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God grant me the serenity
to accept the things I cannot change;
courage to change the things I can;
and wisdom to know the difference.

--Reinhold Niebuhr1

Abstract:

Take a walk in my shoes. You are the security manager for a UNIX environment
that is composed of several different flavors of UNIX which totals several
thousand nodes. You have 5000+ customers, both local and remote, who are all
entitled to varying degrees of access to information that ranges up to and
including company secrets regarding future technologies.  Prior to your assuming
the role of security manager, these customers could request “resource accounts”
which were used in their business processes. You have 50+ system
administrator peers who all currently have access to the super-user account,
root. Some of these administrators are using sudo, some are not.  You see a
need to put a bit more control over this authentication/authorization process. You
attend a SANS course which only confirms the course of action you are planning
to address the weaknesses in your authentication and authorization scheme.
Like most companies, your finances are not were they were a few years ago
during the height of the dot com boom, so your choices need to not only make
sense from an information security and usability perspective, but also must be a
sound financial decision.

You have 2 options currently available to you which can improve the situation –
one is the popular freeware tool sudo (http://www.courtesan.com/sudo). With it
you can allow people to authenticate as other users and provide a degree of
access control by specifying what commands they can run on what hosts. The
alternative is Powerbroker, by Symark (http://www.symark.com). Powerbroker
provides a slightly superior level of granular control, plus the additional benefits
of keystroke logging when desired. This case study will explore each of these
options, their strengths and weaknesses as they apply to a large scale work
environments and their implications in considering your authentication -
authorization process, and will offer up one possible solution which uses both
applications in a manner to minimize some of the risks known to exist with
shared accounts, both traditional and super-user.

                                               
1  While I am not a religious person, I have often found myself reflecting upon this wisdom and recognized
it is completely appropriate to anyone responsible for securing a production environment.
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“Before”

Like most professional environments, my task to clean up and refine our
authentication and authorization program would need to balance the needs of my
users to be productive against my goal of reducing risks associated with their
(and our own) processes. I am using the  At this point I was sufficiently educated
in the proper approaches to deploying a security solution – so I knew I needed to
understand the work model and the policies which I would seek to enforce before
I dove into technical solutions. Many of the roles and work models that I would
have to account for are sufficiently universal that my approach should be
applicable to other organizations inside my parent corporation (and perhaps
externally).

The security posture of the corporate environment could best be described as a
collection of fiefdoms with relative autonomy to conduct business as they see fit
so long as the local policies did not incur a risk to the corporation as a whole. My
fiefdom spans 2 US states. All of the perimeter security between my networks
and the “wild” are maintained by other orgs in IT – we have very limited direct
exposure to the internet and the threats associated with it.  My fiefdom reports
into a larger organization which works in parallel with the corporate IT efforts.
The charter of my local organization is to empower our users and provide
specialized support that the corporate IT program was unwilling (and unable) to
offer. We possess our own NIS domains, NFS servers, etc. Our efforts in the
windows world are in sync with the corporate directive (and since they are
outside the scope of my efforts in this project, this is the first and last mention of
them for the sake of providing a complete picture of the environment in which I
operate). Corporate policy relies upon a few well known security principles:

• principle of least privilege
• need to know access rules
• separation of powers
• demonstrated business need to deviate from any policy or standard

These principles guide the decision I make. Like many work environments,
technology decisions are akin to Pandora’s Box - once opened, it would require a
tremendous effort to take away the process/privilege/access the users have been
given. As such, I need to recognize that my customers have grown accustomed
to the possession of accounts which they use to conduct their work. Some have
grown dependent upon the ability to have super-user access on specific
machines or for specific file systems by generating automated processes which
are essential for managing the mundane and routine tasks (chmod, chgrp,
chown) that would otherwise impede progress on more important pursuits.
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Recognizing the Risks:
I opted not to perform a formalized risk assessment on this situation – I was not
confident there was sufficient ROI on such an effort. I understood from the
beginning what I could hope to achieve and what was beyond attaining at this
time. That said, there were still several key vulnerabilities (which I am confident
are not unique to my business model and as such worth mentioning) identified
that I needed to either address or at least be aware of for this project to be
considered successful.

• A lack of a coherent policy existed regarding the use of resource accounts
and which technology (sudo, powerbroker, suid programs) was used for
which reasons. The lack of a coherent policy results in different administrators
selecting different courses of action to meet our customer’s needs. This
weakens our overall security posture because all of these different solutions
are often piecemeal and undocumented. This jeopardizes any premise of
computing environment awareness that I, as the security program manager,
might have. Peers could establish suid programs and/or create accounts
which we as an organization may lose track of.  Also, without a policy in place
to refer to, few customer groups would think to change the password when
there was employee turn-over. Members of the projects would leave for other
jobs inside the company and still be able to access the old UNIX project
accounts because no one would consider it necessary to change the
passwords.

• Suid programs were the defacto solution often chosen to allow customers to
execute single commands as root. Most of these revolved around the
management of project files that resided in NFS. While well written suid
programs and scripts may not pose a significant risk to an environment, those
which are not well written can wreck extreme havoc. Likewise, there was an
underlying assumption by many in my organization that our customers would
never seek to use the suid programs written for any purpose other than the
legitimate business needs that required their existence. As the security
manager, I am paid to be paranoid so in evaluating the presence of these
scripts and programs, I was not willing to accept the benevolence of my
customers as a forgone conclusion.

• Insecure password sharing was considered the norm among the customer
groups. In the case of the support group, the root password is stored in an
encrypted file and all members of support are trained to understand how to
decrypt the file in a secure manner. The customers, on the other hand, have
no such training or the motivation to adhere to such rules.  Early on I found
several disturbing trends (which we joked about in the SANS class) that all
sum up to really poor authentication management. The processes used to
share passwords were very easy to intercept or socially engineer. Attacks
against the confidentiality of the passwords would be too numerous to
mention given the implemented practices not only of storing and
communicating these passwords, but also in their creation and alteration.
Passwords were shared on web pages (which the authors presumed we
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either secured or so obscure no one would find them), sent out via
unencrypted email, or in the worst cases – written on white boards in the lab!

• Weak passwords were often chosen for these shared accounts. Customers
would select trivial-to-guess passwords because so many people had to
remember it they would shy away from corporate standards of strong,
complex passwords. The passwords most often were related in some way to
the project’s name or the organizational unit’s identity. In a few cases, it was
the worst possible password (short of no password) – it was the name of the
account. Use of the password cracking tool John the Ripper would yield
approximately 30-50% success on the resource accounts that were present in
the environment. Often times these were also easily guessed so that a
password cracker was not necessary; guessing the password was the
account name would yield a few positive results.

• Password aging (the procedure by which users are required to periodically
change their passwords over a given span of time) was not implemented
because of a ‘business restriction’. The shared passwords would not be
changed at the required intervals. Worse, they would not be changed when
membership tied to the resource account would change – so someone could
switch groups or leave the company and the password would not be changed
for fear of “disrupting critical path work.” Without password aging in place,
even reasonable strong passwords could be decrypted via a tool such as john
the ripper. The lack of password aging also resulted in some accounts
circumventing the advances in password strength that were required for
general accounts. Even though my organization implemented new tools that
would validate that a new password met certain requirements, these older
passwords, which never needed to be reset, we established without the
requirements and since they were never changed, their strength was never
challenged through such processes.

• Bypassing authentication – early on in my analysis of the environment I
discovered that almost every resource account had at least 1 user who could
not (or would not) remember the password. So their solution was to add
entries to the account’s .rhosts file and bypass all needs to authenticate to
gain access. Luckily we had processes in place to examine files for the most
dreaded + sign and remove it and ‘educate’ the offending party (and their
manager) of the threat this posed. Regardless, the risk still existed that
someone intent on obtaining access could forge the right credentials to gain
access to the account via these .rhost files, or they could circumvent the
authorization process by adding people to these files who could then access
the accounts without the password. In a large scale environment, especially
one using open-ended ip address assignment technologies such as DHCP, it
would be trivial for someone to bring up a system, create the accounts they
wished to have access to, then simply rsh or ssh onto a production system
and completely bypass any authentication challenge.

• No accountability or logging was in place to monitor who used the various
accounts. Those with the password could become root and execute
commands without any trace of their actions on any of the thousands of
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systems in the environment.  While sudo was in place for our administrators,
most would (out of habit) still su to root. While the lack of sufficient logging in
the environment was not in and of itself a vulnerability, the situation
aggravates the security posture of the organization by promoting a myopic
view of the environment. Attacks that are underway go un-noticed, and those
that have already occurred leave a poor forensics trail through which one
would hope to determine how the environment was compromised and what
was done once they obtained access.2

• No Separation of Duties had been established to distinguish job roles among
the various administrators. We were providing all members of the support
group (50+ people) the root password which was usable on all UNIX systems
in the environment regardless of their job function. This risk was augmented
mid-development by the introduction of student interns into our operations
and customer support center. The manager of this center established the
expectation that these students would be given privileged access once they
were properly trained. This gap in process results in little to no ability to
provide for conduct accountability or for a mature defense in depth strategy.
Providing all administrators equal access to all systems dilutes the ability to
track actions on systems to specific users or at least a reduced subset of
users. In the nightmarish case of a disgruntled employee, it leaves the entire
infrastructure at the mercy of the employee’s wrath. A more mundane and
plausible scenario, it opens the entire environment up to accidental damage
through poorly executed scripts designed to affect a range of systems.

• Session Hijacking opportunities were plentiful in the environment.
Administrators did not comprehend the risk associated with leaving root shells
open on UNIX systems for extended periods of time – many were unaware of
the advances in this area of attack.  These shells would sometimes persist for
days (or longer) making them attractive targets to internal attacks. Advances
in session hijacking software have opened up this method of attack to script
kiddies. Lingering, often neglected shells on UNIX systems are prime targets
for such conduct. Root shells are routinely left open for extended periods of
time by administrators – these shells are “lost” among the several other
sessions that often exist in the window managers used by the administrators.

I was provided the opportunity to attend Track 1 near the completion of this
project. Even though I have been engaged in information security for a few years,
I selected track 1 to round out my foundation in security, fill in some gaps in an
otherwise reactively-developed security education, and to use it as the
groundwork for studying for the CISSP. I was pleased to discover that the
security principles advocated in the class re-enforced my chosen course of action
which was nearing the completion of their initial implementation. As part of
preparing this paper, I revisited the risks mentioned above and applied the
general formula to each (see table below). Rather than use High-Moderate-Low, I

                                               
2 I personally maintain a rather low confidence in the actual detection and capture of a attack in progress,
but that is another story for another time (or another paper).
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elected to assign simplistic values in their place. I found that this helped to better
highlight the change in security posture. The numbers do not mean anything
except as a mapping: High=3, Moderate=2, and Low=1. This confirmed my
feelings with regard to the importance each held in my desire to secure the
environment.

Table 1: Relative Risk "Before"

Issue Threat   x Vulnerability  = Risk
A lack of a coherent policy 2 1 1
Suid programs 3 2 6
Insecure password sharing 3 2 6
Weak passwords 3 3 9
Password aging 3 2 6
Bypassing authentication 2 2 4
No accountability 2 2 4
No logging 2 2 4
No Separation of Powers 2 1 2
Session Hijacking 1 2 2
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“During”

Documenting Requirements
As the security manager for the group, I inherited the 2 different tools we used to
enable authentication (Powerbroker and sudo). Each was a few versions behind
the current and I was tasked with updating each of them. As such, I decided to
also take this opportunity to examine them, and evaluate whether we still needed
both, or if we could potentially select 1 of them and retire the other. Any
formalized (and fair) evaluation of competing products should start with a
objective set of standards by which they would be judged – a requirements
document. Looking back upon the risks that currently existed in my environment,
the tool that would be selected would need to address the most important
identified risks.

The technology selected must:
1. Provide for a ruleset with a granularity level that will support the guiding

principles of the corporate security program (Principle of Least Privilege,
Separation of Powers, Need to Know, and Exceptions based upon Business
Need).

2. Reduce/remove our dependency on suid programs by providing either a
replacement for the suid bit, or by providing a taxonomy that will allow for
controlled commands to be issued (as root) by authorized people in
accordance with specific criteria.

3. Reduce/remove the need for password sharing by allowing customers to
either authenticate to another account using their user account credentials, or
allow them to run commands as another user once they authenticate as their
user account.

4. Allow customers to authenticate using their own user-account passwords
which have mandatory content requirements that make them harder to crack.3
This would also help reduce the temptation to bypass authentication.

5. Allow for the revocation of access to these accounts without impacting
processes currently underway using that account. This in turn would allow for
the enabling of password aging since the resource accounts would no longer
be impacted by the changing of the authentication credentials.

6. Provide for sufficient logging to track access to the accounts.
7. Provide keystroke logging when designated in a specific rule.
8. Provide the ability to timeout a session when designated in a specific rule to

reduce the likelihood of neglected session hijacking.
9. Provide for secure communication of any authentication credentials that could

be solicited as part of the program.

                                               
3 Customers are told to synchronize their UNIX and Windows account passwords to allow for samba
authentication. Active Directory has been established with stronger password rules than those initially
established for UNIX.
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Option #1: sudo (1.6.7p5)

Sudo allows a system administrator to establish rule based access to super-user
privileges on a UNIX system. Deployment of this tool requires the installation of
an suid binary (sudo) on the systems and the establishment of a configuration file
(sudoers) that is used to define permissible actions. There are a great number of
articles already present on the internet about sudo4. Most of them make a
passing reference to its implementation as part of hardening of an operating
system. Sudo’s popularity has developed such that many UNIX operating
systems come with sudo installed as part of the operating system image.  For
those situations where this is not the case, installing sudo has also been
thoroughly documented, both at sudo’s main website
(http://www.courtesan.com/sudo) and even in a well-written paper for SANS by
Robert D’Agnolo5.  It follows the very simple steps most often associated with
UNIX freeware:

1. Obtain copies from a trusted website.
2. Verify the source code via the publicly available signatures and/or

checksums
3. unpack the  compressed source code
4. configure6

5. make
6. make install
7. modify the configuration file to reflect your organizations policy positions

Configure Options
While I prefer to pass over some of the more routine aspects of installation, there
are a few configuration options that are worth mentioning at this point since they
contribute to the enhancement of the security of the environment should. While
not all of the below contributed to my evaluation of sudo, a few were critical to
meeting my requirements; specifically those that would promote the use of
secure communication channels (Kerberos). Several of these capabilities were
either already in my environment, or were being considered as part of the
growing defense in depth strategy:

ü One Time Passwords is supported for both s/key and opie.
ü SecurID
ü Kerberos IV and V.
ü PAM (Red Hat 5.x+, Solaris 2.6+, HPUX 11.0+)
ü AFS (Andrew File System)
ü Shadow passwords

                                               
4 http://www.google.com/search?hl=en&ie=UTF-8&oe=UTF-8&q=sudo
5 D’Agnolo, Robert, “Implementing SUDO to replace SU:  A Case Study Also Involving NIS and RDIST”,
SANS paper for GSEC certification, SANS 2003
6 For those who need a good laugh, I would advise you to review the “insult” options that you can
configure into sudo.  Just make sure the people in your environment are thick-skinned.
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The configuration of sudo also allows the tool builder to define several options
which were far more important in my pursuit of a secure alternative to the current
environment. Sudo provides for logging – not only of failed attempts but also for
successfully authenticated commands. Choices made at compile time allowe me
to designate which facility and priorities would be used for both failed and
successful attempts. I was also able to select to log to syslog or a file (or both). I
opted for syslog because at this point in my investigation, I had already
established a central log server and accompanying log analysis scripts – so
these configuration options would augment that project by allowing me to roll the
results of the sudo activity in my environment into the log analysis scripts.

 I selected the option to be immediately notified of failed attempts via email so
that I could more readily monitor my environment for suspicious activity. The final
productized version sends email to an internal mail list which currently contains
the email address for my pager as well as my email address. This allows for me
to be notified after normal business hours (a time often thought ripe for incidents
to happen). The mail list is modified as necessary to delegate responsibility to
anyone in my support group should I be on vacation, or should I move on to
another position7.

Another configuration option which proved to be of value for me was –with-
timeout=NUMBER.  When a user successfully authenticates via sudo, they are
issued a ticket which allows them to issue subsequent sudo commands without
being challenged for a password (from that shell).  The default for this is 5
minutes. To promote usage of sudo over su in my environment, I opted to
increase this time from 5 to 30 minutes. While I fully concede this increases the
risk associated with the use of sudo, this was one of those instances where I was
required to balance productivity and compliance against security. I perceived this
to be a (relatively speaking) small concession if it would result in more people
using sudo than su. My hope was that by encouraging the use of sudo, the timed
tickets would result in administrators who would use sudo to conduct their work
and at the end of the day there would be less root shells left overnight which
could be potential victims of session hijacking. The end result would be
numerous small windows of opportunity rather than several instances open for
long periods of time which could be hijacked opportunistically.

The Sudoers File
Sudoers, the configuration file for sudo, provides for several options that would
directly help reduce the previously enumerated risks in the environment. The
complete man page for the sudoers file can be found both in the source tarball as
well as on the website for sudo8.  This configuration file allows for you to
determine who-what-where: who is allowed to issue what commands, on what
machines. Extended Backus-Naur Form (EBNF) is used to define the grammars
                                               
7 If you know of anyone in need of say, a homeland security director, drop  me a line ☺
8 http://www.courtesan.com/sudo/man/sudoers.html
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used in the sudoers file. This is a very simple to understand format that lends
itself to easy adoption. Since my company would beat me with a frozen carp and
hide the body if I were to reveal the details of our configuration file, I can only
point you to a “real life” example of a sudoers file which Alek Komarnitsky has
graciously put out on the net9. While this could look intimidating at first, once you
understand the EBNF metasyntax, it is actually rather easy to work with. The 4
aliases defined (User, RunAs, Host, and Cmnd) made it possible to set up
complicated rules which matched the policy positions that would be adopted as
part of this project.  As a result most entries in my sudoers file followed the
pattern:

User_Alias Host_Alias = (Runas_Alias) Cmnd_Alias

User_Alias rule defining who could run sudo for a given grammar
Host_Alias the systems they would be allowed to execute sudo on
Cmnd_Alias the commands they would run
Runas_Alias who the commands would be run as

The User_Alias provides the ability to define a user by their username, their uid,
or their inclusion in a UNIX group or a netgroup. The Host_Alias can be defined
by ip address, system name, netgroups, or CIDR notation. By modifying the
Host_Alias entries, we could entitle or revoke access to a sudo account without
having to impact all of the remaining users (such as you would if you suddenly
needed to change the password for an account).  By coupling User and Host
aliases, I was able to overcome the issue of a separation of powers. Now,
administrators could be designated to have the most basic “root privilege” based
who they were, what groups they were in, and thus be given access to
specifically designated machines, or categories of systems. In one case I was
able to assist a lab owner with the delegation of super-user privilege to a select
few people on a specific subnet which landed entirely within his lab by using
CIDR notation.

The introduction of the Runas_Alias expanded my ability to use sudo for
resource accounts. This would allow for my customers to use sudo to access the
resource accounts either on a per-command basis, or they could use sudo and
open a shell to the resource account via a command such as:

/path/to/sudo –u  RESOURCE_ACCOUNT /bin/tcsh

Using this command, my customers would be prompted for the password for their
own user accounts. The passwords for the shared account were summarily
disabled (replaced with a simple X in the password field thereby removing any
chance of the account having its password cracked).

                                               
9 http://www.komar.org/pres/sudo/sudoer15.html
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The Cmnd_Alias expanded my ability to empower our customers on a granular
level by allowing me to establish only specified commands which they would be
permitted to run. This capability removed the need for suid scripts in my
environment – by designating  the users, the systems it could be run on, setting
runas to root, and then detailing the exact path to, the command, and the
parameters, I was able to provide root run scripts for my customers. Not only did
this empower my customers, it also allowed me to track usage because each
issuance of the command (and who issued it) was also logged.

Having deployed the new version of sudo in a test area of our production
environment, it was time to assess sudo against the requirements:

Table 2: Risk reduction scorecard for sudo

Requirment Score10

Rule sets promoting Principle of Least Privilege and Separation of
Powers

1.0

Remove need for password sharing 1.0
Authentication by Knowledge tied to user accounts 1.0
Revocation of access without impacting other users 1.0
Logging to track access times and commands 1.0
Session keystroke logging 0.0
Session Timeouts 0.511

Secure communication of authentication credentials 1.0
Acceptable Cost to deploy environment wide 1.0
Total 6.5/9.0

Drawbacks to SUDO:
While sudo met many of the requirements that I generated at the outset of this
evaluation, I did also need to take into account the negative factors and consider
if any of these would introduce a greater risk into the environment than those that
this tool would help mitigate.

One of my first concerns was the potential to abuse sudo through issuing a
command that would result in a shell being opened for root. To do so would
circumvent many of the benefits sudo provided: (1) the commands subsequently
issued to the shell command would not be logged, (2) an open shell would not
honor the timeout functionality and could leave the account open for as long as
idled12 permitted on the system, (3) open shells would not be affected if we

                                               
10  Scoring: 0 = fail, 0.5 = partial reduction, 1.0 addresses the risk
11 While sudo lacks an absolute session timeout, the use of tickets provided a similar functionality that
would likewise contribute to the reduction in opportunities to hijack sessions.
12 “Idled wakes up at regular intervals and scans the system's utmp file to see which users are currently
logged in, how long they have been idle, whether they are logged in more than once, etc.  Idled then warns
and logs out users based on a set of rules in its configuration file.” – man idled(8) on RH linux
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revoked access to the account. While it is possible to establish exception lists (so
we could say that the Cmnd_Alias is anything except specific shells) it is trivial for
the determined user to circumvent this by copying their favorite shell to a
command they could use, then calling it.

A second concern that was raised was that the potential remained initially for the
customers to backdoor their way from acceptable hosts (as defined by the
Host_Alias) to those they are not authorized to access with the sudo commands
or accounts. Through the use of a .rhosts (or .shosts) they could expand the
scope of systems they could use the resource account on or allow others to
access the account without using sudo. This was addressed through 2 steps
which would hinder such conduct. First, we locked down the ~/.*hosts files for
resource accounts:

% rm ~resource_acct/.rhosts
% mkdir ~resource_account/.rhosts
% /bin/chown root ~resource_acct/.rhosts
% /bin/chmod 000 ~resource_acct/.rhosts
% (repeat for ~resource_acct/.shosts)
%

The second step was already in place for alternate reasons but was modified to
reinforce our policy decision. As part of our efforts to remove the use of + signs
from the environment, we created a cron job which periodically examines home
directories for compliance with several policies (permissions set accordingly, no +
signs in dot files, alerts of the presence of other usernames in the .rhosts file,
etc). We modified this script so that it would also verify that the above changes
remained in place (that .rhosts was a directory owned by root, etc).

Another concern that existed when I performed my evaluation was the
prevalence (or lack) of vulnerabilities that existed in the code. While I have
consigned myself as most that patching is now a routine component to my
defense strategy, I did not want to sustain the use of applications which were
routinely requiring security patches. I performed a search of the Common
Vulnerabilities and Exposures database for sudo13 and was relieved to discover
that there were only 7 entries related to sudo; none released since 2002. Also, 2
of these were for operating systems not present in my environment.

Table 3: sudo vulnerabilies as reported by Mitre

Reference CVE Description:
CVE-2002-
0184

Heap-based buffer overflow in sudo before 1.6.6 may allow local
users to gain root privileges via special characters in the -p
(prompt) argument, which are not properly expanded.

                                               
13 http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=sudo
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CVE-2002-
0043

sudo 1.6.0 through 1.6.3p7 does not properly clear the
environment before calling the mail program, which could allow
local users to gain root privileges by modifying environment
variables and changing how the mail program is invoked.

CVE-2001-
0279

Buffer overflow in sudo earlier than 1.6.3p6 allows local users to
gain root privileges.

CVE-2001-
1240

The default configuration of sudo in Engarde Secure Linux 1.0.1
allows any user in the admin group to run certain commands that
could be leveraged to gain full root access.

CAN-2001-
1169

keyinit in S/Key does not require authentication to initialize a one-
time password sequence, which allows an attacker who has
gained privileges to a user account to create new one-time
passwords for use in other activities that may use S/Key
authentication, such as sudo.

CVE-1999-
0958

sudo 1.5.x allows local users to execute arbitrary commands via
a .. (dot dot) attack.

CAN-1999-
1496

Sudo 1.5 in Debian Linux 2.1 and Red Hat 6.0 allows local users
to determine the existence of arbitrary files by attempting to
execute the target filename as a program, which generates a
different error message when the file does not exist.

Option #2: Powerbroker (2.8.2)

Introduction:
Powerbroker was already deployed for specific uses in the environment when I
assumed the role of security program manager; if it wasn’t already present, I
doubt I would have considered its deployment14. Luckily, an earlier version had
already been deployed so it was “in the running” when I was considering
authentication/authorization strategies. Like sudo, Powerbroker provides for the
granular assignment of authentication and authorization permissions to users
based upon a pre-established rule set. Powerbroker, however, provides a far
more robust rule set and other benefits which made it hard for me to completely
dismiss this tool. Powerbroker is a client server architecture;. users issue
commands from licensed clients which communicate with the master server. This
server validates the credentials of the user through a password challenge. It
compares the command to be issued against a rule set. If the command passes,
it is executed. Failures are sent to syslog.  In this manner, the central server
becomes the authenticating and authorizing agent. You can set up redundant
servers and provide for a fail-over priority.

At this point of my investigation, we already had customers using this tool for a
few resource accounts on a very select set of systems. This is where my

                                               
14 This is absolutely not meant as an insult to Symark or their product. I merely come from a very freeware
oriented background.
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previous comment about Pandora’s Box becomes especially relevant. We also
had developed some in-house scripts which were used to allow the customers
the ability to manage NFS directories on a filesystem level (chmod, chown,
chgrp). Furthermore, our customers had developed “business processes” around
the presence of this tool15. The tool had already demonstrated its versatility. The
biggest issue that remained at this point was the price. Symark provides a per
node license scheme at a cost that made it prohibitively expensive for me to
justify deploying this tool across the entire environment.  What I needed to
resolve was if the price was worth maintaining this tool in the environment.

Like sudo, Powerbroker provided for my concern that the communication
channels used were secure.  During installation you can choose to have
communication between the clients and the servers encrypted with 3DES16.  Also
available during the installation process is the ability to set up powerbroker to
work with a Public Key Infrastructure (PKI) using Secure Socket Layers (SSL).  I
have not taken full advantage yet of the PKI/SSL model but anticipate its
adoption in the foreseeable future. The product also supports LDAP to query
user information, which is a plus for any environment which is using LDAP to
authenticate UNIX logins against a windows directory service.

The configuration file for powerbroker was not as easy as that of sudo. This is
because the granular control that is possible with powerbroker far exceeds that of
sudo. Their C like configuration files provide for all of the options possible with
sudo – they define users, hosts that they can run on, commands they can run,
and who those commands will be executed as. Powerbroker requires the same
password authentication as sudo; a user must provide the password for their
account.  Powerbroker exceeded sudo’s capabilities by providing for the following
additional rule set capabilities:

• The ability to create separate policy files to address subsets of your
overall policy. These are incorporated into the master configuration file
as “include” statements. So you could have a policy configuration file
for interns (interns.conf), and should someone in the UNIX group
‘intern’ call the powerbroker command, it would reference the
intern.conf file.  (ie, if (intern) { “include intern.conf”} )

• You can define which host the command will be executed on via the
runhost variable.

• You can define periods of time during which operations are permitted
or denied via the timebetween()  and dayname() variables.

• The triggering of a mail alert regardless of success or failure of the
command executed.

• The ability to produce interactive scripts which step-by-step prompt the
user for specific information.

                                               
15 Recall my prior comment early on about Pandora’s Box – this is an example of it.
16 This feature could also be enabled post-installation by adjusting the configuration files associated with
the clients and servers.
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• The use of a runtimeout variable provides for a maximum run time.
While this could be set to infinite, its use provided for the ability to shut
down any process related to a powerbroker session after a given
amount of time.

• The ability to use if() statements and logical operators to generate
cases to reflect policy.

As is apparent at this point, the configuration capabilities of powerbroker enabled
me to surpass the Separation of Powers and Principle of Least Privilege with
greater granularity than sudo.

Perhaps the biggest sell for the retention of Powerbroker was its ability to engage
keystroke logging for specified rules and the ability to playback those logged
sessions through a root-only command, pbreplay. This capability was crucial for
use by both my customers and my peer group. Certain customer processes
introduced the use of resource accounts into their critical path for development,
during which time it could become necessary to understand every action taken
on mission critical files. For our own use, we use this command for members of
support who are “less trusted” either due to their status in the group (contractors,
interns, etc) or simply because they are new to our extremely complex
environment and we wish to be able to troubleshoot any problems that they may
run into while operating as a privileged user.

Drawbacks of Powerbroker

As already mentioned, the cost of powerbroker made it prohibitively expensive
for me to deploy it to my 5000+ systems, let alone across the larger organization.
This was especially true during a period of time when management had set for
the challenge to “do more with less”. To its credit, I have been unable to locate
any published vulnerabilities or exploits against powerbroker.

Table 4: Risk Reduction Scorecard for Powerbroker

Risk Score
Rule sets promoting Principle of Least Privilege and Separation of
Powers

1.0

Remove need for password sharing 1.0
Authentication by Knowledge tied to user accounts 1.0
Revocation of access without impacting other users 1.0
Logging to track access times and commands 1.0
Session keystroke logging 1.0
Session Timeouts 1.0
Secure communication of authentication credentials 1.0
Acceptable Cost to deploy environment wide 0.0
Total 7/9.0
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Decision-making Process
As is seen by the above scorecards, neither solution would address all of my
requirements on its own. Both scored reasonably close to each other (sudo = 6.5,
powerbroker = 7.0). Hence there was no clear cut solution to my problem. My
decision would need to be based upon my initial requirements as they addressed
the risks I had identified in my initial assessment.

 I. Provide for a rule set with a granularity level that will support the guiding
principles of the corporate security program (Principle of Least Privilege,
Separation of Powers, Need to Know, and Exceptions based upon Business
Need).

While the rule set provided by Powerbroker clearly provides a superior language
and granularity, sudo’s grammars are sufficient to meet my needs in specific
designated work cases where the absence of powerbroker’s granularity was an
acceptable risk. Sudo’s rules meets our organization’s needs when it came to
trusted system administrators and resource accounts which are not part of critical
path or otherwise requiring the assignment of a heightened security posture  for
their use. The ability to restrict access based upon day and time makes
Powerbroker the right choice for enabling interns and contractors who should
only be working under supervised conditions during normal business hours.

 II. Reduce/remove our dependency on suid programs by providing either a
replacement for the suid bit, or by providing a taxonomy that will allow for
specific commands to be issued by specific people in accordance with specified
criteria.

The use of either program provides for the removal of the suid bit from programs
created in house to meet the needs of our customers. In each case these
commands are now issued appended to the respective command:

/usr/local/bin/sudo [command]
/usr/local/bin/pbrun [command]

 III. Reduce/remove the need for password sharing by allowing customers to either
authenticate to another account using their user account credentials, or allow
them to run commands as another user once they authenticate as their user
account.

Both tools allow for the reduction in the number of shared passwords that are
present in the environment. With the exception of a few resource accounts which
require console logins, the use of either program will enable the removal of
passwords which would otherwise be shared among all those who are entitled to
access the account.
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 IV. Allow customers to authenticate using their own user-account passwords which
have mandatory content requirements that make them harder to crack.

In each case, the user’s Authentication by Knowledge is based upon a challenge
against their current userid. While there are justifiable “work models” which would
prevent the changing of a resource account password, no such justification is
accepted for user accounts, which must adhere to stronger password rules.

 V. Allow for the revocation of access to these accounts without impacting
processes currently underway using that account. This in turn would allow for
the enabling of password aging since the resource accounts would no longer
be impacted by the changing of the authentication credentials.

For each solution, revocation is controlled through the configuration files. This
allows for the removal of a user without the need to reset any form of “shared
secret” that they might have been privy to. Removal of their userid from the
configuration files prevents subsequent logins, but alone does not terminate any
currently open sessions. This weakness is partially addressed by powerbroker in
the absolute timeframe associated with its runtimeout() function.

 VI. Provide for sufficient logging to track access to the accounts.

Both powerbroker and sudo provides for a greater knowledge of privileged
access because each provided for logging of the information to syslog. Each
could be configured to send relevant information to syslog which could be
incorporated into the log analysis efforts already in existence.

Both tools would allow for almost immediate notification when someone failed to
access these. In each case the ability to send email could be incorporated into a
mail alias which sends a notification text message to my pager 24x7 alerting me
of these failures.

 VII. Provide keystroke logging when designated in a specific rule.

Only powerbroker provides keystroke logging which could be incorporated into
the rule set as needed. This keystroke logging allows for review of commands
executed in a session and has proven invaluable when tracking down the source
of accidents in the environment.

 VIII. Provide the ability to timeout a session when designated in a specific rule.

Only powerbroker provided the resources to establish absolute timeouts. While
this attribute is desirable when dealing with a potentially hostile revocation of
rights, it became more of an impediment than benefit when customers processes
would be cut off without warning. As a result of the “business need”, the
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runtimeout()  on some resource accounts was set to time spans so large that it
practically negated the benefit otherwise acquired.  Sudo’s ticket policy proved
sufficient to reduce the risk associated with lingering shells only so long as the
users respected the “no shell” policy.

 IX. Provide for secure communication of any authentication credentials that could
be solicited as part of the program.

Each program provided sufficient encryption to meet the corporate requirements
for the communication involved. The SANS course confirmed my prior beliefs
that a switched network does not provide any immunity from the sniffing of
passwords off the wire, it only raises the bar (a bit). Neither program was
perceived to be a security risk because of the use of insecure communication
channels.

Chosen Course of Action
Unlike many other projects where I have had to trade off some requirement(s)
when introducing a new technology or policy into the environment, I was
fortunate in that each tool provided several advantages with regard to my
defense-in-depth strategy. My final deployment strategy would recognize that
each tool was a value-add to the environment and as such each should be
retained to address very specific needs in the environment. Deployment of
Powerbroker would be a targeted deployment so as to minimize the need to
purchase licenses that might go to waste unused on some nodes. Sudo would be
retained to address the mass-scale need for authentication by the customer
support group and be deployed to all clients and servers in the environment at
little cost to the company.

Now that each would remain in the environment to address specific needs, I felt
the first step was to clearly define the division-level usage models for each tool
so that moving forward we would have a coherent, objective application of the
tools which would justify the deployment strategy I had selected. In preparing the
documentation for the department, I referred back to the Track 1 information
regarding policy.17

In an effort to reduce risks associated with authentication and authorization, all
members of support will adhere to the following guidelines18:

1. All new members of support and those who were contracted or co-ops are
required to use powerbroker for super-user actions in the environment.
This would insure support of a keystroke record of their actions. New
members of support would be transitioned to sudo use once their manager

                                               
17 SANS Security Essentials, Chapter  8
18 The guidelines provided have been sterilized of organizational and corporate references, hence some of
the rules may appear a bit vague or unclear.
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felt that the engineer had sufficient experience and exposure to the
environment that we could “take off the training wheels”.

2. The root password would only be distributed to members of support
whose role and responsibilities required them to login at the console. All
others would only be given sudo access. In case of some emergency,
specific members of our support group had access to a PGP encrypted file
which contained the password which is changed according to an
aggressive timetable.

3. Customer resource accounts would by default be established as sudo
accounts. Sudo met their needs for authenticating as a resource account
and allowed me to address the cost-prohibitive nature of deploying
Powerbroker to 5000+ clients. if the account would be used to access
what we considered to be mission critical or top secret information, then
the account would be established as a powerbroker account.

4. If requested by the customer, we would provide powerbroker access
instead of sudo for a resource account. This type of request was most
often solicited by customers who were having resource accounts enabled
for accounts which could impact the critical path progress of the
company’s key projects – their need for accountability superceded their
need for mass-access to the account across the environment.

5. We would not longer create suid programs for our customers. All scripts
and programs would be ‘wrapped” around either sudo or powerbroker,
again depending on the scale of need, and the importance of the
information the script could affect.

6. All of the configuration files would be kept under RCS controlled and
would only be modified by authorized members of the support team. The
creation of entries for resource accounts could be performed by any
member of the department, but the inclusion of new super-user accounts
required approval by a member of the infrastructure and security team.

Productizing each of the solutions was easy to do at this point:
ü The appropriate environmental change orders were filed with my

customers who signed off on the proposed implementation.
ü The above policy was then incorporated into the department’s

documentation about resource accounts and the future use of
powerbroker and sudo in the environment.

ü Powerbroker’s master server services were landed on a permanent,
hardened server.

ü The owners of eligible accounts were contacted and offered opportunity to
migrate their accounts from powerbroker to sudo.

ü The configuration files for each product were finalized to reflect the current
policy assumptions of the organization.

ü The new binaries for each solution were deployed to the environment.
ü All the appropriate users were notified of the new binaries.
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“After”

After all of the procedural and technical details were implemented, the risk
associated with the previous authentication and authorization strategies was
significantly reduced:

ü From a procedural standpoint, the establishment of departmental guidelines
for the use of shared resource accounts, super user accounts, and suid
programs enhanced our security posture because these policies were now
well documented and provided all members of our support organization with a
coherent process to be followed uniformly.

ü The majority of the shared passwords were removed from the environment in
lieu of sudo or powerbroker authentication strategies.  This allowed the
environment to evolve from discretionary access control to a mixture of role-
based and rule set based access control19. Where authentication was once
based upon a collective secret (the account password), authorization was
now based upon either inclusion in a unix group (which could only be
obtained through a managerial approval loop and inclusion in a unix group) or
through specific rules approved and created by a subset of system
administrators.

ü Casual feedback from my peers indicated that more were willing to utilize
sudo for their root executions because the extended ticket allowed them to
operate without being hindered by the need to constantly provide a
password.20

ü Most noticeable was the reduction in the number of passwords which were
cracked by my routine password file examinations with the password cracking
tool, john the ripper.21  Prior to this project, I would on average crack
approximately 30-50% of the shared passwords. Now that almost all of them
have been removed, they are beyond the reach of password crackers, and
help in the overall password audit metrics reported back to the company’s
management.

At this point, I am satisfied with the initial results of this deployment. While it did
not completely resolve all of the authentication and authorization risks identified
at the outset, the implementation reduced the risks sufficiently to justify the
investment in resources. Arguably there still exist threats that this project did not
completely mitigate, but as the SANS track 1 indicates, “You can’t protect against
all threats”22.  As such, I believe we have addressed most of the high risk areas

                                               
19 SANS Security Essentials, Chapter 9, p 389
20 As a side note, at this point we also began to use root passwords which were not as intuitive in an effort
to coerce the administrators to use sudo over su.
21 John the Ripper is a fantastic tool for performing an audit of your password file. I could write several
pages singing its praise. Instead I would encourage those unfamiliar with it to examine it further at:
http://www/openwall.com
22  SANS Track 1 lecture notes. Chapter 7, page 303
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and reduced each by at least one category (Very High, High, Moderate, Low).
The deployed technologies also will provide for follow-on projects (which I will
detail further below) that can further enhance my defense strategy.

The below table summarizes how these actions have impacted the Risk = Threat
* Vulnerability equations that were introduced in the “Before” section. For most of
these issues, the deployment was able to reduce the risk and/or vulnerability.
This was a result of the changes these two applications introduced not only to the
infrastructure (removing shared passwords, establishing logging, etc), but also to
the procedural aspects of the project (the creation of definitive policy).

Table 5: Relative Risk "After"

Issue Threat   x Vulnerability = Risk  Orig Risk
A lack of a coherent policy 2 1 1 2
Suid programs 3 1 3 6
Insecure password sharing 3 1 3 6
Weak passwords 3 1 3 9
Password aging 3 1 3 6
Bypassing authentication 2 1 2 4
No accountability 2 1 2 4
No logging 2 1 2 4
No Separation of Powers 2 1 2 2
Session Hijacking 1 1 1 2

Next Steps
While implementing this project, several “next steps” surfaced that would further
augment the project and the security posture of the environment:

1. Investigate the ability to remove the suid bit from OS binaries and replace it
with a wrapper to sudo and a NOPASSWD option23.  This wrapper would
allow for notification and usage metrics as well as usage during strange
periods of time.

2. Refine the log analysis scripts to provide patterns of super-user usage in the
environment. Understanding these patters would improve our ability to
delegate authority as well as detect anomalous behavior.

3. Modify the log analysis scripts to highlight super-user usage which violates
policy – where possible send alerts to the user (and their manager) informing
them of the violation and the proper methods for authentication.

4. Implement idled processes to monitor and remove root and other critical
account shells which remain past an agreed upon timespan.

                                               
23 I did not mention this option until now because I would not advocate its use except in clearly understood,
very limited, circumstances. With the NOPASSWD option set in sudo, the user is not prompted for their
password.
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5. Modify the commands called in sudo to execute a checksum verification of
the executables called – this would allow for greater assurance that the users
are calling the programs they are authorized to execute.

Conclusion:
This project was initiated before taking Track 1.  While I cannot claim that the
course was the inspiration for its implementation, Track 1 did enhance the project
remarkably. Before SANS, this was merely an identified security gap in the
environment which needed to be addressed. Now it is a component to a defense
in depth strategy and its implementation not only addressed the immediate
identified risks but also made me consider this project in a larger scale that
included inter-dependencies with other security projects focusing on detection
and incident response. Before SANS, its deployment was based upon my
unconsciously competent security knowledge; using the threat model I could now
provide a justification that management could understand and buy into. The risk
reduction demonstrated the ROI of the project as much as the reduction in
password cracking metrics.  My initial documentation covered the basic usage
models and guidelines for what tool to use when; the information covered in the
Basic Security Policy section of the course refined the content and what was
included in this documentation.
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Glossary24:

3DES
Triple DES. The application of the DES encryption
algorithm 3 times in a manner to further increase the
complexity of the final has.

Access control,
Discretionary

User managed access

Access control, Rule Set
Based

Access based upon a given set of rules

Access control Role Based
Access based upon a definable role

AFS
Andrew File System. AFS is a distributed filesystem that
enables co-operating hosts (clients and servers) to efficiently
share filesystem resources across both local area and wide
area networks25

Authentication
The process of confirming the correctness of the claimed
identity

Authorization
Empowering a user or process to do something

Availability
The ability of a process or system to provide an intended
service to those authorized to access it.

CIDR
Classless Inter-Domain Routing. CIDR is aa addressing
scheme for the Internet which allows for more efficient
allocation of IP addresses26

Confidentiality
The need to ensure that information is disclosed only to
those authorized to do so.

Cracked
The process by which a password is revealed through a
variety of tactics and techniques

DHCP
The Dynamic Host Configuration Protocol (DHCP) is an
Internet protocol for automating the configuration of
computers that use TCP/IP. DHCP can be used to
automatically assign IP addresses, to deliver TCP/IP stack
configuration parameters such as the subnet mask and
default router, and to provide other configuration
information such as the addresses for printer, time and news
servers27.

                                               
24 Many of these definition are either copied or paraphrased from the SANS Security Essentials glossary.
25 http://www.angelfire.com/hi/plutonic/afs-faq.html
26 http://public.pacbell.net/dedicated/cidr.html
27 http://www.dhcp.org
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Integrity
The assurance that a process or data has not been altered
except by those authorized to do so.

Kerberos
Kerberos is a network authentication protocol. It is designed
to provide strong authentication for client/server
applications by using secret-key cryptography28

LDAP
Lightweight Directory something Protocol. This is a
protocol used to authenticate a user.

Need to know
Demonstration of a justifiable requirement to be authorized
to access specified information or services

NFS
Network Filesystem.  A distributed filesystem protocol

NIS
Network Information Services

One time passwords
An authentication scheme in which a password is only valid
once.

PAM
Pluggable Authentication Model.

PKI
Public Key Infrastructure. The ability for users or services
to exchange information through encrypted channels
established using public and private keys.

Least privilege
Empower a user or service only to the degree necessary to
perform some authorized action.

Risk
Based on threat and vulnerability, it is the likelihood of a
successful attack.

Risk Assessment
The process by which risks are identified and the impact
determined.

SecurID
A product which produces a one time password by coupling
a pin with a sequence of numbers which is periodically
altered. The sequence can be predicted by anyone aware of
the algorithm used for its generation and the number the
system was uniquely “primed” with.

Separation of powers
Division of power among multiple users. Just like the US
government ☺

Session hijacking
The process by which an unauthorized user obtains control
of system resources

SSL
Secure Socket Layer. An encryption protocol based upon
public key strategies to transmit data over the network.

Threat
The potential for violation of security through vulnerability.

Vulnerability
A weakness in a system design, implementation, or
operation that could result the exploitation of the system.

                                               
28 http://web.mit.edu/kerberos/
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