GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

SQL Server 2000: Permissionson System Tables
Granted to Logins Dueto the Public Role

K. Brian Kelley
GSEC Practical 1.4b (Option 1)
Submitted: 15 October 2003

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Table of Contents

Abstract 1
| ntroduction 2
The Public Role 4
Loginsvs. Users 4
The dbo and quest Users 5
Ownership Chains 5
All Objects Have the Same Owner 6
Objects with Different Owners 6
How Cross-Database Ownership Chaining Works 8
Permissions on System Tables and Views 9
M aster Database System Tables 10
The sysaltfiles Table (secure) 10

The syscacheobjects Table (secure) 10

The syscharsets Table (not sensitive) 10

The sysconfigures Table (insecure) 11

The syscurconfigs Table (insecure) 13

The syscursorcolumns Table (secure) 14

The syscursorrefs Table (secure) 14

The syscursors Table (secure) 14

The syscursortables Table (secure) 14

The sysdatabases Table (insecure) 15

The sysdevices Table (insecure) 17

The syslanguages Table (not sensitive) 19

The syslockinfo Table (insecure) 20

The syslocks Table (insecure) 21

The sysmessages Table (insecure) 22

The sysperfinfo Table (secure) 24

The sysprocesses Table (secure) 24

The sysservers Table (insecure) 24

The sysxlogins Table (secure) 25
User Databases 25
The syscolumns Table (insecure) 26

The syscomments Table (insecure) 28

The sysdepends Table (insecure) 31

The sysfilegroups Table (insecure) 32

The sysfiles Table (insecure) 33

The sysfilesl Table (secure) 33

The sysforeignkeys Table (insecure) 33

The sysfulltextcatalogs Table (insecure) 34

i
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The sysfulltextnotify Table (secure) 36

The sysindexes Table (insecure) 37

The sysindexkeys Table (insecure) 37

The sysmembers Table (insecure) 38

The sysobjects Table (insecure) 38

The syspermissions Table (insecure) 39

The sysproperties Table (secure) 40

The sysprotects Table (insecure) 40

The sysreferences Table (insecure) 42

The systypes Table (insecure) 42

The sysusers Table (insecure) 43

M SDB Database “ System” Tables 44
The Backup Tables (insecure) 46

The LogMarkHistory Table (insecure) 47

The MSWebTasks Table (insecure) 48

The Restore Tables (insecure) 48

The RThl Tables (not sensitive) 49

The syscategories table (not sensitive) 49

The sp_help* System Stored Procedures 50
Determining What Stored Procedures Are Tied to System Tables 50
The Purpose of the sp help* Stored Procedures 52
A Partial List 52
And Then There was OpenHack 4 55
What M icrosoft Did 55
Islt Really That Simple? 56
Concluding Thoughts 56
References 58

i
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Abstract

Microsoft SQL Server 7.0 and 2000 make use of the concept of roles at the
server level and within each database. The public role is one of the built-in roles
in each database and this corresponds to everyone who has access to that
database. While the use of the public role is frowned upon for user-created
objects, the role itself has permission to system tables and views, especially
within the master and msdb databases.

In this paper | will cover the access rights to system tables the public role has in
these two system databases as well as in a typical user database. I'll also cover
how the guest user adds to the conundrum, especially with respect to the system
databases and cross-database ownership chaining. Finally, I'll look at what
permissions can be revoked from the public role in each database and what the
consequences are, both from a practical perspective (typical applications) to an
extreme example (Microsoft's OpenHack 4 configuration).

1
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

I ntroduction

SQL Server security is a growing field given the rapid adoption of Microsoft SQL
Server.! Organizations are turning more and more to SQL Server to hold their
critical data and as a result SQL Server has become a larger target for attackers
everywhere. The two big SQL Server worms, SQLSpida? and SQL Slammer? *,
have proven how widespread SQL Server is in the field and how important it is to
be secure. Whether or not the SQL Server in question serves internal
applications or internet-facing web sites, security is now of paramount concern.’

One of the questions | see frequently with respect to SQL Server security is,
“What permissions does an average user have?” Typically the responses that |
see returned are based on what explicit rights a DBA has given a user. For
instance, a user has been placed in a role and that role has been given
permissions to execute a set of five stored procedures. However, what usually
isn’t documented is what rights the user has because of the public role, a role all
users who have the ability to access the database belong to. Within an individual
database the public role has access to system objects which an individual user
has no need to access. These objects include those system tables and views
containing information about the data schema itself. This is clearly a violation of
the Principle of Least Privilege.

Complicating the situation is the guest user. The guest user is a special user in
each database that can be turned on or off as needed. If a given login within SQL
Server has no rights to a database but the guest user is enabled, the login is
mapped to the guest user. Of course, the guest user is a member of the public
role. So long as the guest user isn’t enabled in user databases this shouldn’t be
an issue except for the fact the guest user is enabled for the master (access is
required) and msdb (access can be removed in some cases) system databases.

Contained within the system database are numerous stored procedures a user
could execute to gain more information about the underlying structure of a
particular SQL Server. In addition, the public role has access to the system table
sysdatabases. Contained within this table are all the databases for a given SQL
Server as well as the file location of each database’s primary database file. Such
information is extremely valuable in the hands of an attacker seeking to obtain
access to the database files themselves.

Also adding to the situation is the concept of cross-database ownership chaining.
If the ownership of objects stays the same, permission checking is intentionally

! Regan, Top Dog Oracle Losing Database Market Share
2 Knowles, Digispid.B.Worm

3 Knowles, W32.SQLExp.Worm

* Moore, The Spread of the Sapphire/Sammer Worm

® Kelley, SQL Server Security: Why Security |'s Important

2
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

skipped. While this is typically considered a security benefit, if not carefully
watched it could also prove to be a security risk when permissions are skipped.

However, most of the permissions granted to the public role in the system
databases as well as in a user database can be revoked, especially when
dealing with custom applications. Applications such as Microsoft Access and the
ODBC Administrator rely on querying particular system tables and revoking
permissions can “break” these applications as a result. In my testing, these two
applications were used to represent “typical” applications given the nature of
Access and the prevalent use of Data Source Names (DSNs — often configured
through ODBC Administrator) by third-party applications. The results of my
testing, along with what other tests have revealed, show what can and cannot be
revoked must be handled on a case-by-case basis.

Revoking table permissions from public isn’t enough, though, as Microsoft has
provided the all too-helpful sp_help* stored procedures to return information
contained in these system tables. Combined with cross-database ownership
chaining, these stored procedures can be used by everyday users in order to
reconnaissance SQL Server.

However, Microsoft has provided the bare minimums necessary for SQL Server
to stay running in the OpenHack 2002 (OpenHack 4) configuration. We can use
this as the “goal” in locking down SQL Server from the public role. The draconian
measures Microsoft took may be beyond what can be supported when specific
applications are considered, but they do provide insight into “how far we can go.”

We may not get “there,” but understanding what the public role has access to is
key to determining what the risks are for Microsoft SQL Server. What can be
tightened down should be. What can’t should be understood, documented, and
checked periodically. Hopefully this paper will further an understanding of the
extent to which the public role has fingers throughout SQL Server.

3
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The Public Role

In every database for SQL Server 7.0 and 2000 there exists a special role called
the public role®. Every user who has rights to this database is automatically a
member of the public role. If the public role has permission to do something, all
users have permission to do it. Likewise, if the public role is explicitly denied
permission, all users are denied (with the notable exception of dbo).

The public role is a fixed-database role. It cannot be removed from the database.
DBAs can grant, revoke, and deny permissions to the public role, though
generally, granting or denying permissions to this role is not considered a best
practice.” Rather, DBAs should create user-defined database roles and assign
appropriate permissions to those roles. Users should be placed in these roles,
allowing permissions to be managed according to the concepts of role-based
security.

Even following this best practice, DBAs are often horrified to find what the typical
user has access to do. Because of how SQL Server 2000 is typically configured,
users have access to certain objects in the master and msdb databases, with
master being the most significant. These objects allow for a great deal of
reconnaissance on the SQL Server, more so than any security-conscious DBA
would feel comfortable about. The reason users gain access is due to a special
user account: guest.

Loginsvs. Users

Before | delve into the guest user, I'll cover the difference between a login and a
user in SQL Server. Unfortunately, DBAs (myself included) tend to use the terms
login and user interchangeably, leading to a lot of confusion. However, the terms
are not interchangeable.

A person has the ability to log on to SQL Server using a login. The login is at the
server level. A login can either be a SQL Server login (held over from older
versions but still heavily used by third-party applications) or a Windows account.
That Windows “account” could even be a Windows group through which all
Windows logins belonging to the group gain access.

A user, on the other hand, is specific to a database within SQL Server. Logins
are mapped to users in a given database and it is the user who owns objects or
has permissions to access database objects (whether explicitly defined against
the user or through a role with permissions). A user does not cross databases

® SQL Server Books Online, Topic: public Role
" Warren, Using the Public Role to Maintain Permissions

4
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

because it is only defined at the database level. However, a given login could be
mapped to multiple users, all within different databases.

In SQL Server there are two special users in every database. Those users are
dbo and guest. The guest user is a particular problem child with respect to
security.

Thedbo and guest Users

The dbo user corresponds to the database owner. Whatever login owns the
database maps in as dbo. In addition, all logins granted System Administrator
rights within SQL Server (this is different from the local Administrators group for
the operating system) also map in as dbo. The catch with dbo is this user
bypasses all security checking. As a result, the typical user should never be
mapped to dbo.

The other account, guest, is used for any login that isn’t explicitly mapped to a
user within the database. For instance, if a given login doesn’t have access to the
HR database, but the guest user is enabled, the login is mapped to the guest
user. Any permissions the guest user has, the login has. Keep in mind all users
belong to the public role. This includes guest. Therefore, if guest is enabled, all
logins have whatever permissions the public role has.

The public role has direct access to quite a few sensitive system tables in SQL
Server. This means a user with the ability to access a particular database could
then issue queries directly against those system tables. While DBAs can partially
mitigate this issue by ensuring the guest user isn’'t enabled in user databases,
the guest user must be active in both the master and the tempdb databases.
Master is of particular concern because there are quite a few “helpful” stored
procedures a user can execute. These stored procedures can access system
tables in user databases due to cross-database ownership chaining. But before |
delve into cross-database ownership chaining, I'll first talk about ownership
chains within the context of a single database.

Note: Even if the guest user is disabled in a database, it'll still appear in
the sysusers table within the database. This is by design. Under no
circumstances should this row be deleted from sysusers. This isn’'t
supported by Microsoft and moreover, can lead to an access violation.?

Ownership Chains

Ownership chains are a key part of SQL Server’s security model® '° but they can
be a little difficult to comprehend at first. By using ownership chains, | can control

& Microsoft Knowledge Base Article 315523
® Kondreddi. Overview of SQL Server Security Model and Security Best Practices

5
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

how users access the data without giving them explicit rights to the tables that
store that data. This is a crucial piece of the security puzzle.

For instance, if | create a stored procedure that carefully restricts how the data is
modified and | understand ownership chains, | can force users through the stored
procedure. Using this method | can ensure they don’t go directly against the base
tables, potentially causing a data integrity or data loss issue. I've been situation
when a third party application requires such permissions and a user has blown
away tables of critical data. Restoring data is tedious and ownership chains,
when properly implemented, can reduce the frequency of restores in addition to
the obvious benefits in securing information disclosure.

All Objects Have the Same Owner

Ownership chains come into play when we are dealing with the typical database
objects: tables, views, stored procedures, and user-defined functions. Views
depend on tables and sometimes other views. Stored procedures can depend on
tables, views, and other stored procedures. Both of these can depend on user-
defined functions and user-defined functions can depend on other user-defined
functions as well as depending on tables and views. It's an interconnected web.
Each of these objects has an owner. If our objects have the same owner, SQL
Server will short-circuit the security check.

Using a stored procedure as an example, if the owner of the stored procedure
owns all stored procedures, views, tables, and functions referenced by the stored
procedure, security is only checked once, on the initial stored procedure. SQL
Server will verify the user has permission to execute the stored procedure. SQL
Server will make the assumption the owner intended for the user to have access
to the other objects used in our “top” stored procedure declaration. | should
remark here that there is an exception: dynamic SQL. Dynamic SQL under SQL
Server 2000 executes under a different “batch” and is thus treated akin to a
whole new process. Because of this, SQL Server rechecks security on a dynamic
SQL query, even if the query is against objects with the same owner.

Objects with Different Owners

If I have nested objects like stored procedures calling stored procedures
referencing views referencing other views referencing tables (just to build a long
and complex chain), SQL Server will follow the chain as far as it can until it either
reaches the end of the chain or hits an ownership change. Then it'll start the
ownership chain over again. Figure 1 shows a complex chain.

19 Microsoft, SQL Server 2000 Security Model

6
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Stored Procedure Stored Procedure
uspFirstProc N uspNextProc
Owner: UserA Owner: UserA
View View
vwFirstView — vwNextView
Owner: UserB Owner: UserB
Table
Tableh

Owner: UserA

Figure 1. Complex ownership chain

I'll break this down step-by-step to show how SQL Server will handle this set of
objects. First, SQL Server will check permissions on uspFirstProc since it is the
initial object. Since uspNextProc is also owned by UserA, SQL Server doesn’'t do
a permissions check. I've represented when SQL Server doesn’'t do a permission
check with a dotted line. The next object in line is vwFirstView, which is owned by
UserB, SQL Server will do a permissions check since the owner has changed.
I've used a solid line to represent that a permission check does occur.

It'll then start the ownership chain over again, but this time with UserB. So when
SQL Server hits vwNextView, also owned by UserB, SQL Server will consider it
part of the new ownership chain. Since it's part of the chain, security isn’t
rechecked. Then SQL Server hits TableA. Even though | started with an object
owned by UserA, SQL Server is now on UserB for its ownership chain.

Since this is a change in owners, SQL Server will recheck permissions on
TableA. So to summarize, SQL Server does permission checks on uspFirstProc,
vwFirstView, and TableA. The objects uspNextProc and vwNextView escape a
permission check because they were part of already existing ownership chains.
Putting this into a table, here’s what SQL Server looks at:

7
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Table 1. Security Checks on complex ownership chain.

Owner of
Object Owner in Chain Object Security Check
uspFirstProc (none) userA Yes
uspNextProc userA userA No
vwFirstView userA userB Yes
vwNextView userB userB No
TableA userB userA Yes

Thus far, I've stayed in the same database. However, one of the reasons a user
has so many permissions is due the permissions of the public role in various
databases, to include master and msdb. If | have a user in the database for a
particular application, that user can cross databases. Ownership chaining exists
across databases, but it’s slightly more complex.

How Cross-Database Owner ship Chaining Works

Cross-database ownership chaining has always been present in SQL Server 7.0
and 2000. However, before SQL Server 2000 SP3, the existence of such a
concept wasn’t well-documented. Also, cross-database ownership chaining was
on and could no be disabled. This represented a security issue, and with SP3,
Microsoft added the capability to turn off cross-database ownership chaining
across the entire server (which a couple of notable exceptions) and the ability to
turn it on for particular databases.*

Normal database permissions work based on the user within a database.
However, once you cross databases, you aren’t dealing with the same user,
since users are defined within a database. What's can be confusing is users own
objects within databases. If | do a query against a user table and | check the
owner, it's going to come back as the user. For instance, if my login
MyNetworkLogin is mapped into a given database as the user MyDatabaseUser,
a query as to who owns the table will turn up MyDatabaseUser. But users are
tied to the database, so how does cross-database ownership chaining work?
Something else needs to be used to tie objects together across-databases.

That something is the login. Since logins exist at the server level, they exist
outside of any database. Furthermore, logins are mapped to users within a
database. The system table sysusers ties the uid (User ID), which is used to
identify the owner, to the sid (the unique ID for the login). Since | have a tie
between users and logins for all databases the login is the natural choice to tie
objects together across two or more such databases

1 Kelley, SQL Server 2000 SP3: What's New in Security

8
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Whenever a query crosses from one database to another, SQL Server compares
the login from the first object with the login for the second object. Like with object
chaining within a single database, if SQL Server finds the ownership a match, it
will skip the permissions check. There is a catch, however, and that's based on
who is executing the query.

When dealing with a single database, whoever is executing the query must
already have access to the database. For example, if I'm executing a stored
procedure in DatabaseA, my login must be mapped as a user within that
database. If my login is not, then | can’t get to the stored procedure in the first
place, much less anything within that database called by the stored procedure.
When crossing databases, a login must be mapped to a user in each database. If
a query crosses from one database, say DatabaseA, to another database,
DatabaseB, my login must have a mapping to a user in both DatabaseA and
DatabaseB. While SQL Server may skip the permissions check between objects,
it does not skip the check to see if a login has access to all databases
concerned.

Keep in mind that the guest user, if enabled, is used whenever a logging doesn’t
have an explicit mapping. In other words, if the guest user is enabled and a login
isn’t mapped to a particular database user, SQL Server automatically completes
the mapping and the login therefore has access.

Permissions on System Tablesand Views

Recall that the guest account is enabled for both the master and msdb
databases. All users, including guest, are members of the public role for a given
database. What this means is that if someone has a login to SQL Server, they
have access to objects within the master and tempdb databases at a minimum.
Unless the guest user has been disabled in the msdb database, a login would
have access to certain objects in that database as well. Finally, there are objects
to which the public role has access in each user database as well.

Taking a look at the permissions, as well as the data each table, I've given three
ratings: secure, insecure, and not sensitive. Objects marked secure contain
information of interest to an attacker but by default the object is protected (at
least with respect to direct access such as through a SELECT query). Objects
marked insecure also have useful information but the public role has access.
Objects marked not sensitive do not typically contain information outside of what
can be found in a base install of SQL Server and thus do not represent a
significant resource for gaining more knowledge about the SQL Server in
guestion.

Naturally it's impossible to test permissions for all cases. My tests on whether or
not anything “broke” centered primarily using the ODBC Data Source
Administrator (sometimes shortened to ODBC) and Microsoft Access 2000 (MS

9
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Access). If functionality was lost using these two applications, I've cited it. If a
possible work-around exists, I've provided the information on how to utilize it. I'll
start with the master database, then took at generic user databases, before
finally covering the msdb database.

Master Database System Tables

The master database has system tables we won’t find anywhere else. Some of
these tables determine the locations for database files or provide information on
how the server is performing.

The sysaltfiles Table (secure)

Microsoft doesn’t provide a whole lot of documentation on the sysaltfiles table
because this table is intended solely for SQL Server’s use. One reason for the
table is to store the location of the Temdb files. Every time SQL Server starts up,
SQL Server retrieves the location for the Tempdb database and recreates the
database files at the paths specified.

No permissions have been defined against the sysaltfiles table and as a result,
only sysadmins have access to its contents. As a result, this system table is
secure.

The syscacheobjects Table (secure)

SQL Server stores execution plans in the syscacheobjects table. Once again,
this table is intended solely for SQL Server’s internal use. However, if I'm trying
to check if an execution plan for a particular stored procedure is getting cached, |
can query directly against this table to find out.

Like the sysaltfiles table, no permissions have been set for the syscacheobjects
table. As a result, the public role does not have access. Only sysadmins can look
at this system table. It is also secure.

The syscharsets Table (not sensitive)

The syscharsets table contains all of the character sets, including case and
accent sensitivity and sort order, supported by the particular instance of SQL
Server. For almost all instances of SQL Server 2000, this table will contain
exactly the same information. As a result, the contents of the table aren’t of a
sensitive nature.

Microsoft has given the public role SELECT permissions on this table, possibly
because the contents aren’t of particular importance to an attacker. The

10
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

syscharsets table contains collation information and while collation is important to
display the data correctly, knowing all the collations a given SQL Server supports
isn’t going to give an attacker an advantage. Knowing the default collation might
but since this table stores all collations supported by a given instance of SQL
Server, it is not of much use to an attacker and I've indicated that by marking it
as not sensitive.

In my testing | found | could create an ODBC connection (using a login that didn’t
have sysadmin privileges) when | revoked public access to syscharsets.
However, | could not test the connection using the ODBC Data Source
Administrator because when the test connection is made, a query is made
against syscharsets:

select name
from master.dbo.syscharsets
where id = convert (tinyint,
databasepropertyex (db name() , 'sqglcharset'))

As a result, the connection will succeed, but the query will fail. The ODBC Data
Source Administrator takes the failure on the query against syscharsets as an
overall failure of the test, but it does show that the connection is established
successfully. | disregarded the error and was able to use the ODBC connection
in MS Access.

Note: In my testing, | used REVOKE and not DENY. REVOKE will simply
remove the permission. DENY will place a block. If you use DENY, only
members of the sysadmin role will ever be able to access the system table
because that role doesn’t go through a permissions check in the normal
sense. By using REVOKE, you can prevent access to the system table,
but you give yourself the flexibility if you do want to allow a role other than
sysadmin to have access to the table. For more information on DENY and
REVOKE, see SQL Server 2000 Books Online.

If you decide to lock down syscharsets, expect the error. Verify the connection
succeeds because the error is a consequence of the query above failing.
However, that has no effect on the connection itself.

The sysconfigures Table (insecure)

The sysconfigures table, as its name implies, contains configuration information
about SQL Server. | consider the information in this table to be sensitive. Even
seemingly innocent facts such as the number of users a particular SQL Server
will allow can be used proactively. For instance, if | were an attacker I'd want to
know how many connections | could create in order to brute force a password.
That's just one example. Two other key bits of information | can gain from

11
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

sysconfigures is whether or not the SQL Server is in C2 Audit mode®? and if this
particular SQL Server allows updates to the system tables (not enabled by
default, though this behavior can be overridden).

Since users have access to more information than they need to do their daily
jobs, this clearly violates the Principle of Least Privilege. Certainly most users
have no reason to know anything about the SQL Server configuration other than
how they are supposed to login and what resources they have access to. I'm
very uncomfortable with the public role having SELECT rights against this table.

When | REVOKE SELECT against the sysconfigures table for the public role, this
is only partially effective. The system stored procedure sp_configure can return
much of the same information. This stored procedure won’t show the advanced
configuration options unless you've toggled “show advanced options” on (a
server or system administrator for SQL Server must toggle this setting - in which
case it is on for all users), but a user could still get a bit of information about the
server configuration from the use of sp_configure. As I'll talk about in the section
on securing stored procedures, | could REVOKE EXECUTE on sp_configure for
the public role, and this puts yet another barrier up.

Microsoft has built stored procedures for DBAS to use to gain information about
the underlying schema of the databases. The intent with these stored procedure
is to break a dependency on using the system tables to gain such information.
Microsoft reserves the right to change the structure of these tables with any new
release, to include a service pack. As a result, Microsoft provides support to the
information stored within these tables using the stored procedures. From a
security perspective that means not only do we need to look at the permissions
on the tables themselves, but also on the stored procedures that have access to
them. Since the stored procedures and the tables have the same owner (dbo),
permissions are only checked on the stored procedure unless there is code
within the stored procedure to do additional checking.

With that said, even | secure sysconfigures and the stored procedure
sp_configure, this doesn’t completely secure the configuration information. Figure
2 shows the use of the variable @ @MAX_CONNECTIONS to get the maximum
number of connections the SQL Server allows. Notice the failures to retrieve
information via the sysconfigures table and the sp_configure stored procedure.
Yet the user is still able to get the maximum number of connections.

12 Microsoft. Microsoft SQL Server 2000 C2 Evaluation

12
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

F-i:'L_ SQL Query Analyzer - [Query - ISATAH.master.MyUser - Untitled3*] — |E||i|

Im File Edit Query Tools Window Help _|5’|5|
|3 -2@8 28 h o B- vy llms S S#YAFE

SELECT * FROM sysconfigures =

GO

EXEC sp_configure

cle]

ERINT "'

PRINT 'I can still show the max connections: " + (BS5 warchar

|

=

1 | »

Carwver:s Maop 229 Lewel 14 State & T.ine 1
Server: Mag 229, Level 14, State 5, Line 1

SELECT permission denied on object 'sysconfigures', database 'master', owner 'dbo'.
Server: Mag 223, Level 14, 5tate 5, Procedure sp configure, Line 1

EXECUTE permission denied on object 'sp configure', database 'master', owner 'dbo'.

| »

I can still show the max connections: 32767

-
1| | v
] Grids Messages I

|Quer11|I batch completed with errors, |ISAIAH (8.0) |My1..lser (52) |n'|aster | 0:00:00 |0 rows |Lr'| 7,Cal1

| |Cor1necticns: 3 v

Figure 2. User still retrieves maximum number of connections.

Unfortunately, | can’t prevent access to this variable. So an attacker still has
some workarounds, but at least | can make it more difficult for the attacker to get
to sensitive configuration information.

With that said, when | did revoke permissions to the public role and suffered no ill
consequences with ODBC or MS Access. Unlike syscharsets, the sysconfigures
table isn’t called by the ODBC Data Administrator or by MS Access when the
connection configuration is tested or a link table added.

The syscurconfigs Table (insecure)

Like sysconfigures, the syscurconfigs table contains configuration information on
SQL Server. The syscurconfigs table is really a virtual table built each time it’s
gueried by a user. The difference between this virtual table and the sysconfigures
table is the sysconfigures table stores contains both the configuration information
since startup as well as what the current values (running values) are while the
syscurconfigs only holds the most current values.

Also like the sysconfigures table, the syscurconfigs table is not secure. The
public role has SELECT rights against this table as well. Therefore, if you've
decided to REVOKE SELECT for the public role of sysconfigures, you should do
so on syscurconfigs as well. Since syscurconfigs has the current configuration
parameters, an attacker could use this table to get at the server’s configuration
information, too.

13
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

When | revoked permission to syscurconfigs, | saw no ill effects with either the
ODBC Data Administrator or MS Access. This matches what | saw with
sysconfigures and since syscurconfigs contains similar to sysconfigures, it's
logical that the effect is the same.

The syscursorcolumns Table (secure)

Though this is listed as a system table if you check out the sysobjects system
table, you won't find any documentation on the syscursorcolumns (or any of the
syscursor* tables) in Books Online. The syscursorcolumns table is
undocumented, but it does exist.*® This table’s purpose is to store information
about the columns of any cursors that happen to be active on the system.

Since it is an undocumented system table, no permissions have been defined. As
a result, only members of the sysadmins role can query the contents on this
table. The public role has no access rights. Therefore, this system table is
secure.

The syscursorrefs Table (secure)

Like the syscursorcolumns table, the syscursorrefs table is undocumented. The
syscursorrefs table stores the name of each cursor, whether it is global or local in
scope, and a unique identifier (called cursor_handle) used by the server to
identify the cursor. Also like the syscursorcolumns table, the syscursorrefs table
has no access permissions defined. Therefore, only members of the sysadmins
role can access this table. The public role cannot execute a query against this
table.

The syscursors Table (secure)

Another undocumented system table, the syscursors table contains information
about the cursors running on the system and their attributes such as whether or
not they are static or keyset, forward only or scrollable, what the last operation
was, and the like. Like the rest of the syscursor* tables, the syscursors table
does not have permissions defined on it. Only members of the sysadmins role,
who have permissions to everything, have the ability to access this system table.

The syscursortables Table (secure)

The syscursorstables system table keeps track of the base tables for each
cursor. It also keeps track of any optimizer hints that may have been used as well

13 Chigrik, SQL Server 2000 Undocumented System Tables

14
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

as what locking mechanism was specified. Like the rest of the system tables for
cursors, there are no permissions defined. The public role does not have access.

The sysdatabases Table (insecure)

The sysdatabases system table is much like the sysconfigures table: most users
don’t need access to it. If a given user is accessing a database-backed
application, the application should have the configuration information and the
user has no reason to know the database or anything else. However, if the user
is using a third-party reporting tool then the user has to have access to SQL
Server. But a user shouldn’t be presented with a menu of all the databases on a
particular server. The user possesses just such a menu with the sysdatabases
system table since the public role has select rights against this table.

Because the public role has access to sysdatabases, an attacker who has
managed to get a login to SQL Server will be able to retrieve the following
information: a list of all databases on the server and the location of the primary
database file for each one. Figure 3 shows the information on the three system
databases for a default installation of SQL Server.

F-i:'L_ SQL Query Analyzer - [Query - ISATAH.master.MyUser - Untitled3*] — |E||i|
Im File Edit Query Tools Window Help ;Iilﬂ

| g - & 2BEH v (B v » 8|0 Sy a @e

SELECT name, filename
FROM =y=sdatabases
WHERE name IN ('"master', 'madb', 'model’

IE

"1

< |

name filename

1 master C:\Program Files\Microsoft 5QL Server\MSS5QL\data'\master.mdf
2 model C:%Program Files\Microsoft 5QL Server\MS5QL\data'\model.mdf
3 msdb C:WProgram Files\Microsoft 5QL Server\MS5QL\data‘\msdbdata.mdf

] [Grids | Messagesl
Query batch completed. [[SATAH (3.0) |MyUser (52) |master [0:00:00 [3rows |LnZ2, Col 13

| |Cor1necticns: 3 v

Figure 3. Database name and file locations for databases.

Having the filenames means having exact locations to attack. One of the lessons
learned from securing Internet Information Server is if an attacker has a definite
file path, he or she can then leverage that knowledge in further attacking the
system. For instance, with an unpatched version of IIS 4.0 and Index Server 2.0,

15
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

an attacker could issue a bogus request to index server that would reveal the
physical (i.e. C:\Inetpub\WWWRoot) path for the web server root directory.* An
attacker could then use this directory in combination with other vulnerabilities to
view source files on the server or even execute code.

Because this system table contains file path information I'd like to tell you to
REVOKE SELECT to the public role, but unfortunately, | can’t if you are using
ODBC and MS Access. From my testing, the ODBC Data Source Administrator
issues a query against sysdatabases if | check “Connect to SQL Server to obtain
default settings for the additional configuration information”:

select name
from master..sysdatabases
where has dbaccess (name) =1

Without access to sysdatabases, ODBC Data Source Administrator can’t validate
whether or not any database other than whatever SQL Server selects as the
default is a valid database. Even if | specify a valid database and then try and go
on to the next screen, | receive the error stating, “The database entered is not
valid.” The key is not to check that checkbox beside “Connect to SQL Server to
obtain default settings for the additional configuration information.” The ODBC
Data Source Administrator will assume | know what I'm doing and lets me enter
in any values without checking. | can go through the configuration and even test
successfully with no errors (provided | haven't locked down syscharsets, as
above).

In my testing | found ODBC wasn’t alone in accessing the sysdatabases table.
Microsoft Access does as well if | try and create a link table, even if | have the
ODBC connection created. All | did to generate this error was to select the
defaults. As Access is in the process of bringing up the dialog window where |
select what tables to link, an error indicating SELECT permissions have been
denied comes back (Figure 4).

x

ODBC--call failed.

L.}

[Microsoft] [ODBC SQL Server Driver] [SQL Server]SELECT permission denied on object ‘sysdatabases', database
‘master’, owner 'dba’. (#223)
Help |

Figure 4. Access queries against sysdatabases.

Unfortunately, there isn’t a work around on this. Access issues the following
guery no matter what:

14 Microsoft Security Bulletin (M S00-006)

16
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

select substring('NY',status/1024&1+1,1)
from master..sysdatabases
where name=DB NAME ()

My consternation doesn’t end there. If | try and create an Access project, Access
uses an undocumented stored procedure, sp_catalogs_rowset;2, to retrieve the
list of databases. Notice the version marking (;2). There is a version 1 and a
version 5 as well. Access specifically calls version 2. Since sp_catalog_rows is
owned by dbo and sysdatabases is also owned by dbo, the ownership chain is in
effect and the public role is able to see the list of databases. The only option then
is to REVOKE EXECUTE on sp_catalogs_rowset. Doing this means the user has
to know exactly what database to connect to. But at least | can get a project
created.

However, locking down sysdatabases will break the ability to link tables from a
normal MS Access database. It also means | won't be able to connect to SQL
Server through ODBC Data Source Administrator to get default settings, as with
syscharsets.

The sysdevices Table (insecure)

The sysdevices system table contains information for all configured backup
devices. If I've created a backup device, I'll find the information in this table.
Again, this information includes the physical file paths. And not surprisingly, the
public role has SELECT permissions against this table. In addition, since this
table contains information on the data and log files for master, model, and
tempdb databases due backward compatibility, the file path information is also
there. | can get around the first issue, the file paths of my backups, because | can
specify a file path as a backup device when | call a BACKUP DATABASE or
BACKUP LOG operation. | don’'t have to use a pre-created device. But | can’t get
around the second issue, the file paths for the three system databases, because
| didn’t put them in sysdevices in the first place.

In my opinion, this table should have been secured but | understand why
Microsoft did not. When SQL Server checks security, it does so against the
database user. Cross-database ownership chains notwithstanding (remember,
they can avoid permission checks when crossing databases), if the login doesn’t
have a user account with valid permissions in the database where the object
resides, the login can’t access the object. In other words, regardless of what
database I'min, if I'm using a login that isn’t a member of the sysadmin fixed
server role and | query sysdevices in master, | have to map to a user account in
master that has permissions on sysdevices. By default, the guest user is enabled
in master (don’t remove it, it's required) and the public role has SELECT rights
against sysdevices. However, if | were to REVOKE SELECT on sysdevices from
public, | would have no way to SELECT against sysdevices.

17
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

One fixed server role that would potentially need access to sysdevices is
diskadmin. So my first thoughts would be to assign the permission to diskadmin
and all is well. Except it's not. | can assign permissions to a user or database
role. | cannot assign permissions to a server role. If | were to try and execute the
following T-SQL command, | would get an error saying there’s no such user or

group:

GRANT SELECT ON sysdevices TO diskadmin

I've chosen diskadmin because Disk Administrators have the ability to add and
remove backup devices (for more information on the various server roles, see
SQL Server Books Online). Logically, if | want a server role (other than
sysadmin) to have access to this table, that role would be the diskadmin role.
However, SQL Server will return an error because the security doesn’t work for
server roles. So this attempt falls flat.

Since | can’t assign permissions against server roles, the easiest way to ensure
diskadmin role members have the ability to view the contents of sysdevices is to
grant SELECT permissions to the public role. Hence | understand Microsoft’s
approach but I'd still rather the sysdevices table is secure. To do this, | can
develop a workaround if | create a specific database role to use for permissions.
Here is a code sample:

-- drop public role's permissions
REVOKE SELECT ON sysdevices TO public

-- create a database role specifically to handle permissions
-- against sysdevices

EXEC sp_addrole 'db diskadmin'

GRANT SELECT ON sysdevices TO [db_diskadmin]

-- Give a login access to the master database and put it in the role
EXEC sp grantdbaccess 'MyUser'
EXEC sp_addrolemember 'db diskadmin', 'MyUser'

I've created a role, db_diskadmin, within the master database to use to handle
who has access to the sysdevices table. Since the public role doesn’t have
permissions, no one who isn’t in my db_diskadmin role will able to retrieve the
contents of the sysdevices table. In order to ensure a user in the db_diskadmin
role can SELECT against sysdevices, | first have to grant SELECT rights to
db_diskadmin. Then, I'll need to grant access to the master database for my
user. Finally, I'll have to place the user in the db_diskadmin role.

If you are thinking that’s a lot of work to keep the public out of sysdevices you are
right. In reality, this only becomes necessary if | am using the diskadmin server
role. If only sysadmins will be defining backup devices, then | can simply
REVOKE permission to the public role and be done with it. Otherwise, a
database role has to be created and users who need access to sysdevices have

18
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

to be added as users to the master database and then made rolemembers of the
particular database role. | don’t recommend doing this, even though I've provided
a code sample on how to do so.

Though I've provided a code sample on how to get diskadmins access to
sysdevices, | recommend against granting database access to master. | have
provided a code sample to demonstrate the steps that are necessary to work
around the issue. While the work around isn’t terribly difficult, the security
implications are such that | recommend specifying the backup path in the T-SQL
statement, thereby eliminating the need to access sysdevices at all.

As far as testing went, neither ODBC nor MS Access have any normal reason to
access sysdevices, so locking down this system table did not cause an issue.

The syslanguages Table (not sensitive)

Like the syscharsets table, the syslanguages table isn’t sensitive. This table
contains one row for every language supported by the particular SQL Server. As
with syscharsets, this table is standard for most installations of SQL Server. In
addition, knowing the languages doesn’t help an attacker since the attacker
always has the option of defaulting to US English. This language is always
present in SQL Server, though it's not found in the syslanguages system table.

When | tested locking down the syslanguages table, | found ODBC Data Source
Administrator could still connect to SQL Server to get the default settings without
issue (so long as | didn’t lock down sysdatabases). However, on the dialog box
where there is an option to configure the languages in which system messages
are returned, the checkbox to change the default language is disabled (Figure 5).
This did not, however, affect testing the connection or creating the ODBC DSN.
There were no problems with MS Access, either.

19
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Microsoft SQL Server DSH Configuration x|
[~ Change the languane of SEL Server system messages bo:

| i

| [~ Use strong encryption for data

¥ Perform translation for character data

lUse regional settings when outputting cumency, numbers, dates and
times.

IC QUERY LOG Browse... |

Long query time {miliseconds): [10000

[Log ODEC driver statistics to the log file:

I: STATS.LOG Browse... |
<Back [Frsh | cancel | Hep |

Figure 5. Change language option disabled.

The syslockinfo Table (insecure)

The syslockinfo system table is another virtual table that is generated by SQL
Server when we query it. The syslockinfo table will return information on all
current and pending locks within SQL Server. Locking information is great for
DBAs trying to troubleshoot a blocking problem, but in reality an end user
wouldn’t need to know about locking. In a development environment | can see
how experienced developers who understand locking and blocking could be
more productive by having access to this table, but | certainly don’t agree with
such developers having that kind of access in production.

On the surface | would be likely to say that having access to locking information
isn’t that big of a help to an attacker, but it can be, because it can give an
attacker more insight into what would make the best target. If an attacker is able
to monitor locking information, the attacker is able to see what databases and
what objects within those databases are frequently accessed. An attacker can
use all of this information to get a picture of how the data is being used.

Consider the case where an attacker has access to a particular SQL Server. The
attacker is a legitimate user (inside the organization). The attacker has access to
a couple of databases on this SQL Server but there are many more the attacker
doesn’t have access to. Now the attacker is smart, he’s only going to try and
penetrate a database if it's used a lot. Otherwise, the payoff for the risk he’s
taking may not be anything at all. After all, he doesn’'t want to get caught going
after a DBA's test database. There’s no value in that! If he’s going to take a
chance in being discovered, he wants to be going after information he can sell for
a good price.

20
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

By watching the syslockinfo table, the attacker can see what databases are used
a lot. If the attacker also watches the system process IDs (SPIDs) of the users
accessing the system, the attacker may be able to correlate locking to particular
users. The queries of a CEO should generate more interest than those of the
print plant. Since syslockinfo returns the requesting SPID, an attacker could then
use the system stored procedure sp_who or the undocumented system stored
procedure sp_who2*® (which is why these stored procedures need to be locked
down as well) to find out the user login belonging to a particular SPID. By
correlating the user with the objects where locking is occurring, an attacker could
have greater insight into what objects to try and go after.

Hopefully my example has demonstrated the sensitivity of the locking information
on a production system. Since the average end user does not need access to
such information, revoking SELECT permissions to public is a viable option. If
you decide to lock down the syslockinfo table, some functionality for a non-
sysadmin user will be impaired in Enterprise Manager. A non-sysadmin user will
be unable to return information about current activity, with an error being return
because of the syslockinfo lockdown. Figure 6 shows the error generated.

SQL Server Enterprise Manager il

Error 229: SELECT permission denied on object ‘syslockinfo’, database 'master’, owner 'dbo’,
Cannot create an index on '#=lockinfo54, because this table does not exist in database ‘master’,

Figure 6. Non-sysadmin user returns error on syslockinfo.

If a non-sysadmin user needs access to the syslockinfo table, | have two options:
(1) leave access as it is or (2) use a workaround similar to what | described under
sysdevices. However, generally only DBAs should be monitoring current
information on a database such as locking and processes, therefore securing
syslockinfo is a good idea.

As far as testing is concerned, neither the ODBC Data Source Administrator nor
MS Access uses syslockinfo. As a result, locking this table down does not break
most applications. Exceptions, of course, are management application like SQL
Server’s Enterprise Manager.

The syslocks Table (insecure)

If I look in Books Online, I'll see that Microsoft has “removed” the syslocks table
from SQL Server 2000. However, if | issue the following simple query against a
SQL Server 2000 server, | find the syslocks table is still present:

13 Chigrik, SQL Server 2000 Useful Undocumented Stored Procedures

21
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

SELECT * FROM syslocks

While the syslocks system table doesn’t contain near the information available in
syslockinfo, it does contain the database and object IDs in correlation with the
SPIDs. As a result, it is just as sensitive as the syslockinfo table. However, the
big difference is since Microsoft has said all references to the syslocks table
should be removed for SQL Server 2000, securing it shouldn’t be an issue at all.
Once again, the public role has SELECT rights on this table, something we can
do without. As a result, simply revoking rights for the public role will ensure an
end user doesn’t have the ability to use this table to return locking info. Again,
since sysadmin role members bypass security checks, there aren’t any issues if
for some reason you want to use this system table. It's supposed to be “gone”
but it's not. And as with syslockinfo, revoking public access to this table does not
affect ODBC Data Source Administrator or MS Access.

The sysmessages Table (insecure)

The sysmessages table contains the preformatted error messages SQL Server
returns. I've listed this table as insecure, but | only consider this particular system
table insecure if custom error messages are used heavily for a particular SQL
Server. With the use of the system stored procedure sp_addmessage, | have the
ability to add my own custom error messages which | can use with the
RAISERROR() command.

RAISERROR() doesn’'t have to use sysmessages. However, if | have a common
set of error messages that are reused for a particular internal application, | would
gain some advantage with adding custom error messages to sysmessages. If |
have to change an error message, | only have to do so in one place and not in all
the spots in code where you refer to that particular error. Hence the reason the
sysmessages table exists.

Following that thinking, if I'm not careful about what type of custom messages |
use, if any, | may give away information | didn’t intend for everyone to see. For
instance, | may have particular error messages indicating why a database
operation failed written specifically for my application. For those users of the
application, the error message is necessary. However, for general users who
don’t use the application, the error message shouldn’t be seen. An example
would be, “You don’t have access to the loan. Call John Smith at x500 if you
think you’ve gotten this message in error.”

An attacker viewing this message would know John Smith has something to do
with loans and also what extension he has. Aha! The attacker now has a target
for a social engineering attempt. This particular error message reveals too much.
In reality it's not a good message because John Smith will certainly not be an
employee forever and his extension may not stay the same for the duration of his

22
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

tenure with the organization. However, this particular message illustrates how |
could provide too much information in a basic error message.

If I'm not using the sysmessages table for custom error messages, then there
isn’t much an attacker can gain from this table. The messages would be the
stock ones that are the same from install to install. Downloading the evaluation
version of SQL Server 2000 from Microsoft and perusing the sysmessages table
accomplishes the same thing. In other words: nothing.

If, however, | am using sysmessages for custom error messages, | can simply
revoke SELECT rights to public. The only three stored procedures dependent on
the sysmessages table are the system stored procedures designed to handle
creating, modifying, and dropping these custom error messages.

Even with no permissions set for the public role, users will still get back error
messages if they do something to warrant it. Figure 7 shows MyUser trying to
SELECT against syslockinfo (which | secured previously) and sysmessages
(secured as well). The error messages returned are the correct ones, indicating
permission has been denied.

F-i:'L_ SQL Query Analyzer - [Query - ISATAH.master.MyUser - Untitled3*] — |E||i|
Im File Edit Query Tools Window Help _|5’|5|
|3 -2@8 28 h o B- vy llms CS#YA B
SELECT = FROM syslockinfo =
SELECT * FROM sysmessages
I
| | »f

Server: M=z 229 Level 14 State 5§ ne

SELECT permission denied on object 'sysmessages', database 'master', owner 'dbo'.

=
| | »

] Grids Messages I

Query batch completed with errors. |ISAIAH (8.0) |MyUser (58) |masher | 0:00:00 |0 rows |Lr1 3, Col 1

| |Cor1necticns: = v

Figure 7. Error message even with sysmessages secured.

Even if I'm not using custom messages, locking down sysmessages doesn’t
appear to break any functionality. Also, if a future application does use custom
error messages, the sysmessages will already be secured against a potential
attacker. Once again, the ODBC Data Source Administrator and MS Access

23

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

don’t query against sysmessages directly, so locking this table down doesn’t
have an impact on basic applications.

The sysperfinfo Table (secure)

The sysperfinfo table contains the performance counter values for SQL Server
objects. Unlike most of the other system tables, the public role does not have
access. As a result, no additional security measures are needed. No objects
reference it, so a normal user isn’t going to be able to get at the data contained in
this table. This table is secure as is.

The sysprocesses Table (secure)

The sysprocesses table is secure by default but there are system stored
procedures which report the information it contains. Returning to my example
given in syslockinfo, if | can match up the SPID with the databases undergoing
heavy locking, | can narrow down on targets to attack. Thankfully, the public role
does not have the ability to SELECT against the sysprocesses table directly, so
that means in order to secure the information contained within, we merely have
to lock down any objects that reference it.

There are stored procedures requiring access to sysprocesses. The two biggest
stored procedures that reveal too much information are sp_who and sp_who?2.
Since both reveal the SPID, the login, and the database the SPID is currently
accessing, they represent a gold mine to a potential attacker. Also, since both the
stored procedures and the sysprocesses table are owned by dbo, ownership
chains are in effect. So although the public role doesn’t have direct access to
sysprocesses, it can get at the sysprocesses information because the public role
does have EXECUTE rights on both sp_who and sp_who?2. If | REVOKE
EXECUTE on these two stored procedures, an attacker won't be able to
determine who is on and accessing resources. I'll cover how to identify which
stored procedures reference which tables later in the section on system stored
procedures.

The sysservers Table (insecure)

One of the things attackers like finding is a list of valid computers within an
organization. The sysservers system contains a list of all linked and remote
servers known by a particular install of SQL Server. In other words, that ready-
made list attackers love so much. Once again, the public role has SELECT
permissions on this system table. This system table contains a row for every
server, not necessarily SQL Server, that particular SQL Server can connect to via
OLE DB. | say not necessarily SQL Server because a linked server connection to
an MS Access database will show up in sysservers as well.

24
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

To make matters worse, sysservers has a whole host of stored procedures that
refer to it. As a result, the sysservers table does serve an important role.
However, whether or not an end user needs access to this table is a different
guestion entirely. If I apply REVOKE against sysservers for the public role I've
not done a whole lot because of the stored procedures that also return
information on the remote and linked servers. There are quite a few stored
procedures that depend on sysservers in some way. | issued a query against a
SQL Server 2000 SP3 server and it returned 72 stored procedures that referred
to sysservers in the text of the stored procedures. Most are add, change, or drop
stored procedures dealing with replication. Some, like sp_helpserver, return the
very information of a critical nature in sysservers.

Some of these stored procedures also include file paths and share points. Not
only will these stored procedures reveal the name of the server, but also an
access point. And all of this information is available to the public role by default. |
am absolutely frightened by the amount and “quality” of information left unsecure
in conjunction with this system table alone. As a result, if | can lock this table and
the applicable stored procedures down, do so. However, | know to test
rigorously, especially if I'm using replication. One of the catches with Microsoft's
OpenHack 4 configuration® (which I'll discuss shortly) was that it did not use
replication and thus replication support was not installed. Because replication
wasn’t covered in this “test,” | am cautious about checking out a lock-down down
this table and any objects related to replication. Replication can be highly
customizable so it’s difficult for me to make any generic recommendations on it
except to test it heavily.

The sysxlogins Table (secure)

The sysxlogins table is an important system table because it contains the list of
logins recognized (NT users and groups as well) for a particular SQL Server. Not
only that, but it also has the hashes for the passwords of any SQL Server logins.
Microsoft has not given any logins or roles permissions to this table, meaning a
user has to a member of the sysadmin role to query against it. If an attacker were
able to get at the password hashes, the attacker would be able to leverage brute
force methods to attempt to crack the passwords. There are several articles’ '8
available discussing weaknesses in the password hashes within SQL Server and
this table should most certainly be kept out of the hands of the normal user.

User Databases

Just as there are important system tables in the master database, there are
certain system tables that are present in every database. Like with the system

16 e\Week, OpenHack 2002 Downloads
7 Kelley, SQL Server Security: Login Weaknesses
18 |itchfield, Microsoft SQL Server Passwords (Cracking the password hashes)

25
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

tables in the master database, most of the database-specific system tables are
accessible by the public role.

The main issue with altering permissions on any of these system tables means
the Information Schema views break. Though a particular Information Schema
view only returns the information a user is allowed to see (for instance, only the
columns a particular user has access to), the view does use the system tables.
And since dbo owns the system tables and a “virtual owner,”
INFORMATION_SCHEMA, owns the Information Schema views, there is a
breakdown in ownership chains and thus the Information Schema views also
break.

Information Schema views contain metadata about the database. Microsoft has
implemented them both to meet the SQL-92 standard that requires such views,
but also to provide metadata information to users so they do not have to issue
gueries directly against the system tables. Microsoft recommends the use of
these views because they should stay consistent across releases and Microsoft
reserves the right to change the structure and availability of system tables at any
time.

If I need the functionality of the Information Schema views or if | desire to allow
users to use them, | won't be able to lock down most of the database-specific
system tables. As a result, | have to tread carefully when it comes to locking
down these particular system tables.

The syscolumns Table (insecure)

The syscolumns system table contains a listing of all the columns for all tables
and views in a given database. In addition, it is also used to store the parameters
for all the stored procedures for a given database as well. The main problem with
the public role having permissions to this table is an attacker can find out about
the structure of tables, views, and stored procedures he or she doesn’'t normally
have access to.

For instance, consider a personnel system where the table Employee has fields
for employees’ emergency phone numbers, managers, departments, and
salaries. Some personnel in Human Resources are allowed to see salaries, but
not all members of this department are permitted to do so. After all, salaries are a
sensitive item. As a result, personnel who aren’t permitted to see salary are given
access to the rest of the data through the use of a view that restricts the columns
from the table so that the Salary column is excluded. An attacker from this group
would be able to see that such a column does exist by querying directly against
syscolumns. Not only that, but the attacker would also be able to see the base
table that contains this field.

26
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Because an attacker can learn more about the structure of a database than |
want, locking down the syscolumns table by REVOKE SELECT to public seems
like a good idea. Then a normal user won't be able to then view the contents of
syscolumns, nor would the user be able to use the view
INFORMATION_SCHEMA.Columns. A given user who has a legitimate need to
see column information is also barred from doing so. The problem that arises,
though, is with the db_datareader role.

The db_datareader role has implicit SELECT permissions against all tables and
views in a given database, even if explicit SELECT permissions aren’t set. The
exception is if a particular user also has DENY as well, in which case the DENY
trumps this implicit set of permissions. So if | simply revoke SELECT from public
but I'm using the db_datareader role, a user in this role can still view the contents
of syscolumns and the rest of the database-specific system tables. | don’t
recommend issuing DENY against the public role, nor am | big fan of the
db_datareader role. Accessing system tables in databases is where these two
approaches come head-to-head. | can’t simply revoke permissions if | have users
assigned as db_datareader. Then again, if | issue DENY to public and | have a
normal user with a legitimate need (such as someone who is in the db_owner
role), that user is broke. If possible, revoke permissions from public and don’t use
db_datareader.

Revoking public access to a system table in a database does not stop the
db_datareader role. The db_datareader role has implicit SELECT rights against
all tables and views. As a result, even if public doesn’t have access to a
particular table, a member of the db_datareader role does.

Another issue is that system stored procedures come into play like with system
tables in master. If a user uses sp_help, a stored procedure the public role has
EXECUTE rights on, the user can retrieve the column information for a given
table even if the user is barred from syscolumns. Therefore, I'll have to lock down
this stored procedure as well, but since it exists in the master database (and
works because of cross-database ownership chaining), I'll effectively prevent the
user from calling it in any database.

As might be expected, this issue of getting at the information found in a system
table for legitimate use while preventing it when unauthorized is going to be a
recurring theme as | go through the rest of the database system tables.
Unfortunately, the options to securing database-specific system tables are more
limited than with the system tables only found in the master database. Basically, |
can revoke direct access against the base tables for a particular database, but in
order to shut down public access to stored procedures that return the same
information, I'll have to lock down the system stored procedures in master and
that means affecting all databases.

27
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

As I'll cover when | get to the system stored procedures, locking down all the
stored procedures isn’'t 100% possible if | am using applications like MS Access.
In fact, locking down sp_columns, to prevent a user from getting column
information on a given table, breaks MS Access’ ability to link tables from SQL
Server. Situations like this one are why | say that if you are using some of the
basic tools, you may run into issues when you start locking things down..

The syscomments Table (insecure)

Of all the system tables to restrict at the database level, the syscomments table
may initially be seen as one of front-runners. The syscomments table contains
the code behind any view or stored procedure in the database. Such information
is certainly dangerous in the wrong hands! If a user can get at the contents of a
particular stored procedure, the user can then figure out how it works. | don’t
want this at all.

However, before restricting access to the public role on syscomments, one option
we do have is to use the WITH ENCRYPTION option when creating our stored
procedures and views. While the encryption mechanism on syscomments is
relatively weak, a user either has to be a sysadmin of the system or be able to
alter, create, and drop stored procedures and views in order to reveal the
contents of them. Here is a stored procedure that allows a user with such rights
to be able to peer into any stored procedure or view that is encrypted in such a
fashion:

-- Decrypts encrypted stored procedures and views
-- Maximum length is ~ 4000
CREATE PROC sp DecryptObject
@Name nvarchar (50)
AS

SET NOCOUNT ON

DECLARE @SQL nvarchar (4000)
DECLARE @Type char (1)
DECLARE @ObjectWord nchar (4)

-- Verify the Object exists
IF EXISTS(SELECT Type FROM sysobjects WHERE name = @Name)

BEGIN
SET @Type = (SELECT Type FROM sysobjects WHERE name = @Name)
END
ELSE

BEGIN

RAISERROR ('Object Not Found', 16, 1)

RETURN (-1)
END

—-— Check to see if it is a stored procedure or view
IF QType = 'P'
BEGIN

28
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

SET @ObjectWord = 'PROC'

END
ELSE
IF QType = 'V'
BEGIN
SET @ObjectWord = 'VIEW'
END
ELSE
BEGIN
RAISERROR ('Object not a view or stored procedure', 16, 1)
RETURN (-1)
END

—-— Check to see if it is encrypted
IF NOT EXISTS(SELECT * FROM syscomments sc JOIN sysobjects so ON
sc.id = so.id

WHERE sc.encrypted = 1 AND so.id = OBJECT ID (@Name))

BEGIN
RATISERROR ('Object not encrypted', 16, 1)
RETURN (-1)

END

CREATE TABLE ##Code (
ID int,
ctext nvarchar (4000)

)

SET @SQL = N'
INSERT INTO ##Code

SELECT 1, ctext FROM syscomments WHERE id = OBJECT ID(''' + @Name +
lll)l -

EXEC (@SQL)

SET @SQL = N'ALTER ' + @ObjectWord + ' ' + @Name + ' WITH ENCRYPTION
AS SELECT

'1012345678901234567890123456789012345678901234567890123456789012345
67890123456789012345678901234567890123456789012345678901234567890123
45678901234567890123456789012345678901234567890123456789012345678901
23456789012345678901234567890123456789012345678901234567890123456789
012345678901234567890123456789Test'"' Test'

EXEC (@SQL)

SET @SQL = N'
INSERT INTO ##Code
SELECT 2, ctext FROM syscomments WHERE id = OBJECT ID(''' + @Name +

"')l

EXEC (@SQL)

DECLARE @OCryptString nvarchar
@OPlainString nvarchar
@NCryptString nvarchar
@NPlainString nvarchar
@Position int,

@Length int

4000),
4000),
4000)
4000)

14

—~ e~~~

14

29

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

SET QOCryptString = (SELECT ctext FROM ##Code WHERE ID = 1)

SET @NCryptString = (SELECT ctext FROM ##Code WHERE ID = 2)

SET @NPlainString = 'CREATE ' + @ObjectWord + ' ' + @Name + ' WITH
ENCRYPTION AS SELECT
''012345678901234567890123456789012345678901234567890123456789012345
67890123456789012345678901234567890123456789012345678901234567890123
45678901234567890123456789012345678901234567890123456789012345678901
23456789012345678901234567890123456789012345678901234567890123456789
012345678901234567890123456789Test'' Test'

SET @Length = DATALENGTH (@OCryptString) / 2
SET @QOPlainString = REPLICATE (N'A', @Length)

SET @Position =1

WHILE (@Position <= @Length)
BEGIN
SET @QOPlainString =
(SELECT STUFF (QOPlainString, @Position, 1,
NCHAR (UNICODE (SUBSTRING(Q@OCryptString, @Position, 1)) *
(UNICODE (SUBSTRING(@NCryptString, @Position, 1)) *
(UNICODE (SUBSTRING(@NPlainString, QPosition, 1)))))

)
SET @Position = @Position + 1
END

SELECT @OPlainString

SET @SQL = N'DROP ' + @ObjectWord + ' ' + (@Name
EXEC (@SQL)

EXEC (@0PlainString)

DROP TABLE ##Code

This stored procedure is adapted from a script posted by Shoeboy to BugTrag™®
that is now readily available all over the Internet. Other stored procedures very
similar to this one are also available, and they cite Shoeboy’s script as their
source. However, all of these decrypting stored procedures suffer from a couple
of limitations. First, it only works on stored procedures and views of less than
approximately 4000 characters. The reason for this limitation is due to the fact
that the field ctext is only 4000 characters long. As a result, when a stored
procedure or view exceeds this length, it is “wrapped” into additional rows as
needed. Second, since the object is being altered, dropped and then recreated,
all permissions against the object will be lost. So the script can’t be run if you
need to maintain permissions on an object.

19 shoeboy, Some analysis of Microsoft SQL Server 2000 stored procedure encryption

30
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

There is a small application called dSQLSRVD (dOMNAR'’s SQL Server
Syscomments Decryptor)® is not bound by these limitations because it uses a
mechanism to read and decrypt the stored procedure or view without having to
alter, drop, and create it. However, because the only way to get a particular piece
of information needed to decrypt requires sysadmin rights, you have to be a
sysadmin to run it successfully.

I'll admit, however, that most stored procedures and views aren’t created using
the WITH ENCRYPTION option. As a result, locking down the syscomments
table is definitely a good idea. However, users can still reveal the contents of
unencrypted stored procedures and views using the sp_helptext stored
procedure. Like with sp_help, sp_helptext is located in the master database. So if
| restrict it, | restrict it across all databases. | don’t have the option of only leaving
it accessible for a particular database.

When testing with ODBC Data Source Administrator and MS Access, | found no
problems when locking down this table. This is logical, as neither of those
applications have any reason to query against syscomments. In fact, it is doubtful
any application for the end user should have such a capability. Administrative
tools for the DBA are a different story, but end user tools have no need to query
syscomments.

The sysdepends Table (insecure)

The sysdepends system table is supposed to contain dependency information
between objects. An attacker could use it to learn about more objects in a given
database. How much information is present?

If objects like stored procedures have been created in the proper order, all
dependency information should be stored in this table. However, it is possible to
create a stored procedure that references another stored procedure that doesn’t
yet exist. As a result, the dependency information won’t be found. Also, since
sysdepends only stores dependency information for objects in the same
database, any cross-database dependencies won't be recorded. So sysdepends
won'’t contain information on objects from other databases and it won’t contain
information when objects have been created out of order. Also, if an object is
“stand-alone” and doesn’t depend on another object and also isn’t depended
upon (i.e. a table not referenced by a stored procedure or view) it won’t show up
in sysdepends. Note that foreign key constraints do not count as dependencies
with respect to being stored in the sysdepends table. Even with that said, if I've
made good use of stored procedures to secure our database, then a reference to
most of the user objects in the database will be found in this table.

2 JOMNAR, dSQLSRVD: http://www.geociti es.com/d0mn4r/dSQL SRV D.htm

31
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Because an attacker can garner quite a bit of information from this table, it would
be another good one to lock down. However, as with syscolumns and
syscomments, a stored procedure in the master database gives users access to
the same information as sysdepends even if the public role is denied access. The
stored procedure in this case is sp_depends. The sp_depends stored procedure
will return the name of the object and also what type of object it is. Again, unless
| want to restrict sp_depends against all databases, | can’t lock it down. With that
said, another stored procedure I've already mentioned, sp_help, returns all of the
objects in the database if | don’t pass it a name. As a result, solely locking down
sysdepends doesn’t accomplish a whole lot since an attacker has so other
avenues.

The big difference over syscolumns, however, is that MS Access doesn’t use any
stored procedures that query against it. Neither does the ODBC Data Source
Administrator. As a result, | can lock this table down more often than is the case
with syscolumns.

The sysfilegroups Table (insecure)

The sysfilegroups table is another system table accessible by the public role.
However, the information contained within isn’t as damaging at first glance as
say the sysdatabases table from the master database. After all, the only
information an attacker could glean is the name of the filegroups except there is
the status field. By checking the status field, they could see if a filegroup is
toggled for default (0x10 in hexadecimal or 16 in decimal) which means
read/write or just read only (0x8 in hexadecimal or 8 in decimal). However, I've
not seen a lot of installations that take advantage of using a read-only file group.
As a result, the status field set for the default may not indicate anything at all.

The sysfilegroups table reveals the name of the filegroups but it doesn’t contain
any file path information. As a result, there’s not a whole lot of information to
garner from this particular table. But since an end user usually has no legitimate
reason to know what the filegroups are for a particular database (after all, the
DBA should be concerned about the physical structure of the database, but
someone in accounting should not), the table shouldn’t be open to the public role.

As with the other system tables, the sysfilegroups table does have a stored
procedure that reveals the same information: sp_helpfilegroup. Once again, it sits
in the master database. Unlike sp_help or sp_depends, sp_helpfilegroup isn't a
stored procedure an end user should use. As a result, revoking EXECUTE rights
on this stored procedure should not be an issue in most environments. As far as
MS Access or ODBC Data Source Administrator are concerned there are no
issues with locking this table down.

32
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The sysfiles Table (insecure)

Like the sysdatabases table from the master database, the sysfiles system table
contains file paths. Again, | think this is valuable information to an attacker.
Certainly, no end user needs to know the specific file names for the database
files. However, the public role does have SELECT rights against this table, too.
Again, the end user doesn’t have a reason to know physical file locations so |
don’t agree with the public role having access.

Like the other database-related system tables, the sysfiles table isn’t the only
mechanism available to find out file information. The system stored procedure
sp_helpfile will return the primary database file for a given database. Also, I've
already discussed the issues with trying to lock down the sysdatabases table in
the master database. So even if | like down sysfiles for a particular database and
restrict sp_helpfile, the issues with locking down sysdatabases means an end
user will be able to find out the file path for the primary data file. Locking down
sysfiles and sp_helpfile will put some roadblocks in the way of an attacker but
unless my environment is such that | can lock down sysdatabases, an attacker
will still be able to locate at least one file path for a given database.

Most user applications won'’t use the sysfiles table, so this table is up for
consideration. End users should have no need for the file paths of the databases
of your SQL Server. Protect them accordingly.

The sysfiles1 Table (secure)

Unlike the sysfiles system table, the sysfilesl table is actually a virtual table that
contains some but not all of the information sysfiles contains. Books Online
doesn’t discuss it but the table is present in all databases. It too has the file path
information for a given database but the public role cannot SELECT against it.
Even though it is a virtual table, | can assign permissions against it, just as with
the syslockinfo table from the master database, though it isn’t necessary unless |
want to do so for the db_datareader role. Since the db_datareader role has
implicit SELECT permissions on all tables, a member of this role can view
sysfilesl unless it is locked down.

Again, the same problems with locking down sysfiles apply to sysfilesl. If
sysdatabases can't be locked down, locking down sysfiles1 won't ultimately stop
an attacker. If, however, | can lock down sysdatabases and revoke access to
sp_helpfile, locking down sysfiles and sysfiles1 should keep an attacker from
discovering the file paths for a particular database.

The sysforeignkeys Table (insecure)

33
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

When | discussed the sysdepends table | stated it didn’t contain information on
foreign keys. Foreign keys have their own table, appropriately named
sysforeignkeys. It too is accessible by the public role. Since foreign keys help
keep relational integrity intact, they are valuable to the DBA or developer.
However, the end user shouldn’t be concerned with what foreign keys are
defined. After all, they are part of the underlying schema and an end user should
be interested in the data, not the structure.

Like with sysdepends, the sysforeignkeys table might give an attacker
information about more objects in the database. As a result, an attacker would
then have additional targets to try and get access to. Of course, like sysdepends,
the sysforeignkeys table has its own system stored procedure: sp_helpconstraint.
This system stored procedure, when given a table, will return all constraints on
the table. As a result, the foreign key information is readily available unless | lock
down sp_helpconstraint as well. Even if | do lock down both the sysforeignkeys
table and the sp_helpconstraint stored procedure, my work is undone by the
sp_help stored procedure. Therefore, | must be able to secure this system stored
procedure or a user executing sp_help against a particular table gets the foreign
key information anyway. So once again, locking down this system table is
impossible in most environments.

As with sysdepends, locking down this table doesn’t affect MS Access or ODBC
Data Source Administrator. Neither these two, nor most end user applications
would query against this table. Tools that map databases might, but likely only
DBAs need such rights. After all, if a user (such as a developer) needs a
database layout, the DBAs can always provide one if the need is legitimate.

The sysfulltextcatalogs Table (insecure)

The sysfulltextcatalogs table is only populated if full-text indexing is configured
for a given database. If I'm not not using full-text indexing, this table isn’t insecure
at all for it is empty. However, if | am using full-text indexing for a particular
database, I'll find a row per catalog on the database. Now if I'm using default file
paths, all is well, for the path field will be NULL. However, if | chose to use
something other than the default path, the path I've specified will show up. This is
easy to demonstrate. First, I've created a local directory at C:\FullText\ which is
not the default full-text catalog path. If | create two different full-text catalogs with
the Pubs database, the first using my c:\FullText and the second not specifying a
path (so it'll use a default), I'll have two rows in my sysfulltextcatalogs table:

USE Pubs
GO

sp_fulltext catalog
'SecurityExample',
'Create’,
'C:\FullText'

34
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GO

sp_fulltext catalog
'DefaultPath’',
'Create’

GO

When | query the sysfulltextcatalogs, I'll see both catalogs (Figure 8). The first,
SecurityExample, shows the path. The second, DefaultPath, does not. Obviously
if I stick to just the default path, an attacker might be able to determine the full-
text catalog name, but nothing more. However, if | have full-text catalogs
distributed to non-default directories, the file paths for those directories will be
stored in this table.

F-i:'I,. SOL Query Analyzer - [Query - localhost pubs DemoPermissions - Untitled4=]

08 Fle Edit Ouey Tools ‘Window Help =1=1x|
[~ 8-cHB |, BZa(o (D vr = ([Tm 1@y 8
USE pubs =

GO

SELECT # FROM sysfulltextoatalogs

frtoeatid | name |status|path

1 7 SecurityExample 0O C:hFullText
Z =1 DefaultPath u] NULL

[Grids | Messagesl
Query batch completed. |Iocalhost [2.0] |DemoPelmissions [52) |pubs |EI:EID:DEI |2rows |Ln 5, Cal1

| |Eonnections: 1 4

Figure 8. Paths in sysfulltextcatalogs

Since the structure and location of the full-text catalogs are not needed by a
typical end-user, the public role does not need access to the sysfulltextcatalogs
table. Revoking SELECT permissions against this system table will prevent direct
access. However, there are two system stored procedures that have to be dealt
with in order to completely secure the information contained within this system
table. Those two stored procedures are sp_help_fulltext_catalogs and
sp_help_fulltext_catalogs_cursor. The latter stored procedure returns the
information in the form of a cursor, otherwise both stored procedures function the
same. Both are located in the master database and since the public role doesn’t
really need access to these stored procedures | can revoke EXECUTE rights
from the public role.

Some may be concerned about the Microsoft Search service (required for Full
Text Indexing) because of the account it runs under. The Microsoft Search

35
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

service is supposed to run as LocalSystem. Even if | decide to revoke the login
BUILTIN\Administrators, | still need to add another login to handle LocalSystem
first and give this login sysadmin rights. As a result, there’s not a lot that can be
done in this case. Running Microsoft Search in any other context can resultin a
peaked-out processor state?! or even an access violation. It is not a supported

configuration by Microsoft.

The sysfulltextnotify Table (secure)

The sysfulltextnotify is an undocumented system table used for full-text
operations. There are several system stored procedures that use this table, but it
contains no real information useful to the average user. If I'm not using a feature
called change tracking, this table won't be populated. However, if | have enabled
change tracking, any time a change is made affecting a full-text indexed column,
SQL Server will make an entry in the sysfulltextnotify table.

By default, SQL Server doesn’t continually update full-text indexes as it does with
clustered and non-clustered indexes. One method of keeping full-text indexes
updated is to run an update job using SQL Server Agent during periods of low
activity. Another method is to enable change tracking where SQL Server records
all changes affecting full-text indexed rows as they occur. With change tracking
enabled, updates to the full-text index can be made on a scheduled basis where
only the rows affected are updated in the full-text index. The update can be set
as a background operation. Enabling change tracking and performing updates
based on change tracking recorded information is accomplishing using the
sp_fulltext_table stored procedure. Such a discussion is beyond the scope of this
paper, but you can find more information about Full-Text Indexing Change
Tracking in Books Online.

If you aren’t using change tracking, this table will be empty and as a result
doesn’t reveal any sensitive information. If, however, you are using change
tracking, an attacker could get a picture of database activity by watching this
table closely. This little bit of information may give an attacker of what particular
table(s) to go after.

However, this table is like sysfilesl in that the public role doesn’t have explicit
permissions to access the table. If, however, a user is assigned to the
db_datareader role, the user will be able to SELECT against sysfulltextnotify. If |
deny SELECT rights to public or to db_datareader, the user won’t be able to peer
in to the sysfulltextnotify system table. Unlike most of the other system tables,
this one does not have a stored procedure that allows a user to peer into the
contents of the table. This is probably because this table is intended for internal
use only. So if | issue the DENY statement, | should be able to secure this
system table without issue, even if | am using the db_datareader role.

2 Microsoft Knowledge Base Article 295034

36
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The sysindexes Table (insecure)

The sysindexes system table is another table that reveals physical structure
information. Like the other database-specific tables that reveal physical structure,
this one is accessible by the public role as well. The one main difference is the
sysindexes table appears very cryptic at first glance. However, if an attacker is
trying to determine which tables are being changed the most, the sysindexes
system table represents the perfect place to look. The rowcnt and rowmodctr
columns reveal the number of rows and the number of rows changed since the
last time statistics were updated, respectively.

By restricting access to the sysindexes table, | can ensure the end user can'’t find
out how many rows have been updated since the last time statistics were
calculated. Of course, using stored procedures like sp_help will reveal what the
indexes are on a particular table and what columns they reference, but sp_help
doesn’t reveal rowcnt or rowvmodctr. The stored procedure sp_spaceused will
reveal the number of rows and the amount of space the data uses, but again, it
doesn’t reveal any information like rowmodctr. There’s one other stored
procedure, sp_helpindex that also returns information on indexes, but it does
reveal the number of rows or the number of rows that have been modified.

Taking all this into consideration, | can lock down sysindexes pretty tight and that
will keep an attacker from being able to observe the row activity. Likewise, | can
remove EXECUTE rights for the public role on both sp_helpindex and
sp_spaceused because neither of these stored procedures would typically be
used by end users. The stored procedure sp_help will reveal some information
about the indexes on a given table, but at least it isn’t everything that’s found in
sysindexes.

The sysindexkeys Table (insecure)

Like the sysindexes table, the sysindexkeys system table is open to the public
role as well. This table contains information on what columns make up each
index. This is the information returned by sp_help when we use it to examine a
table in more detail. Like with most of the other physical structure tables, the
sysindexkeys table contains very little information of value to a legitimate end
user. While an attacker may find the information of some value, a representative
from marketing would normally care less about this system table.

Locking down sysindexkeys will have a very limited effect if sp_help can’t be
locked down. In addition, both sp_help and sp_helpconstraint reveal information
about the makeup of each index, though the latter stored procedure only does so
if the index is tied to a constraint such as a primary key constraint.

37
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The sysmembers Table (insecure)

The sysmembers system table is a join table to tie a database user to a database
role. It is also open to the public role and represents a bonanza to an attacker.
With this table | can find all the users who are members of db_owner or
db_datareader and gain immediate access to any table in the database if | were
to somehow manage to compromise one of those user accounts. For instance,
the following query against sysmembers table reveals the users and their group
memberships:

SELECT USER NAME (memberuid), USER NAME (groupuid)
FROM sysmembers

It really is that easy. End users shouldn’t know users and role memberships, but
they can find out such information via the sysmembers table. In addition, there
are two stored procedures which let an end user return the members of a given
group or role. These two stored procedures are sp_helpgroup and
sp_helprolemember. So in addition to revoking SELECT rights against the
sysmembers table (and barring or not using db_datareader), I'd also have to
revoke EXECUTE rights for public on the sp_helpgroup and sp_helprolemember
stored procedures.

One of the issues with revoking EXECUTE rights against these two stored
procedures, though, is if a user is assigned to the db_securityadmin role for a
given database. When | revoke EXECUTE permissions, the user no longer has
the ability to use these two stored procedures. In order to enable the user to have
access, I'll have to use a technique similar to what | described under sysdevices
where a role is created in the master database with the ability to execute the two
stored procedures. The user would then have to be granted access to the master
database as a user and added to the role.

The sysobjects Table (insecure)

I've already discussed that sp_help without parameters reveals all of the objects,
so right up front | realize that locking down sysobjects doesn’'t accomplish a
whole lot in most environments. Sysobjects is a great table for the DBA because
it contains every object. If | want to do something against a particular type of
object such as all stored procedures, | can go to sysobjects. There are other
methods as well, but such is the power of sysobjects. And therein lies the
attraction for the would-be attacker. If something is useful for the DBA, chances
are it is useful for the attacker.

As an attacker | can grab the names of the objects, what user owns them, and
what they are. That's a lot of valuable information! Unfortunately, it is near
impossible to lock all of this information away from the curious, much less the
malicious. Just about every stored procedure starting with sp_help depends on

38
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

the sysobjects table. So even if | want to go about revoking SELECT permissions
to the public role, I'd then have to go and revoke EXECUTE rights on a number
of stored procedures, to include sp_help. What a nightmare! I've basically put
sysobjects in the same class as sysdatabases. Some DBAs can lock it down
because their environment permits it, the majority of others cannot.

If you have custom-built apps, you are probably in the category of the DBAs who
can lock this table down (along with the applicable stored procedures). However,
if you are supporting MS Access and other applications like it, you'll have the
problem that these applications use sp_tables and similar stored procedures to
build their lists. For instance, if you create an MS Access Project and
successfully make a database connection, without sp_tables you won’t be able to
see any of the tables or views. Similarly, if you use a standard Access database
and attempt a link table, without access to sp_tables you'll get the EXECUTE
permissions denied.

The syspermissions Table (insecure)

My opinion on the syspermissions table matches that of the sysmembers table:
end users shouldn’t have open access to read what security is setup on a given
database. However, the syspermissions table is available for the public role. | am
assuming the rationale is something similar to the sysmembers table, where the
public role has been granted rights to this table in order to proide support for the
db_securityadminrole.

An attacker can use this table to figure out what permissions have been assigned
to what user or role. Admittedly, the actadd column is cryptic and unless an
attacker understood what the values were for this “internal use” column, the
attacker won'’t be able to figure out what right a particular user or group has.
However, by a process of matching actadd’s values for rows that aren’t known to
rows that are known, an attacker could piece together what rights each user or
group does have. A little tedious, perhaps, but it is worth it for someone intent on
stealing data.

By revoking SELECT rights to the public role, end users won’t be able to look at
these rights and have the data to try and piece together actadd. Unlike most of
the other system tables, syspermissions doesn’t have any stored procedures that
reveal similar information. As a result, when you lock down syspermissions, there
isn’t another mechanism to get at the information in syspermissions.

However, sysprotects also contains permissions information. As a result, it has to
be locked down as well. I'll discuss sysprotects shortly, but suffice it to say if only
one of the two tables is locked down the permissions can still be obtained by an
attacker. Since this table isn’t used by most user applications, | didn’t find any
issues with revoking access to it.

39
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The sysproperties Table (secure)

If you are defining extended properties on your database objects, you'll find SQL
Server stores them in the sysproperties table. Extended properties are new to
SQL Server 2000. They are used to store metadata about the database objects
and can be customized any way a developer or DBA sees fit. An application or
user can use the fn_listextendedproperty function to return the extended property
information on a given database object.

SQL Server doesn’t have any permissions set against this undocumented system
table meaning the public role doesn’t have direct access to sysproperties.
Because of this, a normal user will return the permission denied exception
whenever an attempt is made to query against this particular table.

Because no explicit permissions are assigned, the sysproperties table is as
secure as it can be. The problem is the function fn_listextendedproperty returns
information contained within this table if the user knows how to query it properly.
Since this is a system function, there’s no mechanism for assigning permissions
to it, meaning all users have the access specified by Microsoft. In the case of
fn_listextendedproperty, that means the public role has SELECT rights. As a
result, there’s not anything else we can do about sysproperties except choose
simply not to use it.

I'll be honest in saying that in my work environment we don’t use extended
properties and store them within the database. The main reason is we do a lot of
transfers to and from a mainframe and other disparate (non-SQL Server
systems). The big problem we face is identifying how a given field on the
mainframe translates into our core warehouses, down to our data marts, and
finally into our end-user applications with whatever they have for data stores (flat
files, MS Access databases, etc.). As a result, we have to track our metadata at a
more global level and have built systems to do this. Because we have to have an
enterprise view of the data as it goes from one system to another, keeping
extended properties up-to-date would represent a second place where we would
have to maintain data. Therefore, we don’t make use of this feature within SQL
Server. If you do, keep in mind the system function that public will retain access
to and judiciously place information about your objects into these extended
properties.

The sysprotects Table (insecure)

Like the syspermissions table, the sysprotects table also stores permissions
information. However, the sysprotects table comes into play especially when
dealing with column-level permissions, which incidentally, is the granularity at
which SQL Server verifies permissions. Also like the syspermissions table, the

40
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

sysprotects table is viewable by the public role. End users thus have rights to
view what sort of security settings are on the various database objects/

In preparing the list of what objects were secure or insecure, | queried directly
against this system table to view permissions information. The query | used was
quite simple:

SELECT
so.name [Table]
, USER NAME (sp.uid) [User],
CASE action
WHEN 26 THEN ' REFERENCES'
WHEN 178 THEN CREATE FUNCTION'

WHEN 193 THEN SELECT'
WHEN 195 THEN INSERT'
WHEN 196 THEN DELETE'
WHEN 197 THEN UPDATE'

WHEN 198 THEN
WHEN 203 THEN
WHEN 207 THEN
WHEN 222 THEN
WHEN 224 THEN
WHEN 228 THEN
WHEN 233 THEN
WHEN 235 THEN
WHEN 236 THEN
END [Action]
, [Columns]
FROM sysobjects so
LEFT JOIN sysprotects sp
ON so.id = sp.id
WHERE so.type = 'S'
ORDER BY so.name

CREATE TABLE'
CREATE DATABASE'
CREATE VIEW'
CREATE PROCEDURE'
EXECUTE'

BACKUP DATABASE'
CREATE DEFAULT'
BACKUP LOG'
CREATE RULE'

The WHERE clause I've used, checking to see if the sysobject’s column type is
equal to ‘'S’, is what restricts my result set only to system tables. However, an
attacker could choose any value and in fact does not have to reference
sysobjects at all. Simply using OBJECT_NAME(id) is sufficient to return what the
object is called.

Once again, this is valuable information to an attacker. Not only would an
attacker know what objects there are in the database but also the attacker is able
to find who has what permissions. Obviously this is more information than what
we want any end user gaining! However, simply denying SELECT rights on
sysprotects is not enough. Unfortunately, there are several stored procedures
that return the same information contained within sysprotects:

sp_column_privileges
sp_column_privileges_rowset
sp_MSobjectprivs
sp_table_privileges

sp_table_ privileges_rowset

41
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

All of these stored procedures are in the master database and the public role has
EXECUTE rights against them. The sp_MSobjectprivs supports functionality in
Enterprise Manager and the others are standard system stored procedures
through sp_column_privileges_rowset and sp_table_privileges_rowset aren’t
documents in Books Online.

The main issue with locking down these stored procedures is once again with the
db_securityadmin role. A user in this role would have a legitimate need to the
information returned by these five stored procedures. In order to keep the public
from having access but still giving access to security admins, the workaround of
generating a role in the master database and assigning users to it would have to
be implemented.

The sysreferences Table (insecure)

The sysreferences is another system table for foreign keys. Unlike
sysforeignkeys, however, sysreferences records the columns that make up the
foreign key relationship for both the referencing and referenced tables. The
additional column information revealed by sysreferences might be of interest to
an attacker, but once again, if the end user has access to sp_help, locking down
sysreferences will do little good. Also, the sp_helpconstraint system stored
procedure | cited under sysforeignkeys queries sysreferences as well.

The system stored procedure sp_helpconstraint returns the columns that make
up the foreign key relationship, so if I'm going to lock down sysreferences, | need
to lock down sp_helpconstraint as well. If | can lock down sp_help, then | can
prevent an attacker from gaining any additional information via this system table.
Without the ability to revoke execute rights on sp_help, however, and end user
can get the information stored in sysreferences.

Once again, end-user applications typically have no need to access this type of
information. Most applications try to determine relationships by looking at column
names and then prompting the user to verify. As a result, | didn’t find any issues
locking down this table, with the exception of the system stored procedures that
also returned similar information.

The systypes Table (insecure)

The systypes table contains a row for each system and user-defined data type. |
debated about whether to mark this table insecure or not sensitive, but since I'm
dealing with the underlying schema, there is some value to querying this table if
user-defined data types are being used. Otherwise, this table contains the default
26 system-supplied data types present in every table. If | want to see what user-
defined types are present in the current database, | can perform a comparison
against the systypes table in the master database. Here’s a query that does just
that:

42
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

SELECT st.*
FROM dbo.systypes st
LEFT JOIN master.dbo.systypes mst
ON st.xusertype = mst.xusertype
WHERE mst.xtype IS NULL

Since user-defined data types are still based on system-specified data types, |
don’t think there is a whole lot of data to be obtained from this table. After all,
whether or not | define the EmployeelD column as EmpID or int, I'm still dealing
with an integer value. If a user has the ability to execute the sp_help table (it's
back), not only can the user list all of the columns for a given table, but also can
use the sp_help stored procedure to return information about a particular system
stored procedure. Where this table can get me into trouble is if | have defined
certain types with names like SSN or phone or MaidenName. Those types of
eye-catching types will certainly cause an attacker to investigate further. After all,
personal information is often a gold mine.

If I want to lock down the systypes table, I'll also need to be able to lock down the
sp_help system stored procedure. Otherwise, an end user will be able to find out
the definition of any particular user-defined data type.

The sysusers Table (insecure)

The sysusers system table contains all of the users and roles for a given
database. Once again, the public role has access to this particular table. This
means an end user can find out all of the usernames who have access to a given
database. Needless to say, this is valuable information, as I've already discussed
under sysmembers.

If I lock down sysusers, | can prevent end users and potential attackers from
guerying and finding out the users directly. One other thing I'll have to do is
revoke execute rights on sp_helpuser. The system stored procedure sp_helpuser
can return information on a specific user or it can return information and the
public role has execute rights on it. Once again, if | revoke execute rights on
sp_helpuser, I'll probably need to look at creating a role for db_securityadmin
users who need access to sp_helpuser.

When | start looking at locking down system tables, system stored procedures
follow. The problem that results is fixed database roles like db_securityadmin pay
the price. These roles typically need to have access to the system stored
procedures that are being locked down and this puts the DBA in a tough spot.
Either the DBA locks down everything tight as can be and breaks
db_securityadmin, or else the DBA leaves a door partially open by giving those
personnel who will be db_securityadmin role members access to master with
explicit access to the system stored procedures. Of course, if a particular person
is a db_securityadmin in one database but not another, there’s no way to restrict

43
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

the rights down to the database. The person could execute these system stored
procedures in whatever databases the person has access to, regardless of
database role.

In most of my work environments, roles like db_securityadmin weren’t used at all.
DBAs were considered responsible for security and this ruled out the need for
such “lesser” roles. After all, who needs db_securityadmin when you're walking
around with sysadmin, right? | understand the usefulness of these roles that don’t
have all the rights of db_owner or sysadmin, but I'll be honest in saying that if you
use them, you have to carefully consider what you’re going to lock down. I try not
to use them because | know ultimately if there is a security breach, the DBA is
whose head everyone is going to come looking for. As a result, delegating
security is a dangerous business and typically | recommend that DBAs don't
unless they are sure of the competence and attention to detail of the person they
are giving those rights. After all, if | delegate security (unless I've got that
management-directed order saying you have to and in that case | best keep it in
a very safe place for later use), and the person I've delegated this responsibility
to leaves a back door open someone exploits, | am the one on everyone’s hit list.

MSDB Database “System” Tables

While the guest account is enabled by default in SQL Server, a DBA has the
option of disabling it for msdb. Unlike master or tempdb, where the guest user is
mandatory, msdb can be tightened down in this manner. However, there are
repercussions, as might be expected.

Most of the tables in the msdb database used by the system are considered user
tables based on their classification in sysobjects. For example, the backupfile
table contains information on for each data or log file that has been backed up.
However, if | check the type of this object in sysobjects, | find type equal to “U”
for a user table. As a result, if | want to show the list of permissions for these
tables, I'll have to modify my query | gave for sysprotects to look for a type of “U”
instead of “S” in order to pick up these tables:

SELECT
so.name [Table]
, USER NAME (sp.uid) [User],
CASE action

WHEN 26 THEN REFERENCES'

WHEN 178 THEN CREATE FUNCTION'
WHEN 193 THEN SELECT'

WHEN 195 THEN INSERT'

WHEN 197 THEN UPDATE'
WHEN 198 THEN CREATE TABLE'
WHEN 203 THEN CREATE DATABASE'

\J
!
!
!
WHEN 196 THEN ' DELETE'
!
!
!
WHEN 207 THEN ' CREATE VIEW'

44
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

WHEN 222 THEN
WHEN 224 THEN
WHEN 228 THEN
WHEN 233 THEN
WHEN 235 THEN
WHEN 236 THEN
END [Action]
, [Columns]
FROM sysobjects so
LEFT JOIN sysprotects sp
ON so.id = sp.id
WHERE so.type = 'U'
ORDER BY so.name

CREATE PROCEDURE'
EXECUTE'

BACKUP DATABASE'
CREATE DEFAULT'
BACKUP LOG'
CREATE RULE'

When | run the query, I find it returns over 200 rows but keep in mind I’'m not
returning individual tables, but permissions on those tables. Since DBA-created
objects are rare in msdb, these are permissions on tables that ship with SQL
Server. Though this query can return more than one row per table, there are still
a large number of tables. Instead of going through the tables one-by-one, I'm
going to look at them in groups. Related tables all share a common prefix, so
figuring out the groups is easy. All the tables storing backup information begin
with backup. All the tables dealing with log shipping begin with log_shipping.

If you run the query above, one of the first things you will likely notice is the
public role doesn’t have any rights on most of the tables. Unfortunately, some of
the tables the public role does have access to do hold sensitive data, such as the
backup and the restore tables. All told, there are 50 tables with permissions
assigned to them, 46 of them with public role having access. Of the remaining 4,
the TargetServersRole has rights, but not the public role. The groupings of these
tables are (a * represents multiple tables with the prefix):

backup*
logmarkhistory
mswebtasks
restore*

RTbl*
syscategories
sysdownloadlist
sysjobs
sysjobservers
systargetservers

The last four tables are the ones where the TargetServerRole has rights. The
reason the TargetServerRole has such permissions is for use with Multi-Server
Administration. Since these four tables aren’t accessible by public | won’t discuss
them further. Multi-Server Administration requires special configuration by the
DBAs and thus the permissions and operations performed use privileged roles
and users only. Another reason | won't cover these tables any further is because

45
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

in the OpenHack 4 configuration, Microsoft left these 4 tables as they were: with

the TargetServerRole having access. As long as you don’t explicitly grant a user

access to msdb and place said user in the TargetServerRole, only sysadmins will
have access to the tables.

Multi-Server Administration is a feature in SQL Server 7.0 and 2000 that allows a
DBA to administer SQL Server Agent jobs across a farm of SQL Server
installations all on just one or more SQL Servers. The SQL Servers that control
jobs on “downstream” SQL Servers are known as master servers. The
downstream servers are known as target servers. Jobs are created and
managed on master servers and they then replicate the job information to the
appropriate target servers. The target servers return events to the master server.
All'in all this seems like a good idea, however, in order to use Multi-Server
Administration, prior to SP3 all servers must be in mixed mode because Multi-
Server Administration uses SQL Server logins. With SP3 you can switch multi-
server administration to use the Windows login the SQL Server Agent runs
under, but the catch is that all SQL Servers have to be at least SQL Server 2000
SP 3. There’s no mix and match allowed.

It's now time | delve into the 46 remaining tables existing in the msdb database.
The first set of tables on the list is the backup tables.

The Backup Tables (insecure)

The four backup tables are all accessible by the public role. The backupfile table
holds entries for each data and log file that has been backed up. The
backupmediafamily table contains information of each of the media families on
the server. A backup media family can consist of only one member and unless
you're striping tapes or files for backups, and so if there is one row per family,
that’s not all that unusual. The backupmediaset table stores the media sets for
the server. Media sets are made up of one or more media families. The
backupset table has a row for each actual backup operation performed. There
could be multiple backup sets on a particular backup media (such as 7 days of
full backups on a single backup device).

I've talked a lot about physical file paths and both the backupfile and
backupmediafamily tables contain file paths. An attacker could query these
tables and learn the location of the backup files. Then, if the attacker can
manage to break the security and retrieve the files, he or she may be able to
restore the databases intact. There are additional methods to protect backup files
including a new feature in SQL Server 2000 of password protecting backups.
These additional measures make it that much harder for an attacker to
successfully retrieve information from the backups | take to ensure my systems
can be recovered. However, the password merely stops an attacker from
restoring the data. There is no encryption in the process, meaning text strings

46
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

and the like are clearly visible. Therefore, | don’t want regular users knowing
where my backups are stored, much less having them access them.

Of the remaining two tables, the backupmediaset doesn’t contain much usable
information for an attacker. The backupset table, however, stores quite a bit of
useful information. An attacker could retrieve when a database was backed up
and who did it. This second piece of information, a user account, can be
extremely valuable. After all, if | get a legitimate Windows login, | can then try
standard password hacking techniques to try and get access to a system. The
reason knowing a username is valuable is because if | attempt to login to
Windows and | don’t do so successfully, the error message | receive back tells
me either the username or the password is invalid. In other words, unless | have
a known good username, there’s no guarantee the username I'm attempting to
use is even valid. As a result, it wouldn’t matter if | had all the computing power in
the world trying to guess the password. If the user account doesn’t exist, there’s
no access.

A good question here is “Why Microsoft chose to leave the backup tables open to
everyone. It's a solution to the same problem we’ve seen before. Since
db_owner and db_backupoperator roles need access to these tables in order to
perform their backup duties, the only way to ensure a user has access to these
tables is to grant rights to the public role. Otherwise, users would have to be
explicitly added to the msdb database, a role would have to be created, and the
role would have to be given access. This is the workaround I've discussed
previously.

If I want to lock down this table, | must revoke SELECT rights from public against
the four backup tables. There aren’t any sp_help type stored procedures that
reveal the same information contained in these four tables. So all permissions
changes should be just on these four tables. Buf if | need to the db_owner or
db_backupoperator backing up databases, I'll need to implement a workaround
to the users who will be carrying out such activity. This means granting such
users access to msdb and creating a role with rights to these tables. Then add
those users to the role.

The LogMarkHistory Table (insecure)

The logmarkhistory table only comes into play if applications are using marked
transactions. Otherwise this table stays blank. When a marked transaction is
committed, the information about that marking is stored in this table and written
to the transaction log. If need be, the transaction log can then be restored to the
point of the mark. Do note, a marked transaction is different from a named
transaction. The following is a named transaction:

BEGIN TRANSACTION MyTransaction

47
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

A marked transaction uses the WITH MARK option:

BEGIN TRANSACTION AmarkedTransaction WITH MARK ‘MyMark’

If I'm not using marked transactions, the LogMarkHistory table will remain empty
and therefore secure. The public role only has SELECT permissions against this
table. The user doesn’t place data into the LogMarkHistory table. Instead this
information is inserted automatically when the user commits a transaction using
the WITH MARK option.

Looking back at the backup tables and forward to the restore tables, all the tables
concerned with recovery of a database default to the public having permissions.
After all, if a user has to restore a database to a marked point, it makes sense
that the user might need to SELECT against the LogMarkHistory table. I'd be
very cautious about applying any permissions changes to this table. Since
restores tend to be rare and marked restores even rarer, | don’'t have a good
recommendation on this particular table. However, if you aren’t using marked
transactions, there’s no reason to secure the table.

The MSWebTasks Table (insecure)

The MSWebTasks table supports SQL Server’s web tasks. A DBA can build web
tasks by using the Web Publishing Wizard. Web tasks generate standard HTML
web files from SQL Server data. If | want to produce static web pages (thus
saving a trip back to the database server) when data changes, | can do so.

By default, the public role has SELECT, INSERT, UDPATE, and DELETE rights
against this system table. I'm not very keen on allowing people to see the web
tasks | might have created. Likewise, | usually do not want that occurrence
between two different users, each seeing the others web tasks. With the current
model, all users can see all web tasks for a given system. | don’t actively use
web tasks so this table remains empty in my database installations. As a result, |
am undecided on how best to secure this table.

The Restore Tables (insecure)

Like the backup tables, the restore tables are available to the public. The
restorefile contains file path information indicating the exact location of the
database files. An attacker could use this information to then target the actual
files themselves, as I've discussed earlier. The restorefilegroup references the
restorehistory table and lists the filegroups that have been restored. If | am only
using the PRIMARY filegroup (in a high-performance system | might have
multiple file groups), an attacker isn’t going to get much information. The
restorehistory table, like the backupset table, contains the Domain and User
Acount for the user who performed the restore. Once again, this gives an

48
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

attacker known good usernames with which to use when trying to crack the
password.

The reason the public role would need access to these tables is the check the
restore history of a particular database. Unless a workaround is implemented, a
given user, regardless of rights in another database, can't retrieve information
from these tables. Those users who are db_owners trying to restore their
database or checking to see if a DBA did so would need to go against this table.

The RTbl Tables (not sensitive)

The RTbl tables, as they are called in Books Online, are the tables that support
Microsoft Repository within SQL Server. Their use and structure is completely
dependent upon the users who have access to the SQL Server. The repository
tables are not required for the operation of SQL Server. | don’t know many who
are actively using this feature of SQL Server because Microsoft Repository can
be a difficult animal. However, since the repository tables aren’'t necessary for
SQL Server, | don’t consider them sensitive.

They can be sensitive depending on what information is stored in them. Service
Pack 3 disables the ability to save DTS packages to Meta Data Services (the
Repository). One of the reasons for this is that when a DBA saves a DTS
package to Meta Data Services, the package cannot use password protection to
encrypt and secure the contents. As a result, the DTS package can be opened
up by anyone who can get to it using the Repository. If | choose to save a
package to SQL Server or to a Structured Storage File (not a Visual Basic file,
which also cannot have a password set), | have the option to specify a password.
This is considered a best practice. If | do decide to save mission critical DTS
packages into the repository, then | have placed something of value to an
attacker in the repository. This isn’'t a good idea, especially considering the lack
of a password. Also, packages saved to the repository appear to have a slightly
higher corruption rate.??

Another point I'll make about Meta Data Services/Microsoft Repository is when
Microsoft received the C2 Security Certification for SQL Server 2000, Meta Data
Services was not part of the mix. All the objects that made up Meta Data
Services were dropped for the C2 approved configuration.

The syscategories table (not sensitive)

The syscategories table contains the categories for grouping jobs, alerts, and
operators. Since these categories are arbitrary and since they are used for the
convenience of those that maintain a particular SQL server, their storage in the
syscategories table in and of itself is not a security risk. After all, I've seen

2 K night, Where should | save my DTS packages?

49
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

numerous servers where no categories have been added or removed. The
syscategories tables were populated with the same default values such as
“Database Maintenance.”

The syscategories table doesn’t contain anything about file paths, users, internal
structure, or anything else sensitive unless we create categories that reveal such
information. As a result, the syscategories table isn’t inherently sensitive unless
we make it so.

The sp_help* System Sored Procedures

There are many, many system stored procedures. Some I've already discussed
as | talked about locking down system tables. My goal in this section is to discuss
some of the sp_help family of stored procedures. All told there are some 400
stored procedures in master alone that reference system tables which public has
access to. Many are internal stored procedures built for Enterprise Manager and
the other SQL Server client tools.

Determining What Stored Procedures Are Tied to System Tables

Most of the stored procedures I've talked about in the section on system tables
revealed too much information to the end user. In order to identify what stored
procedures access a particular system table, I've wrote a simple script to retrieve
the information for me. However, since I'm doing a like comparison (remember,
I've already indicated that sysdepends isn’'t always dependable), there may be
some false positives. The script doesn’t distinguish between the use of a system
table name in a query or a comment. It just looks for a “hit” in the text.

As far as database system tables like sysobjects are concerned, | can’t run in the
database in question and get the system stored procedures because the query
only looks at the syscomments table in the current database (meaning if I'min
Pubs, | won’t query against syscomments in master and thus won'’t get the
system stored procedures located there).

However, since master is a database with the same tables such as sysobjects, |
can run the query in master to determine what system stored procedures access
a particular system table. It can be startling how many stored procedures public

has access to that access the system tables.

-—- Change @TableName to the table you want to return the list of
-- stored procedures on. This also will work for user tables and
-- stored procedures.

DECLARE (@TableName sysname

SET @TableName = 'sysobjects'

SELECT DISTINCT USER_NAME(so.uid) [Owner],
so.name [Stored Procedure]

50
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

FROM sysobjects so
JOIN syscomments sc
ON so.id = sc.id
JOIN syspermissions sp
ON so.id = sp.id
WHERE so.xtype = 'P' AND
sc.text LIKE '$' + @TableName + '$%' AND
sp.grantee = USER ID('public')
ORDER BY Owner, [Stored Procedure]

If I want to go ahead and figure out every stored procedure accessing system

tables, | can wrap this query into a larger one. However, since the larger query
involves the use of a cursor (and it has to cycle through each system table), it

can take a bit of time to run. Here is that larger query:

-— The variable where the system table name will be stored
DECLARE (@TableName sysname

-- Declare a cursor to cycle through all system tables
DECLARE cursSystemTables CURSOR FAST FORWARD

FOR

SELECT DISTINCT name

FROM sysobjects

WHERE xtype = 'S'

-—- Open the cursor
OPEN cursSystemTables

-- "Prime the pump"
FETCH NEXT FROM cursSystemTables INTO @TableName

-—- Create a temporary table to hold our results
CREATE TABLE #SProcs (

Owner sysname,

SProc sysname

)

-- Cycle through the cursor
WHILE (@@FETCH_STATUS = 0)
BEGIN
-- Insert results into temp table
INSERT INTO #SProcs
(Owner, SProc)
SELECT DISTINCT USER NAME (so.uid), so.name
FROM sysobjects so
JOIN syscomments sc
ON so.id = sc.id
JOIN syspermissions sp
ON so.id = sp.id
WHERE so.xtype = 'P' AND
sc.text LIKE '$' + @TableName + '$' AND
sp.grantee = USER ID('public')

-— Fetch next system table in the cursor
FETCH NEXT FROM cursSystemTables INTO @TableName

o1
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

END

-- Clean up on cursor
CLOSE cursSystemTables
DEALLOCATE cursSystemTables

-- Retrieve stored procedures from temp table
SELECT DISTINCT Owner, Sproc

FROM #SProcs

ORDER BY Owner, SProc

-—- Clean up on temp table
DROP TABLE #SProcs

The Purpose of the sp_help* Stored Procedures

The sp_help set of stored procedures was built to provide help on various
aspects of SQL Server, hence the name. For instance, | can use the sp_helpdb
stored procedure to get more information about a particular database.

Some of these stored procedures may not run successfully because of how I've
chosen to lock down the system tables. For instance, when | locked down the
sysfiles table in the Pubs database (the public role did not have permission to
execute SELECT statements against it), sp_helpdb worked, but returned a
SELECT denied error. The reason is that sp_helpdb does have some dynamic
SQL in order to build the query to return information. Specifically, these lines
from sp_helpdb refer to sysfiles.

select @exec stmt = 'update #spdbdesc
set dbsize = (select str (convert (dec(l5),sum(size))* '
+ @low
+ '/ 1048576,10,2)+ N'' MB'' from '
+ quotename (@name, N'[') + N'.dbo.sysfiles)
WHERE current of ms crs cl'

execute (@exec stmt)

As | discussed earlier, dynamic SQL will execute in a separate batch than the
calling batch process. As a result, ownership chains no longer apply and
permissions are re-evaluated. Even though public might have access to sp_help
and sp_help is making the call to sysfiles, because this stored procedure uses
dynamic SQL I'll get an access denied error.

A Partial List

With that said, a partial list of sp_help stored procedures (choices I've made in
configuration such as SQL Server Notification Services, full-text indexing, and
replication may alter the list) that are accessible by the public role are:

52
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

© SANS Institute 2003,

sp_help
sp_help_agent_default
sp_help_agent_parameter
sp_help_agent_profile
sp_help_fulltext_catalogs
sp_help_fulltext_catalogs_cursor
sp_help_fulltext_columns
sp_help_fulltext_columns_cursor
sp_help_fulltext_tables
sp_help_fulltext_tables cursor
sp_help_publication_access
sp_helparticle
sp_helparticlecolumns
sp_helparticledts
sp_helpconstraint

sp_helpdb
sp_helpdbfixedrole
sp_helpdevice
sp_helpdistpublisher
sp_helpdistributiondb
sp_helpdistributor
sp_helpdistributor_properties
sp_helpextendedproc
sp_helpfile

sp_helpfilegroup
sp_helpgroup

sp_helpindex
sp_helplanguage
sp_helplinkedsrvliogin
sp_helplog

sp_helplogins
sp_helpmergealternatepublisher
sp_helpmergearticle
sp_helpmergearticlecolumn
sp_helpmergecleanupwait
sp_helpmergefilter
sp_helpmergepublication
sp_helpmergepullsubscription
sp_helpmergesubscription
sp_helpntgroup
sp_helppublication
sp_helppullsubscription
sp_helpremotelogin
sp_helpreplfailovermode

53

As part of GIAC practical repository.

Author retains full rights.

sp_helpreplicationdb
sp_helpreplicationdboption
sp_helpreplicationoption
sp_helprole
sp_helprolemember
sp_helprotect
sp_helpserver

sp_helpsort

sp_helpsql

sp_helpsrvrole
sp_helpsrvrolemember
sp_helpstats
sp_helpsubscriberinfo
sp_helpsubscription
sp_helpsubscription_properties
sp_helptext

sp_helptrigger
sp_helpuser

All told, there are over 60 sp_help stored procedures accessible by the public
role in the master database. There are additional sp_help stored procedures in
msdb as well.

sp_help_category
sp_help_job
sp_help_jobhistory
sp_help_jobschedule
sp_help_jobschedule
sp_help_jobserver
sp_help_jobstep
sp_help_jobstep
sp_helphistory
sp_helptask

I've already discussed some of them and what they reveal, but what you can lock
down in your environment is going to differ from what | can lock down. In reality,
what can and cannot be locked down may even differ depending on the role the
SQL Server will play. For instance, it may be a good idea to allow developers on
a SQL Server development box access to some of the sp_help stored
procedures that | wouldn’t want a typical user running in production. An sp_help
stored procedure that fits this criteria is sp_helptrigger. Developers working on
building a new application will probably need this stored procedure is they are
building triggers for auditing, additional data validation, etc., but certainly no
regular needs it in production.

o4
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

My advice given the large number of stored procedures is to build a checklist for
each environment. From that checklist, a DBA can develop scripts that carry out
the appropriate REVOKE permission statements to remove the public role’s
access to the particular sp_help stored procedures. If | can successfully revoke
public access to all system stored procedures as Microsoft did for OpenHack 4,
I’'m on my way to a much more secure system. This isn’t usually possible, but it's
the goal to shoot for.

And Then TherewasOpenHack 4

OpenHack is a hacking competition put on by the magazine eWeek. OpenHack
4, also known as OpenHack 2002, was the fourth time such a competition has
been put on by eWeek (as the name would imply). The premise for OpenHack 4
was simple: break into a web application that was hardened to the best of two
vendors’ abilities. Those two vendors were Microsoft and Oracle.

One of the initial problems Microsoft faced in OpenHack 4 was the web
application itself. It was written in Java Server Pages (JSP), a technology that
doesn’t come natively with Microsoft’s Internet Information Server (11S). So
Microsoft rewrote the application in C# and deployed it using ASP.NET and IIS.
Of course, Microsoft chose SQL Server 2000 as its database server. And this is
where our interest as DBAs should perk up.

OpenHack 4 focused on application security because that had been shown to be
a weakness in previous OpenHack competitions. As a result, the basic
application was developed by eWeek, but then Microsoft and Oracle were left to
their own devices to figure out how to harden the application. Microsoft’s
approach to hardening SQL Server was eye-opening.

What Microsoft Did

Microsoft revoked public access on all system tables in the master database. The
same was true of all system stored procedures. Then, the public role was given
access to the table spt_values and the system stored procedure
sp_MShasdbaccess. Other than some of the functions in master that have
permissions that cannot be removed from public, nothing else was spared.

Actually, the script that was used worked on all the databases on the server (with
the exception of Northwind and Pubs, which were dropped). The exception was
the script didn’t touch the TargetServersRole in the msdb database. In
Microsoft’'s documentation from OpenHack 4, they left the TargetServersRole
permissions alone. The only other permissions added were specific to the
application database. There access was restricted to a role called webuser. In

95
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

keeping with best practices, Microsoft only exposed a small set of stored
procedures, no base tables, for access by this role.” %

So the bottom line is that Microsoft revoked all permissions from public and then
added back: spt_values and sp_MShasdbaccess. That's it. At this point let me
point out that both vendors did well, with Oracle suffering a small break and
Microsoft coming through completely unscathed. What does this mean? It means
Microsoft’s approach to lock down its application was 100% successful. Since
OpenHack is just that, open to anyone, that meant Microsoft’'s environment took
on and defeated all comers. From a SQL Server perspective, that's exactly what |
want to hear.

Is It Really That Simple?

In a word: no. Microsoft’'s OpenHack approach worked because they were coding
a .NET application and didn’t use tools like Microsoft Access or things like DSN
connections that our users have to make their lives easier. When | go about
locking tables down like what Microsoft did, functionality from these other pieces
of a typical business environment are likely to have issues.

| also am obliged to point out touching permissions on system tables puts SQL
Server in a non-standard configuration. Therefore, there’s no guarantee that
Microsoft will support the SQL Server should a problem arise if the default
permissions are changed. Of course, this is true of any change that | make to any
system object, but it behooves me to state this as a reminder.

Concluding Thoughts

The public role has permissions far and wide across the master, msdb, and
individual user databases. Most of these permissions represent more rights than
a normal user needs and is a violation of the Principle of Least Privilege. In some
cases the system tables the public role has access to can be tightened down but
there are potential consequences. As is typical, there has to be a compromise
between security and functionality.

I've covered the system tables the public role has access to and explained how,
through the guest user, a normal login has access to system tables in the master
and msdb databases. The guest user can be disabled in msdb, but master
requires guest. Since the guest user is a member of the public role (all users
are), any login has the ability to access the system tables for which the public
role has access.

% Knight, 10 Sepsto Securing Your SQL Server
24 Andrews, SQL Security Checklist

56
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Also, due to cross-database ownership chaining, certain sp_help stored
procedures are available which can provide information contained in these same
system tables. Again, the public role has the ability to execute a significant
number of these, providing additional avenues for reconnaissance.

In both the cases of the system tables and the sp_help stored procedures, the
public role’s permissions can be revoked. Depending on the applications
supported, however, crucial functionality may be lost. In the case of a custom
application written specifically with security in mind, almost all permissions the
public role has can be removed. Microsoft demonstrated this in its own
configuration during the OpenHack 4 competition. In reality, however, most
configurations probably will have a hard time duplicating such a setup. Even if
they do, there is always the proviso that such a setup is not a recognized and
supported configuration by Microsoft.

Whether or not we can revoke the permissions, it is important to understand the
scope of the public role and what it grants a normal user. This scope is very
broad and goes beyond whatever security a DBA may have set up for a specific
application. Hopefully this paper has provided additional information in
understanding the breadth of the public role in Microsoft SQL Server.

S7
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

References

Andrews, Chip. “SQLSecurity Checklist.” 2003. SQLSecurity.com. 14 October
2003. URL:
http://www.sqlsecurity.com/DesktopDefault.aspx?tabindex=3&tabid=4

Chigrik, Alexander. “SQL Server 2000 Undocumented System Tables.” 2003.
MSSQLCity.com. 14 October 2003. URL.:
http://www.mssaqlcity.com/Articles/Undoc/SQL2000UndocTbl.htm

Chigrik, Alexander. “SQL Server 2000 Useful Undocumented Stored
Procedures.” 2003. MSSQLCity.com. 14 October 2003. URL.:
http://www.mssqlcity.com/Articles/Undoc/SQL2000UndocSP.htm

“FIX: Microsoft Search Service May Cause 100 % CPU Usage if
BUILTIN\Administrators Login Is Removed.” 22 May 2003. Microsoft
Knowledge Base. 14 October 2003. URL:
http://support.microsoft.com/default.aspx?scid=kb:;en-us;295034

Kelley, K. Brian. “SQL Server 2000 SP 3: What's New in Security.” 5 Jun 2003.
SQLServerCentral.com. 14 October 2003. URL.:
http://www.sqlservercentral.com/columnists/bkelley/sp3coresecurity.asp

Kelley, K. Brian. “SQL Server Security: Login Weaknesses.” 14 August 2003.
SQLServerCentral.com. 14 October 2003. URL.:
http://www.sqlservercentral.com/columnists/bkelley/salserversecurityloginwea

knesses.asp

Kelley. K. Brian. “SQL Server Security: Why Security Is Important.” 31 July 2003.
SQLServerCentral.com. 13 October 2003. URL.:
http://www.sqalservercentral.com/columnists/bkelley/salserversecuritywhysecu
rityisimportant.asp

Knight, Brian. “10 Steps to Securing Your SQL Server.” 3 April 2003.
SQLServerCentral.com. 14 October 2003. URL.:
http://www.sqlservercentral.com/columnists/bknight/10securingyoursglserver.

asp

Knight, Brian. “Where should | save my DTS packages?” 15 November 2001.
SQLServerCentral.com. 14 October 2003. URL.:
http://www.sqlservercentral.com/columnists/bknight/savingpackages.asp

Kowles, Douglas. “Digispid.B.Worm.” 3 June 2002. Symantec Security Response
Center. 13 Oct 2003. URL:
http://securityresponse.symantec.com/avcenter/venc/data/js.spida.b.html

58

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Knowles, Douglas. “W32.SQLExp.Worm.” 4 February 2003. Symantec Security
Response Center. 13 Oct 2003. URL.:
http://securityresponse.symantec.com/avcenter/venc/data/w32.sglexp.worm.h
tml

Kondreddi, N. Vyas. “Overview of SQL Server Security Model and Security Best
Practices.” 20 May 2003. Vyas Kondreddi’s home page. 13 October 2003.
URL: http://vyaskn.tripod.com/sgl_server_security best practices.htm

Litchfield, David. “Microsoft SQL Server Passwords (Cracking the password
hashes).” 24 June 2002. NGSSoftware. 14 October 2003. URL.:
http://www.nextgenss.com/papers/cracking-sal-passwords.pdf

OpenHack 2002 Downloads. 2 December 2002. eWeek. 14 October 2003. URL.:
http://www.eweek.com/article2/0,4149,743002,00.asp

Moore, David, et. al., “The Spread of the Sapphire/Slammer Worm.” 07 Feb
2003. CAIDA. 15 October 2003. URL:
http://www.caida.org/analysis/security/sapphire/

“Microsoft Security Bulletin (MS00-006).” 31 March 2000. Microsoft TechNet. 14
October 2003. URL: http://www.microsoft.com/technet/security/bulletin/MS00-

006.asp

“Microsoft SQL Server 2000 C2 Evaluation.” 2003. Microsoft TechNet. 14 Oct
2003. URL:
http://www.microsoft.com/technet/security/prodtech/dbsal/sqlc2.asp

“PRB: Removal of Guest Account May Cause Handled Exception Access
Violation in SQL Server.” 22 May 2003. Microsoft Knowledge Base Article
315523. 13 October 2003. URL:
http://support.microsoft.com/default.aspx?scid=kb;en-us;315523

Regan, Keith. “Top Dog Oracle Losing Database Market Share.” 11 March 2003.
E-Commerce Times. 15 October 2003. URL:
http://www.ecommercetimes.com/perl/story/20968.html

shoeboy. “Some analysis of Microsoft SQL Server 2000 stored procedure
encryption.” 17 December 2001. BugTraq Mailing List. 14 October 2003.
URL: http://www.securityfocus.com/archive/1/246134

“SQL Server 2000 Security Model.” 2003. Microsoft TechNet. 14 October 2003.
URL:
http://www.microsoft.com/technet/prodtechnol/sal/maintain/security/sp3sec/S
P3SEC01.ASP

59

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

SQL Server Books Online (Updated for SP3). 17 January 2003. Microsoft. 14
October 2003. URL:
http://www.microsoft.com/sql/techinfo/productdoc/2000/books.asp

Warren, Andy. “Using the Public Role to Maintain Permissions.” 10 May 2001.
SQLServerCentral.com. 13 October 2003. URL.:
http://www.sqlservercentral.com/columnists/awarren/sglpermissionspublicrole

.asp

60
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

