availability of essential services. For this, scripts will be employed that do the

following:

HTTP Monitor – Periodic GET to root (“/”)

SNMP Monitor – Periodic SNMP Get of the System Description parameter

Telnet Monitor – Periodic login with a valid password

Connection Monitor – Ubuntu client is periodically checked with ICMP Echo request,

proving that the switch is still passing network traffic.

The general attribute shared by these monitors is that they will continuously test for

service at user-configurable time periods. They will scroll status – success and failure –

and not terminate based on this status. Timestamps will be printed with the statuses so

that a user can easily see that the monitor is still functioning, and correlate changes in

status with test conditions.

Each monitor will print an identification string with every status line output, to make

it easier for the user to distinguish between monitors running in parallel and in separate

terminal sessions.

See Appendix A for a listing of the monitor Python scripts.

3.3.1. HTTP Monitor

See Appendix A for a listing of “http_monitor.py”. The command-line for this

script’s use is:

./http_monitor.py <IP address of target> <period in seconds>

This monitor will connect to port 80 on the target device and submit an HTTP GET

request for the root directory “/”. As long as the target’s web server is listening on port

80, and the server process is still operational, the monitor should receive an HTTP

response. A valid HTTP response means the server is still operational. Most likely the

response will be HTTP 401 (Unauthorized) if the web server demands authentication,

© 2016 The SANS Institute Author retains full rights.

A Black-Box Approach to Embedded Systems Vulnerability Assessment 9
	

Michael	Horkan,	
mhorkan4223@gmail.com	 	 	

HTTP 302 (Redirect Found) if the web server redirects to a different document path or

another port (such as TCP/443).

Figure 5 shows the monitor’s output when the web server is up and listening. The

monitor prints the HTTP response code it receives from the server, in the example below

the response is 401:

	
Figure	5	HTTP	Monitor	showing	successful	GETs	

The monitor will display a failure, printing “timeout”, if the connection to port 80

fails, or the web server fails to return an HTTP response. Figure 6 below shows a service

failure.

	
Figure	6	HTTP	Monitor	showing	timeout	failures	

3.3.2. SNMP Monitor
See Appendix A for a listing of “snmp_monitor.py”. The command-line for this

script’s use is:

./snmp_monitor.py <IP address of target> <community string>
<period in seconds>

This script performs a SNMP Get request for the System Description (OID

1.3.6.1.2.1.1.1.0), a SNMP MIB entry that should be present in all SNMP-capable

devices. It requires the use of a community string that satisfies at least Read-Only level

access. Under the hood, the monitor requires the use of the PySNMP library

(pysnmp.sourceforge.net).

Figure 7 shows the monitor’s output under normal operating conditions. The monitor

receives and prints the system description that the device responds with.

© 2016 The SANS Institute Author retains full rights.

A Black-Box Approach to Embedded Systems Vulnerability Assessment 10
	

Michael	Horkan,	
mhorkan4223@gmail.com	 	 	

	
Figure	7	SNMP	Monitor	showing	successful	operation	

Figure 8 shows service failure. If the device does not respond successfully, the

monitor will print the PySNMP “RequestTimedOut” error:

	
Figure	8	SNMP	Monitor	failure	

© 2016 The SANS Institute Author retains full rights.

A Black-Box Approach to Embedded Systems Vulnerability Assessment 11
	

Michael	Horkan,	
mhorkan4223@gmail.com	 	 	

3.3.3. Telnet Monitor
See Appendix A for a listing of “telnet_monitor.py”. The command-line for this

script’s use is:

./telnet_monitor.py <IP address of target> <telnet password>
<period in seconds>

This monitor verifies that the device under test’s telnet server is operational. The

script takes advantage of python’s built-in “telnetlib” library. The monitor attempts to

log in to the telnet server and reports success if it detects the telnet shell prompt.

Figure 9 shows the monitor’s output under normal operating conditions, printing

“Login Successful!” if a telnet shell prompt is received:

Figure	9	Telnet	Monitor	showing	normal	operating	conditions	

Figure 10 shows service failure, the result of a timeout.

Figure	10	Telnet	Monitor	Failure	Status	

3.3.4. Ping Monitor
See Appendix A for a listing of “ping_monitor.py”. The command-line for this

script’s use is:

./ping_monitor.py <IP address of target> <period in seconds>

This monitor sends an ICMP Echo Request to the IP address and reports success if a

response is received. An ICMP message cannot be sent using Python’s socket object

because it operates at the Transport layer (layer 4) of the OSI model. ICMP operates at

the Network Layer (layer 3), so Scapy was used to formulate and send the packet.

Figure 11 shows the monitor’s output under normal operating conditions.

© 2016 The SANS Institute Author retains full rights.

A Black-Box Approach to Embedded Systems Vulnerability Assessment 12
	

Michael	Horkan,	
mhorkan4223@gmail.com	 	 	

Figure	11	Ping	Monitor	Output	under	Normal	Operating	Conditions	

Figure 12 shows ping monitor failure.

Figure	12	Ping	Monitor	Failure	Status	

4. Conclusions and Further Considerations
It is important for vendors of ICS/SCADA/IoT to test their products for security

vulnerabilities, to protect their customers from attacks. This paper has described an

inexpensive and valid approach to assessing the security profile of an embedded system

in a test environment using black-box network-based techniques. It provided an

approach for engineers who are less experienced in security testing to evaluate an

embedded system, without the need to purchase expensive software licenses or test

equipment. There are further steps to allow a purely automated approach to the fuzz

testing portion of the evaluation.

The ability to automatically log a test case as being responsible for a service failure is

necessary for test harness automation. The scripts I have supplied do not provide this

functionality. The script supplying test cases (mutated packets) would need to

communicate across the network to the health monitors in order for this function to occur.

© 2016 The SANS Institute Author retains full rights.

A Black-Box Approach to Embedded Systems Vulnerability Assessment 13
	

Michael	Horkan,	
mhorkan4223@gmail.com	 	 	

Once a health monitor detects a failure, it must log the current test case for failure

attribution. A Python-based network communication library such as Twisted may be able

to provide the necessary functions (https://twistedmatrix.com/trac/).

For an automated fuzzing test, the test harness should be capable of resetting a device

that has lost service capability due to a firmware crash. It is possible to cycle power to an

embedded system and return it to an operational state, provided that the test case did not

result in stored firmware sustained damage. One simple way to perform this function is

through a USB-connected input/output device that can be controlled using scripts.

Devices such as those found at https://labjack.com provide an easy and inexpensive way

to reset devices under test. Figure 13 shows how this device connects to a test

workstation in order to control 120 VAC power for a device under test.

Linux	Test	VM

Labjack	U3

USB

5	VDC

120VAC

Relay

Figure	13	Connection	Diagram	for	Resetting	Device	Under	Test	Power	

Automated testing is only part of the picture in security assessment. Manual

firmware analysis is another avenue for device assessment. For firmware that is

© 2016 The SANS Institute Author retains full rights.

A Black-Box Approach to Embedded Systems Vulnerability Assessment 14
	

Michael	Horkan,	
mhorkan4223@gmail.com	 	 	

unencrypted, tools like the Linux ‘strings’ command can be used to reveal default

passwords and the presence of familiar software libraries that may uncover known

vulnerabilities. The open-source ‘binwalk’ tool (binwalk.org) can be used to detect and

extract firmware component files for disassembly. This type of analysis falls more

squarely in the realm of penetration testing, being more “hands-on” and dependent on

tester experience for success, and therefore not a candidate for automated testing.

© 2016 The SANS Institute Author retains full rights.

A Black-Box Approach to Embedded Systems Vulnerability Assessment 15
	

Michael	Horkan,	
mhorkan4223@gmail.com	 	 	

5. Appendix A – Python Script Listings
http_monitor.py	

#!/usr/bin/env python

import httplib
import sys
import time

def send_http_req(ip, url):
 try:
 conn = httplib.HTTPConnection(ip, 80, timeout=5)
 conn.request("GET", url)
 r1 = conn.getresponse()
 except:
 return "timeout"

 conn.close()
 return r1.status

if __name__ == "__main__":

 if len(sys.argv) < 3:

print("Usage: http_monitor.py <ip address of target> <test
period in seconds>")

 sys.exit()

 ip = sys.argv[1]
 period = int(sys.argv[2])

 # request root from web server
 url_requested = "/"

 while True:
 return_status = send_http_req(ip, url_requested)
 printable_time = time.asctime(time.localtime(time.time()))

print("[HTTP Monitor] " + printable_time + " " +
str(return_status))

 time.sleep(period)

	

© 2016 The SANS Institute Author retains full rights.

A Black-Box Approach to Embedded Systems Vulnerability Assessment 16
	

Michael	Horkan,	
mhorkan4223@gmail.com	 	 	

snmp_monitor.py	

#!/usr/bin/env python

from pysnmp.hlapi import *
import sys
import time

def send_snmp_get(ip, community_string):

 # Request OID 1.3.6.1.2.1.1.1.0, which is the System
Description

 errorIndication, errorStatus, errorIndex, varBinds = next(
 getCmd(SnmpEngine(),
 CommunityData(community_string, mpModel=0),
 UdpTransportTarget((ip, 161)),
 ContextData(),
 ObjectType(ObjectIdentity("1.3.6.1.2.1.1.1.0")))
)

 printable_time = time.asctime(time.localtime(time.time()))

 if errorIndication:

print("[SNMP Monitor] " + printable_time + " " +
repr(errorIndication))

 elif errorStatus:
print("[SNMP Monitor] " + printable_time + " " + '%s at %s'
% (errorStatus.prettyPrint(),

 errorIndex and varBinds[int(errorIndex) - 1][0] or "?"))
 else:
 for varBind in varBinds:

print("[SNMP Monitor] " + printable_time + " " + " =
".join([x.prettyPrint() for x in varBind]))

if __name__ == "__main__":

 if len(sys.argv) < 4:

print("Usage: snmp_monitor.py <ip address of target>
<community string> <test period in seconds>")

 sys.exit()

 ip = sys.argv[1]
 community_string = sys.argv[2]
 period = int(sys.argv[3])

 while True:
 send_snmp_get(ip, community_string)
 time.sleep(period)

© 2016 The SANS Institute Author retains full rights.

A Black-Box Approach to Embedded Systems Vulnerability Assessment 17
	

Michael	Horkan,	
mhorkan4223@gmail.com	 	 	

ping_monitor.py	

#!/usr/bin/env python

from scapy.all import sr1, IP, ICMP
import sys
import time

def send_icmp_echo(ip):

 packet = sr1(IP(dst=ip)/ICMP(), timeout=1)
 printable_time = time.asctime(time.localtime(time.time()))

 if packet:

print("[Ping Monitor] " + printable_time + " " +
packet[0][ICMP].summary())

 else:
print("[Ping Monitor] " + printable_time + " No Response!")

if __name__ == "__main__":

 if len(sys.argv) < 3:

print("Usage: ping_monitor.py <ip address of target> <test
period in seconds>")

 sys.exit()

 ip = sys.argv[1]
 period = int(sys.argv[2])

 while True:
 send_icmp_echo(ip)
 time.sleep(period)

	

© 2016 The SANS Institute Author retains full rights.

A Black-Box Approach to Embedded Systems Vulnerability Assessment 18
	

Michael	Horkan,	
mhorkan4223@gmail.com	 	 	

telnet_monitor.py	

#!/usr/bin/env python

import telnetlib
import sys
import time

def telnet_login(ip, pw):

 try:
 tn = telnetlib.Telnet(ip)

 pw_prompt_string = tn.read_until("Password: ", timeout=2)
 if "Password: " in pw_prompt_string:
 tn.write(pw + "\n")
 else:
 raise Exception("Password Prompt Not Received!")

 prompt_string = tn.read_until("Mikes_Switch>", timeout=2)
 if "Mikes_Switch>" in prompt_string:
 pass
 else:
 raise Exception("Telnet Prompt Not Received!")

 tn.close()

 printable_time =
time.asctime(time.localtime(time.time()))

print("[Telnet Monitor] " + printable_time + " Login
Successful!")

 except:

printable_time = time.asctime(time.localtime(time.time()))
print("[Telnet Monitor] " + printable_time + " Login
Failed!")

if __name__ == "__main__":

 if len(sys.argv) < 4:

print("Usage: telnet_monitor.py <ip address of target>
<password> <test period in seconds>")

 sys.exit()

 ip = sys.argv[1]
 pw = sys.argv[2]
 period = int(sys.argv[3])

 while True:
 telnet_login(ip, pw)
 time.sleep(period)

© 2016 The SANS Institute Author retains full rights.

A Black-Box Approach to Embedded Systems Vulnerability Assessment 19
	

Michael	Horkan,	
mhorkan4223@gmail.com	 	 	

http_GET_sulley_session.py	

from sulley import *
import sys
import time

s_initialize("HTTP_GET")
s_static("GET")
s_delim(" ")
s_string("/")
s_delim(" ")
s_string("HTTP")
s_delim("/")
s_string("1.1")
s_delim("\r\n")
s_string("Accept")
s_delim(":")
s_delim(" ")
s_string("text")
s_delim("/")
s_string("html")
s_delim(",")
s_delim(" ")
s_string("application")
s_delim("/")
s_string("xhtml")
s_delim("+")
s_string("xml")
s_delim(",")
s_delim(" ")
s_string("*")
s_delim("/")
s_string("*")
s_delim("\r\n")
s_string("Accept-Language")
s_delim(":")
s_delim(" ")
s_string("en-US")
s_delim("\r\n")
s_string("User-Agent")
s_delim(":")
s_delim(" ")
s_string("Mozilla")
s_delim("/")
s_string("5.0")
s_delim(" ")
s_delim("(")
s_string("Windows")
s_delim(" ")
s_string("NT")

© 2016 The SANS Institute Author retains full rights.

A Black-Box Approach to Embedded Systems Vulnerability Assessment 20
	

Michael	Horkan,	
mhorkan4223@gmail.com	 	 	

s_delim(" ")
s_string("6.1")
s_delim(";")
s_delim(" ")
s_string("WOW64")
s_delim(";")
s_delim(" ")
s_string("Trident")
s_delim("/")
s_string("7.0")
s_delim(";")
s_delim(" ")
s_string("rv")
s_delim(":")
s_string("11.0")
s_delim(")")
s_delim(" ")
s_string("like")
s_delim(" ")
s_string("Gecko")
s_delim("\r\n")
s_string("Accept-Encoding")
s_delim(":")
s_delim(" ")
s_string("gzip")
s_delim(",")
s_delim(" ")
s_string("deflate")
s_delim("\r\n")
s_string("Host")
s_delim(":")
s_delim(" ")
s_string("192.168.101.140")
s_delim("\r\n")
s_string("Authorization")
s_delim(":")
s_delim(" ")
s_string("Basic")
s_delim(" ")
s_string("OmxpZmVqYWNrZXQ=")
s_delim("\r\n")
s_string("DNT")
s_delim(":")
s_delim(" ")
s_string("1")
s_delim("\r\n")
s_string("Connection")
s_delim(":")
s_delim(" ")
s_string("close")
s_delim("\r\n")
s_delim("\r\n")

© 2016 The SANS Institute Author retains full rights.

A Black-Box Approach to Embedded Systems Vulnerability Assessment 21
	

Michael	Horkan,	
mhorkan4223@gmail.com	 	 	

print "Mutations: " + str(s_num_mutations())

print "Press CTRL/C to cancel in ",
for i in range(3):
 print str(3 - i) + " ",
 sys.stdout.flush()
 time.sleep(1)

print "Instantiating session"
sess = sessions.session(session_filename="http_get.session",
sleep_time=0.25)

print "Instantiating target"
target = sessions.target("192.168.101.140", 80)

print "Adding target"
sess.add_target(target)

print "Building graph"
sess.connect(s_get("HTTP_GET"))

print "Starting fuzzing now"
sess.fuzz()

© 2016 The SANS Institute Author retains full rights.

A Black-Box Approach to Embedded Systems Vulnerability Assessment 22
	

Michael	Horkan,	
mhorkan4223@gmail.com	 	 	

snmp_write_sulley_session.py	

from sulley import *
import sys
import time

s_initialize("SNMP_WRITE")
s_binary("0x30 0x3e 0x02 0x01") # header
s_byte("\x01") #version 2c (1)
s_binary("0x04 0x0a") # ???
s_string("life_write") # community string
s_binary("0xa3 0x2d 0x02 0x04") # set-request header
s_binary("0x0f 0xf9 0x8f 0x19") # request-id 268013337, Big
Endian
s_binary("0x02 0x01") # ???
s_byte("\x00") # error-index 0
s_binary("\\x30\\x1f") # ???
s_binary("\\x30\\x1d") # variable-bindings 1 item
s_binary("\\x06\\x08") # Object Name
s_binary("\\x2b\\x06\\x01\\x02\\x01\\x01\\x06\\x00") #
iso.3.6.1.2.1.1.6.0 Device Location
s_binary("\\x04\\x11") # Value (OctetString)
s_string("Casa_del_Horkan_2")

print("Mutations: " + str(s_num_mutations()))

print("Press CTRL/C to cancel in "),
for i in range(3):
 print(str(3 - i) + " "),
 sys.stdout.flush()
 time.sleep(1)

print("Instantiating session")
sess = sessions.session(session_filename="snmp_write.session",
sleep_time=0.25, proto="UDP")

print("Instantiating target")
target = sessions.target("192.168.101.140", 161)

print("Adding target")
sess.add_target(target)

print("Building graph")
sess.connect(s_get("SNMP_WRITE"))

print("Starting fuzzing now")
sess.fuzz()

© 2016 The SANS Institute Author retains full rights.

A Black-Box Approach to Embedded Systems Vulnerability Assessment 23
	

Michael	Horkan,	
mhorkan4223@gmail.com	 	 	

6. Appendix B – Analysis of Internet-of-Things (IoT)
Simulator
The explosion of Internet-of-Things devices in the marketplace makes their study and

testing particularly interesting. They are in fact embedded systems, similar to those

employed in industrial applications. For this reason, a discussion of their security profile

is appropriate.

For testing purposes, an engineer can use a Raspberry Pi single-board computer as an

Internet-of-Things (IoT) simulator. There is a recipe available online for connecting a

Raspberry Pi to IBM’s Watson IoT platform. (IBM Developer Recipes, 2015). It

describes installing a new service on the Pi for communication to IBM’s developer cloud.

Figure 14 shows the architecture for this setup.

Raspberry	Pi
w/IoT	Service

IBM	Cloud

Web	Browser

Commands,	Status

User	Web	Page

	

Figure	14	Raspberry	Pi	Setup	with	IBM	Cloud	Service	

© 2016 The SANS Institute Author retains full rights.

A Black-Box Approach to Embedded Systems Vulnerability Assessment 24
	

Michael	Horkan,	
mhorkan4223@gmail.com	 	 	

By default, the IoT service generates data for transmittal to the cloud service such as

CPU Utilization, CPU Temperature, and Memory Usage. IBM Watson graphs the data

on a web page searchable by Device ID, and shown in Figure 15.

Figure	15	IBM	Watson	Raspberry	Pi	Device	Page	

Treating the Pi as a generic IoT target for assessment, nmap shows only port 22/tcp

(SSH) listening; this is generic to the Pi’s Rasbian distribution, and indicates that the IoT

service is a client to IBM’s cloud platform. This means that our previously-described

server-centric fuzzing techniques will not work to evaluate the target in this case.

Instead, a test-bench cloud server would have to be created to fuzz responses to the client.

Were this a cloud application that sent commands to the IoT device to change I/O states

or modify the configuration, such messages would make ideal targets.

© 2016 The SANS Institute Author retains full rights.

A Black-Box Approach to Embedded Systems Vulnerability Assessment 25
	

Michael	Horkan,	
mhorkan4223@gmail.com	 	 	

The Pi communicates to the home router wirelessly, as many IoT devices do.

Protocol analysis of the traffic between the Pi and the cloud begins with setting up a

wireless adapter for Kali Linux and joining the same SSID as the Pi. The wireless

adapter must be placed into Monitor mode for traffic capture.

Figure	16	Putting	the	Kali	wireless	adapter	into	Monitor	mode	

By joining the wireless network, and utilizing Wireshark, we can capture packets and

export using the Raspberry Pi’s MAC ID as a filter. By default, the packets will only

show as 802.11 encrypted packets.

© 2016 The SANS Institute Author retains full rights.

A Black-Box Approach to Embedded Systems Vulnerability Assessment 26
	

Michael	Horkan,	
mhorkan4223@gmail.com	 	 	

Figure	17	Raspberry	Pi	wireless	traffic	as	802.11	protocol	

The packets displayed are decrypted by entering the wireless access point’s pre-

shared key into Wireshark’s Edit > Preferences > Protocols > IEEE 802.11 > Edit

Decryption Keys, selecting “Enable Decryption”, and reloading (CTL-R). It may be

necessary to toggle the “Assume packets have FCS” setting on the IEEE 802.11 (I had to

do so to decrypt the traffic in my example).

Now one can see the application-layer traffic going between the Pi and wireless

router. Filtering on “tcp” gives this result:

© 2016 The SANS Institute Author retains full rights.

A Black-Box Approach to Embedded Systems Vulnerability Assessment 27
	

Michael	Horkan,	
mhorkan4223@gmail.com	 	 	

Figure	18	Decrypted	Pi	IoT	TCP	traffic	

The IoT status data that the Pi is sending to the IBM cloud is visible here in “MQTT”

application traffic. This is MQ Telemetry Transport, a light-weight publisher/subscriber

messaging protocol designed for Internet of Things devices. (MQTT.org, n.d.)

Within the decrypted packets that the data sent to the cloud is a JSON dictionary:

{"myName":"myPi",

"cputemp":<float value>,

"cpuload":<float value>,

"memoryusage":<float value>,

"sine":<float value>}

From the cloud to the client device, there is a connection acknowledge message in

MQTT. There are no other packets flowing in this direction (apart from TCP

Acknowledges). The JSON dictionary above could be easily modeled in a fuzzing tool

such as Sulley. This would be a network fuzzing test against the cloud server itself. Fuzz

© 2016 The SANS Institute Author retains full rights.

A Black-Box Approach to Embedded Systems Vulnerability Assessment 28
	

Michael	Horkan,	
mhorkan4223@gmail.com	 	 	

testing the client IoT device would require an application that sends a data payload to the

client, and the modeling of those packets within the fuzzing tool.

MQTT does not appear to have any support for encryption. As it is meant for devices

with relatively low hardware specifications, MQTT relies on standard, lower-layer

encryption protocols such as TLS/SSL to supply that functionality (HiveMQ, 2016).

This particular IoT application does not employ any form of authentication, which is

unsurprising considering that its purpose is as a turn-key learning tool. This makes this

application vulnerable to impersonation attacks, whereby an attacker could set up their

own script or application to pretend to be either the client or the cloud server.

	

© 2016 The SANS Institute Author retains full rights.

A Black-Box Approach to Embedded Systems Vulnerability Assessment 29
	

Michael	Horkan,	
mhorkan4223@gmail.com	 	 	

7. References
HiveMQ.	(2016).	Introducing	the	MQTT	Security	Fundamentals.	Retrieved	from	

HiveMQ	Enterprise	MQTT	Broker:	www.hivemq.com/blog/introducing-the-

mqtt-security-fundamentals	

IBM	Developer	Recipes.	(2015,	February	25).	Connect	a	Raspberry	Pi	To	IBM	Watson	

IoT	Platform.	Retrieved	from	developerWorks	Recipes:	

https://developer.ibm.com/recipes/tutorials/raspberry-pi-4/	

MQTT.org.	(n.d.).	MQTT.org	Front	Page.	Retrieved	from	mqtt.org:	mqtt.org	

Rippel,	E.	(2016).	Security	Challenges	in	Embedded	Designs.	Retrieved	from	Design	&	

Reuse:	http://www.design-reuse.com/articles/20671/security-embedded-

design.html	

Searle,	J.	(n.d.).	NESCOR	Guide	to	Penetration	Testing	for	Electric	Utilities.	Retrieved	

from	Electric	Power	Research	Institute,	Smart	Grid	Resource	Center:	

http://smartgrid.epri.com/doc/NESCORGuidetoPenetrationTestingforElectri

cUtilities-v3-Final.pdf	

	

