
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

!!
!

!

Finding Evil in the Whitelist

GIAC (GSEC) Gold Certification

Author: Josh Johnson, jcjohnson34@gmail.com

Advisor: Stephen Northcutt

Accepted: March 23, 2015

Abstract

Application whitelisting technologies are extremely effective at reducing the ability

for malicious code to run in an environment. For organizations with limited security
budgets, built-in Windows features, such as AppLocker and Software Restriction
Policies, offer the ability to implement low-cost whitelisting solutions that can
significantly reduce the attack surface on Windows endpoints. While lacking centralized
management and reporting consoles, these tools can be tested and deployed with limited
effort using scripts to collect and analyze logs and Group Policy to manage whitelists.

Even though whitelisting provides greater protection to endpoints, emerging research
is highlighting innovative whitelisting bypass techniques, and attackers are adopting new
styles to evade this type of control. However, through regular log review and anomaly
detection, organizations can detect and respond to these types of sophisticated attacks that
are bypassing application whitelisting utilities. When looking for attacks that are
bypassing AppLocker specifically, organizations can lean heavily on the use of
PowerShell for log collection and automated analysis.

Finding!Evil!in!the!Whitelist! 2
!

Josh!Johnson,!jcjohnson34@gmail.com! ! !

1. Introduction
Traditional security controls, such as antivirus and intrusion detection systems, can be

generally classified as blacklisting technologies. This type of approach to information

security, also known as a negative security model, relies on knowing the threats or

vulnerabilities from which an organization would want to defend (Jönsson & Iveson,

2014). Signature-based blacklisting technologies are valuable when defending against

well-known attack vectors, but they typically provide little value when unknown

malicious code is used in an attack. If an attacker develops custom malware that has not

been previously observed by security vendors, it is unlikely that the file(s) will match a

signature in a blacklisting security product. A positive security model, or whitelist of

what is acceptable, has better potential to defend against unknown, targeted attacks than

relying on signatures or blacklists to mitigate threats.

The Critical Security Controls (CSCs) outline the most effective and necessary steps

an organization must take for proper detection and prevention of cyber-attacks (SANS

Institute). Within the CSCs, five “quick win” sub-controls are identified as having the

greatest preventive effect. The first of these quick wins is application whitelisting (CSC

2-1), which is included under the second Critical Control, “Inventory of Authorized and

Unauthorized Software.” Application whitelisting involves developing an inventory of all

acceptable software that can run on a system. Once the whitelist is developed, any

software not whitelisted will be denied from executing on the system. This technology is

effective at limiting the ability for unknown malware to run on systems, as only approved

software is whitelisted.

Several powerful commercial application whitelisting technologies are available for

organizations to purchase. These solutions generally offer robust methods for building

whitelists that allow for simplicity in the deployment of the technology, and some

solutions include vendor-maintained whitelists to ease the burden on IT teams

responsible for the products’ implementation. While these commercial products are

excellent tools, organizations may also have the option of using AppLocker, a powerful

application whitelisting technology that is built into Windows operating systems.

Finding!Evil!in!the!Whitelist! 3
!

Josh!Johnson,!jcjohnson34@gmail.com! ! !

1.1. Overview of AppLocker
Organizations running Enterprise or Ultimate versions of Windows 7/8 as well as

Windows Server Operating systems are able to implement AppLocker at no additional

licensing costs (Microsoft, 2012). This application whitelisting utility allows

organizations to develop lists of acceptable applications for certain types of software, and

then deny the execution of any software not explicitly whitelisted.

While AppLocker is a “free” tool included with the Windows operating system,

deployment and maintenance can be more time consuming and difficult than other

commercial whitelisting products if the appropriate planning steps are not taken.

AppLocker does not have a central management console, and all configurations must be

done through Group Policy. Furthermore, AppLocker logs events to the local Windows

Event Log on individual endpoints and does not have built-in remote logging capabilities.

Even though these limitations may seem like significant disadvantages when compared to

commercial whitelisting tools, AppLocker can still be deployed with reasonable effort

using a process similar to the Step-By-Step Guide published by Microsoft (2012).

Section 2 of this paper describes the deployment process, and sample PowerShell scripts

are provided as appendices that can be customized to help organizations deploy and

maintain Applocker policies in their environments.

1.2. Importance of Detection Capabilities
AppLocker is a powerful technology that has the capability to prevent the execution

of malware when robust whitelisting policies are in place. However, the technology has

well-known weaknesses, described in more detail in section 3 of this paper, which can

limit its effectiveness in certain situations. Even though AppLocker cannot be the

solution to all security problems, it can be implemented as an effective layer of defense,

augmenting the overall security posture an organization.

While bypassing AppLocker is possible in certain situations, its logging features

combined with its ability to limit the attack surface on endpoints provides for greater

detection capabilities. At the Mandiant-run security conference MIRcon 2014, security

professionals, Aaron Beuhring and Kyle Salous, presented on the effectiveness of

whitelisting and log monitoring in defending against sophisticated attackers. Their

approach involves using application whitelisting to narrow the attack surface on systems,

Finding!Evil!in!the!Whitelist! 4
!

Josh!Johnson,!jcjohnson34@gmail.com! ! !

limiting an attacker’s options. Since whitelisting prevents an attacker from simply

convincing users to run malicious executables, an attacker should be forced to use

exploits to gain access to a system. Other patching and exploit mitigation techniques

should be implemented as preventive controls against these threats, but since application

whitelisting funnels down the available attack techniques, defenders can focus more

effort on detection where successful attacks are viable (Beuhring & Salous, 2014).

Section 4 of this paper describes detection techniques that can be used for identifying

situations in which an AppLocker-protected system has been compromised.

Furthermore, a sample PowerShell script has been provided in Appendix B that attempts

to detect bypass situations and provide additional information to teams responsible for

reviewing AppLocker logs.

2. Deploying AppLocker
AppLocker works by whitelisting and blacklisting executable files on Windows

systems. The specific file types and associated extensions compatible with AppLocker

are listed in Table 1 (Microsoft, 2012).

File Type File Extension

Executable .exe

Windows Installer .msi, .msp

Script .bat, .cmd, .js, .ps1, .vbs

Packaged App .appx

DLL .dll, .ocx

Table 1. AppLocker supported file types

AppLocker permits three types of rules to be created – Publisher, Hash and Path

rules. Publisher rules rely on the digital signature of a file and its associated signing

entity. Hash rules are implemented by calculating the SHA-256 value of a file and then

either permitting or denying the execution of a file based on the hash value. Lastly, path

rules permit or deny files based on local or network location. Administrators may use a

Finding!Evil!in!the!Whitelist! 5
!

Josh!Johnson,!jcjohnson34@gmail.com! ! !

combination of these three types of rules in order to develop a robust application

whitelisting policy.

2.1. Planning for an AppLocker Deployment
The planning phase of an AppLocker rollout can have a significant impact on the

project’s overall success. Specific policy and infrastructure controls that are put in place

by security-conscious organizations can allow for more rapid AppLocker deployments

than environments without these controls. The following planning steps are not

necessarily pre-requisites for a successful deployment, but they can limit the need for

extensive manual policy development and allow for an easier and more robust rollout.

Since AppLocker is built into the Windows OS and managed via Group Policy,

revoking administrator rights from end users has a significant impact on the effectiveness

of this application whitelisting tool. First, user accounts with administrator privileges

have the ability to modify the AppLocker configuration registry keys and disable it

entirely (Microsoft, 2012). As a result, an attacker with an administrator account would

have no trouble bypassing whitelisting controls on an AppLocker-protected computer. It

is also important to consider administrator rights during whitelist rule development as one

of the default AppLocker rules permits administrators to run any application regardless of

the application’s existence in the whitelist. Implications of this rule are discussed in

more detail in section 3.2.1, but if end users are given admin rights, the overall

effectiveness of AppLocker is diminished. Finally, restricting administrative privileges is

considered one of the “first five” quick wins within the Critical Security Controls (SANS

Institute), included as CSC 12-1 under “Controlled Use of Administrative Privileges.” If

using AppLocker specifically, it may be more beneficial for an organization to address

this initiative and remove admin rights where possible before deploying application

whitelisting.

 A Public Key Infrastructure and strict code-signing requirements can also greatly

aid in an AppLocker deployment. Since one of the rule creation options is based on

publisher, organizations can leverage code signing of scripts and executables to easily

whitelist applications. If written internally, developers can sign each version using a

code-signing certificate from an internal Certificate Authority. As long as the CA that

issued the code-signing certificate is trusted by AppLocker-protected computers, the

Finding!Evil!in!the!Whitelist! 6
!

Josh!Johnson,!jcjohnson34@gmail.com! ! !

signing entity can be used in AppLocker rules. If the issuing CA is not trusted by the

endpoint that is attempting to run an executable, the standard AppLocker prevention

message is displayed to the user. This is true even if a rule has been created to permit the

execution of any digitally signed executables. Figure 1 shows an executable signed with

code-signing certificate issued by a malicious CA as well as the resulting AppLocker

message on a system that permits executables signed by any publisher.

Figure 1. Example of AppLocker blocking an executable signed by an untrusted

publisher

Standardized configurations for endpoints can also assist with an AppLocker

deployment. Understanding what software will be installed with a baseline image is a

prime starting point for developing AppLocker policies, especially if deployed systems

do not vary much from the default image. With a baseline image available, several

Windows PowerShell Cmdlets have been published by Microsoft and can be used to

Finding!Evil!in!the!Whitelist! 7
!

Josh!Johnson,!jcjohnson34@gmail.com! ! !

easily identify and whitelist software on a known-clean system. Building and maintaining

secure standard configurations (CSC 3-1) is also considered one of the “first five” quick

wins in the Critical Security Controls (SANS Institute), under the “Secure Configurations

for Hardware and Software on Mobile Devices, Laptops, Workstations, and Servers”

control. If an organization has already developed secure baseline images, whitelisting

with AppLocker is an easier process.

If business units require different application whitelisting policies, a well-designed

Active Directory structure will aid in deployment. AppLocker policies can be linked to

Organizational Units or AD Groups based on business role of employees or computers.

As a result, business roles such as Research and Development can have separate

AppLocker policies from HR or Accounting departments. With these key planning

phases addressed, an AppLocker deployment can occur more easily.

2.1.1. Sample AppLocker Rollout

The AppLocker deployment process generally involves four phases per application

whitelisting policy:

1. Create Baseline Rules
2. Enable AppLocker in Audit Mode
3. Review AppLocker logs and add to whitelist as needed
4. Enable AppLocker in Enforcement Mode

First, an organization must review its environment and determine whether to use the

default AppLocker rules or develop individual rules for each whitelisted application. For

example, the default Executable Rules allow all files located under the Program Files and

Windows directories to run and also include a rule to permit administrators to run any

application (Microsoft). As long as users do not have administrator privileges and file

system permissions are configured to prevent write-access to these directories by

standard user accounts, these default rules can provide significant protection as well as

flexibility. However, if end users have write-permissions on any directories in these

paths, AppLocker’s effectiveness is limited. If this is the case, organizations should

consider manually whitelisting individual applications using hash or publisher rules so

that user-writeable paths are not inherently trusted. The AppLocker PowerShell Cmdlets

Finding!Evil!in!the!Whitelist! 8
!

Josh!Johnson,!jcjohnson34@gmail.com! ! !

made available via Microsoft can make this process significantly easier by analyzing a

known clean system and generating rules based on the systems’ contents.

Once a set of baseline rules has been generated, the policy can be configured in an

audit mode. In this mode, instead of preventing non-whitelisted files from running on

endpoints, AppLocker simply logs a specific event to the local Windows Event log

warning that these files would have been blocked if the policy were in enforcement

mode. Once initially developed, the AppLocker policy and configuration can be

imported into a Group Policy Object (GPO). The GPO can then be linked to a pilot

group to analyze the coverage of the AppLocker policy. In order to ensure a cleaner user

experience, organizations should build their AppLocker policies using audit mode on

production systems to ensure there are no applications that are missed before moving to

an enforcement mode.

One disadvantage of using AppLocker versus a commercial application whitelisting

utility is the ability to review logs in a central location. Instead, logs are located locally

on each machine under Applications and Services Logs-Microsoft-Windows-AppLocker,

with individual Event IDs for audit mode and enforcement mode events. Using a log

forwarding utility or perhaps simply a PowerShell script, relevant AppLocker logs can be

gathered from remote endpoints and reviewed in a single location by an analyst.

Appendix A includes a sample PowerShell script that gathers Audit mode logs from

endpoints for easy review. If an analyst wants more information about an individual file,

he or she may invoke additional PowerShell Cmdlets such as Get-

AppLockerFileInformation to determine how to create an appropriate whitelist rule

(Microsoft).

Once an organization feels comfortable with the results of audit mode logs,

indicating an adequate whitelisting policy, they may transition into an enforcement mode.

At this point, only whitelisted files will be permitted to execute on AppLocker-protected

endpoints. If appropriate effort is not given to the planning, policy development, and

audit log review phases of the project, moving to enforcement mode can be burdensome

on IT teams supporting AppLocker, as business software may not have been included in

the whitelist.

Finding!Evil!in!the!Whitelist! 9
!

Josh!Johnson,!jcjohnson34@gmail.com! ! !

2.1.2. Maintaining AppLocker Policies

Application whitelisting utilities, such as AppLocker, cannot typically be left

unmaintained after deployment since business environments are constantly changing.

Along with new software deployments and changes to existing applications, the whitelist

must evolve at a similar pace with the business. Teams taking on AppLocker deployment

projects should understand these operational and support implications and ensure the

capacity to continuously support AppLocker is available.

 When modifying, removing or adding a new AppLocker rule, the type of rule can

have significant security implications. For example, a path rule can permit whitelisting

multiple files in a single directory quite easily. However, if the directory’s permissions

are not well designed, an attacker or nefarious user could move malicious executables

into the directory for them to be automatically trusted. Hash rules provide a specific and

uneasy to duplicate hash value that a file must match in order to run. While this provides

assurance that an imposter cannot be easily forged, any legitimate updates or

modifications to the whitelisted file will change the hash value and the AppLocker rule

will require updating. Publisher rules allow for an appropriate balance between security

and the ability for maintenance and updates to applications. However, not all

organizations and software vendors digitally sign their applications. For example, even

the most current version of the popular SSH client, Putty, is not digitally signed. As a

result, organizations must whitelist Putty.exe using a hash or path rule instead of a

publisher rule. Because each application is different, organizations must weigh the

maintainability versus protection offered by their AppLocker whitelist when updating and

adding new rules.

3. Understanding Potential Weaknesses in AppLocker
While AppLocker is extremely effective at limiting the attack surface on endpoints,

no single application whitelisting utility can alone be considered a complete defense

against advanced threats. Application whitelisting sets the bar higher than traditional

blacklisting controls, such as antivirus, but those implementing AppLocker should

understand that this tool cannot provide ubiquitous protection against all known attack

vectors. Sophisticated attackers are able to identify and take advantage of inherent as

Finding!Evil!in!the!Whitelist! 10
!

Josh!Johnson,!jcjohnson34@gmail.com! ! !

well as implementation flaws within application whitelisting suites to run and install

malicious software.

3.1. Inherent Weaknesses
Similar to other application whitelisting products, AppLocker has fundamental

weaknesses and coverage gaps that should be fully understood by organizations

deploying this tool. A lack of understanding of these issues can leave a false sense of

confidence regarding the extent of protection being provided by AppLocker. One type of

weakness includes design and implementation flaws with how AppLocker is integrated

into Windows operating systems. Although not a weakness in the software itself, it

should be understood that AppLocker does not cover all possible attack vectors,

including some well-known and common offensive techniques such as exploits and

macro-based malicious code.

3.1.1. Windows Integration Issues

Since AppLocker’s release, security researchers have been discovering

vulnerabilities in its design and integration into the Windows operating system. Some of

these flaws have been corrected through patches and hotfixes while others are accepted as

potential bypass opportunities (Microsoft, 2012). For example, in 2011, researchers

found that running processes could make Windows API calls with special flags that

allowed non-whitelisted executables to run on an AppLocker protected system (Stevens).

This meant that whitelisted applications controlled by an attacker could launch

executables even if they were implicitly denied by the AppLocker policy. A Mount

Knowledge blog post after Didier Stevens’ research was published provided a proof of

concept macro to demonstrate this flaw from within Word and Excel (2011). Since this

flaw’s discovery, Microsoft has issued a hotfix (KB2532455), correcting the issue.

With all software, inherent flaws can lead to significant vulnerabilities. As

AppLocker continues to be more widely deployed in organizations, attackers will likely

increase their research related to AppLocker vulnerabilities in order to develop new

bypass techniques. Organizations should monitor security research around AppLocker as

well as other application whitelisting utilities to understand and react to newly discovered

vulnerabilities.

Finding!Evil!in!the!Whitelist! 11
!

Josh!Johnson,!jcjohnson34@gmail.com! ! !

3.1.2. Scope of Protection

 Aside from development weaknesses, it should be understood that AppLocker is

not meant to mitigate all attacks against Windows systems. First, AppLocker cannot aid

in the detection or prevention of exploits against whitelisted software. Since AppLocker

simply permits applications to run based on the publisher, hash or location of the

executables, it does not have the capability to prevent anomalous behavior including

exploitation within whitelisted applications. As a result, shellcode embedded within a

successful exploit can run without any interrogation by AppLocker. While the code

embedded within an exploit will run successfully, an attacker would need to fully

understand the AppLocker policy in order to download additional malware that would be

permitted to run. For example, if shellcode simply makes Windows API calls to

download and run another executable, the downloaded file would need to satisfy an

AppLocker rule before it would be permitted to run on the system. Because of its ability

to hamper this stage of an attack, AppLocker adds an effective layer of defense against

exploits containing downloader or dropper payloads (Milunski, Dereszowski & Cox,

2012). However, if installing additional malware is not an attacker’s goal, exploits can

still be used to attack legitimate applications and run malicious code on AppLocker-

protected systems.

Another well-known weakness in AppLocker is its inability to prevent macros

within Microsoft Office documents from running. As there may be a legitimate business

need for Office, specific applications such as Word and Excel would be included in the

whitelist. Since AppLocker permits these applications, macros embedded in their

respective documents are inherently trusted by AppLocker. As a result, VBA code in

macros can be used to establish command and control channels and perform other

malicious actions on behalf of an attacker, all running within a whitelisted executable.

Organizations should implement other controls to limit the risk related to the execution of

macros, but it should be understood that AppLocker cannot be used to mitigate this risk

(Microsoft, 2012).

Lastly, similar to its inability to limit exploitation and macros, AppLocker cannot

prevent the abuse of whitelisted executables. If an attacker gains access to a system

running AppLocker, all whitelisted applications are available for use on the compromised

Finding!Evil!in!the!Whitelist! 12
!

Josh!Johnson,!jcjohnson34@gmail.com! ! !

system. If post-exploitation tasks can be accomplished using built-in Windows tools and

other whitelisted applications, an attacker would not need to download any additional

malware in order to achieve his or her goals. Instead, permitted executables would be

used for nefarious purpose, allowing an attacker to take action on objectives while

working within the whitelist.

In 2014, FireEye published research indicating that attackers are increasingly using

built-in Windows management tools like PowerShell and WinRM to traverse a network

rather than installing custom malware (Kazanciyan & Hastings). As a result, forensic

artifacts left behind after an intrusion are changing, forcing incident response teams to

understand how to analyze these types of post-exploitation actions. When looking at this

research from an application whitelisting perspective, it becomes apparent that

organizations should fully understand the impact of whitelisting seemingly innocuous

Windows applications if they can be used for harm by attackers who have already

compromised a system.

3.2. Implementation Flaws
While AppLocker has inherent weaknesses that can be targeted by attackers,

organizations can also significantly limit the effectiveness of an application whitelisting

policy by creating poorly designed rules. With unlimited time and resources, an attacker

could find holes in almost any whitelisting policy. However, a design goal when building

the whitelist should be to make this process difficult and costly for an attacker.

3.2.1. Administrator Privileges

With administrator rights on a system, bypassing AppLocker becomes trivial.

AppLocker relies on the Application Identity service to profile executable files and

compare applications with the rules in the whitelist. An administrator can simply stop

this service and render AppLocker useless. While AppLocker can still provide limited

value if users have administrator privileges, it should be understood that bypass of the

application whitelisting policy will be no trouble for an attacker with these rights.

3.2.2. Path Rule Considerations

Poorly designed path rules can also lead to trivial bypass conditions for attackers.

When creating a rule based on a file’s location, the permissions on the parent directory

Finding!Evil!in!the!Whitelist! 13
!

Josh!Johnson,!jcjohnson34@gmail.com! ! !

should be verified before adding it to the whitelist. If the directory permits write access

for standard users, an attacker using a compromised account could put malware into the

directory and the malicious code would be automatically whitelisted. Path rules should be

carefully planned before they are implemented in an AppLocker policy, as weak path

rules can lead to simple bypass conditions that significantly limit the effectiveness of this

application whitelisting tool.

3.2.3. Script Interpreters

Another serious weakness in AppLocker’s capabilities involves scripting language

interpreters such as Perl and Python. On Windows systems, these interpreters are

installed as a series of executables and libraries. When running a script, they create a

process, interpret and execute the code in the script. In order to integrate AppLocker to

which control which scripts can run, the created process must make calls to AppLocker

prior to running the script. At the time of this writing, only Microsoft’s built-in script

interpreters make these calls and interface with AppLocker while non-Microsoft

interpreters, such as Perl, Python and Ruby, do not. If an organization supports business

applications on one of these non-Microsoft platforms, related executables will need to be

whitelisted for their respective scripts to run properly. This also means that any script

supported by the interpreter will be permitted to run and cannot be controlled by

AppLocker. For example, Python scripts are invoked via Python.exe, so once the

interpreter is whitelisted, any Python script can be run on the system without verification

by AppLocker.

As these scripting languages have extensive power to manipulate the underlying

operating system, blindly whitelisting any script of a given language can have serious

implications. Many offensive tools, such as Metasploit and the Social-Engineer Toolkit,

are written in scripting languages, so these would be automatically whitelisted if their

respective interpreters were permitted by the AppLocker policy. Furthermore, an

attacker with the ability to run an interpreter like Python without restrictions would have

no problem compromising a system, establishing command and control channels,

performing post-exploitation tasks and exfiltrating data using only capabilities within the

whitelisted interpreter.

Finding!Evil!in!the!Whitelist! 14
!

Josh!Johnson,!jcjohnson34@gmail.com! ! !

Since Microsoft has enabled integration with its modern scripting language,

Windows PowerShell, specific scripts written in this language can be controlled with

AppLocker. However, PowerShell offers a command line interface that allows users to

issue individual commands without ever invoking an actual script. As a result, if

PowerShell’s interpreter, powershell.exe, is whitelisted, attackers on the system can

abuse it. Similar to Perl and Python, PowerShell is tightly integrated into the operating

system and has useful built-in functionality to interact with the system as well as domain

services such as Active Directory. With PowerShell available, an attacker has the tools

necessary to accomplish post-exploitation tasks on a system and network. Researchers

are increasingly publishing new attack techniques and toolsets to attack systems using

only PowerShell (Kennedy & Kelley, 2010). Furthermore, incident response research

shows evidence that PowerShell is being used in targeted attacks against organizations.

As a result, even if specific PowerShell scripts have been whitelisted, organizations

should understand the risk of whitelisting powershell.exe on standard user workstations.

3.2.4. Java

Perhaps the most significant implementation weakness in an AppLocker deployment

is the whitelisting of Java. Similar to many script interpreters, Java has significant access

to the underlying operating system but does not integrate with AppLocker to support

whitelisting of individual Java-based applications. As a result, AppLocker cannot

whitelist specific JAR files or applets; instead, Java executables must be explicitly trusted

or blacklisted as part of the application whitelisting policy. Java is common in business

applications for several reasons including its ability to run the same code across different

operating systems and portability and its ease of development. Because Java is so

common, excluding it entirely from a whitelist could prevent the execution of business

applications. This inability to limit exactly which Java applications are permitted can

undermine an application whitelisting effort if Java-based attacks are utilized.

For the same reasons that Java is popular among business application developers, it

is also a commonly used platform among attackers who write malicious software. Java

provides the ability for an attacker to create weaponized code that is operating system

agnostic and does not need to be as customized for a specific target as native applications.

Finding!Evil!in!the!Whitelist! 15
!

Josh!Johnson,!jcjohnson34@gmail.com! ! !

As a result, the exact same Java-based malware could potentially be used against a large

number of targeted systems, even if their configurations vary significantly.

To further complicate matters, Java has been riddled with vulnerabilities throughout

its history. Specific version dependencies for legacy business applications can increase

the difficulty for organizations to maintain current versions of Java, leaving it open to

exploitation. Traditional blacklisting technologies, like antivirus, are capable of

identifying known exploits and previously identified Java-based malware. However,

signature-based security solutions are typically not adequate for detecting or preventing

unknown malicious code. Coupling this idea with the fact that AppLocker cannot control

Java-based applications, organizations deploying AppLocker must be fully aware of this

significant weakness and implement compensating controls if Java must be whitelisted.

4. Increasing Detection Capabilities
While AppLocker certainly has weaknesses that can leave application whitelisting

bypass opportunities available to attackers, its benefits include the ability to greatly

reduce the attack surface on systems. Through learning how systems operate under

normal conditions, organizations can focus their attention on what is actually running on

AppLocker protected systems and look for deviations from what is normal rather than

relying on signature and blacklist-based technologies to adequately identify threats. With

the ability to baseline the execution of applications on a system, organizations can

monitor and alert on anomalous activity including identifying the execution of potentially

dangerous but whitelisted executables. Furthermore, organizations can use built-in

logging capabilities of applications, like Java, to further understand what non-native code

was run on a system.

4.1. Monitoring the execution of applications
Understanding what files are blocked as well as permitted by AppLocker can provide

actionable data for security teams to respond to threats. Each type of AppLocker event

has a unique Event ID within the Windows event logs, and desired events can be

aggregated to a central location for review. If an unknown executable is observed being

blocked across multiple systems, it may be worth investigating to identify the source and

Finding!Evil!in!the!Whitelist! 16
!

Josh!Johnson,!jcjohnson34@gmail.com! ! !

nature of the file. Additionally, when malicious executables are identified in AppLocker

logs, security teams may trace the file to its originating location identifying which

controls were bypassed for the file to be placed on the system and nearly executed. With

this data, existing network and host-based controls can be better tuned or additional

controls may be implemented.

The PowerShell script in Appendix A can easily be modified to collect events in

which AppLocker is blocking the execution of files. In the configuration section at the

beginning of the script, simply set the “$AuditMode” variable to “$false”, and the script

will collect files that have been blocked by AppLocker. Regularly reviewing these logs

can reveal the value provided by AppLocker as well as possible situations in which

business interruption is occurring due to misconfigured AppLocker policies.

4.1.1. Using PowerShell to Monitor Whitelisted Files

While AppLocker cannot stop all attacks and may be bypassed, its logs can also be

monitored to help detect intrusions in which application whitelisting controls are

subverted. Just as AppLocker logs individual events when it blocks applications, it also

logs an event every time an application is permitted to run. These events can also be

aggregated to a central location and reviewed to detect anomalies or other possibly

malicious patterns. Appendix B includes a PowerShell script,

AppLocker_Log_Analysis.ps1, which collects permitted events from the AppLocker logs

of remote systems and analyzes these logs to identify potential threats that are permitted

by the whitelist. This proof of concept script attempts to perform the following high-

level actions on AppLocker-protected systems:

1. Collects AppLocker logs for permitted running of executables

2. Searches the logs for possible signs of attacker activity

3. Aggregates runs of individual executables into a summary format, showing how

many times each executable has been run, the SHA-256 hash of each file, and the

first and last observed run times

4. Monitors paths in cases where organizations must create dangerous AppLocker

Path Rules, alerting if files in the paths change or new files are added

Finding!Evil!in!the!Whitelist! 17
!

Josh!Johnson,!jcjohnson34@gmail.com! ! !

5. Searches logs for signs of Java execution and attempts to correlate the AppLocker

events with Java Usage Tracker logs to show which Java files were run

The AppLocker_Log_Analysis.ps1 script requires PowerShell 4.0, and its options and

examples can be shown by running the following commands at a PowerShell prompt:

>Get-Help AppLocker_Log_Analysis.ps1

>Get-Help AppLocker_Log_Analysis.ps1 -examples

These commands show how to run the script and enable the individual modules or

full functionality based on the needs of the user. If no arguments are provided, the script

will simply collect the AppLocker logs for permitted execution from all PCs defined in

the configuration section of the script. This is accomplished by running the Get-

WinEvent Cmdlet using the appropriate AppLocker Event IDs and subsequently storing

the results in CSV files for review. Collection of events from multiple systems has been

optimized using a function called Get-AsyncEvent, written by Jason Walker in 2013.

This function uses runspaces and multiple threads to query several systems at the same

time.

Additionally, the script will parse the results and look for evidence of powerful

executables that standard users may not need to run. These are files such as cmd.exe and

reg.exe, which are used often by IT users, but may not be normally run on standard user

systems. If these files are found in the AppLocker logs, this could indicate an attacker

using native tools within the operating system instead of downloading and running

malware on the system. Additionally, this could indicate an attacker who has

compromised credentials and has accessed a system using a legitimate account rather

than using exploits or malware. The list of executables used in the search has been

sourced from a 2014 blog post by Patrick Olsen on sysforensics.org; the URL for the post

can be found in the references section of this paper. If any of these executables are found

in the AppLocker logs, the script will write them to the PowerShell command line

console as well as aggregate these events into a file called AppLocker_Alerts.csv.

If the -getstats switch is used, the script will parse the gathered logs and calculate

statistics for each file that has been run. These statistics include the number of times the

Finding!Evil!in!the!Whitelist! 18
!

Josh!Johnson,!jcjohnson34@gmail.com! ! !

file was executed, its SHA-256 hash value and the first/last run times observed in the

logs. If users’ actions on a particular systems are very consistent, this view of the data

could potentially reveal outliers if an attacker gains access and breaks the pattern of

consistency. Figure 2 shows the results of the -getstats switch opened in Microsoft

Excel.

Figure 2. Results of -getstats switch, opened in Microsoft Excel

When the -checkpaths switch is provided, the script will parse the directories defined

in the configuration section of the script. It will then inventory the files in each directory,

calculating the SHA-256 hash value of each file and logging the results to a file called

AppLocker_Monitored_Paths.csv. On subsequent runs of the script, alerts will be

generated if any files within the path change or if any new files are added to the

monitored directories. This can be helpful if business requirements result in AppLocker

path rules for executables in directories that may have weak write-access permissions

such as file shares. In such cases, this script could be run regularly to ensure these paths

are not modified. Optionally, the –nologs switch can be provided to skip the log

collection from endpoints and only check paths. Figure 3 shows an example

AppLocker_Monitored_Paths.csv file opened in Microsoft Excel.

Figure 3. Results of -checkpaths switch, opened in Microsoft Excel

Finding!Evil!in!the!Whitelist! 19
!

Josh!Johnson,!jcjohnson34@gmail.com! ! !

If any files change or a new file is added, users running the script will see output in

the Windows PowerShell console similar to what is shown in figure 4.

!

Figure 4. Results of -checkpaths switch when a new/modified file is discovered

4.2. Monitoring Java
If Java.exe is whitelisted for business applications, AppLocker cannot provide

significant protection against Java-based threats. As a detective control, organizations

can review AppLocker logs where Java is invoked to determine what Java executable

code was run. The Java Runtime Environment provides a useful feature called Java

Usage Tracker that can aid in this effort. When enabled, this feature logs the name and

location of the executable as well as the arguments and other details surrounding its

execution each time Java is invoked. When correlating AppLocker logs with Java Usage

Tracker logs, it is possible to identify more details around what Java was doing each time

it was run.

Java Usage Tracker can be enabled by creating a file called usagetracker.properties

in <JRE Installation directory>/lib/management/ (e.g. C:\Program Files

(x86)\jre7\lib\management\usagetracker.properties) containing the following line:

com.oracle.usagetracker.logToFile = ${user.home}/.java_usagetracker

Finding!Evil!in!the!Whitelist! 20
!

Josh!Johnson,!jcjohnson34@gmail.com! ! !

Once this file is created, the JRE will log all execution to the initiating user’s home

directory in a file called .java_usagetracker. These logs can be correlated with

AppLocker permitted execution logs to provide a clearer picture of what executables

were run on a system when Java is involved.

The script in Appendix B, when invoked with the -checkjava switch, will attempt to

automatically correlate AppLocker logs with Java Usage Tracker logs. Results of the

script will be written to a file called AppLocker_Java_Logs.csv, containing the location

of the file run as well as well as the arguments provided on startup. In the event of Java-

based malware in the form of a JAR file in a user’s AppData directory, this script would

provide a security team with the location of the malicious file for further analysis.

4.3. Example Use Case
This section outlines a scenario in which a Java-based attack can be detected through

the monitoring and correlation of AppLocker and Java Usage Tracker logs. In this

example, the victim, 10.10.10.4, was running a Windows 7 Enterprise system with the

default AppLocker rules configured in Enforcement mode. The attacker, 10.10.10.11,

was using the Java_Signed_Applet Metasploit module in order to gain access to the

victim’s system. This Metasploit module creates a malicious signed Java applet and

requires social engineering for a victim to visit the web page hosting the applet. If the

user permits the applet to run, the attacker’s payload is invoked.

In this example, the attacker chose to use a Java-based exploit as well as a Java-based

payload providing a Metasploit Meterpreter shell. Since the exploit invoked the

whitelisted “JP2Launcher.exe” Java executable, and since the payload ran via the

whitelisted “Java.exe” file, AppLocker does not have the capability to prevent this attack.

However, detecting this type of attack could be accomplished easily through reviewing

logs, especially if the attacker uses native Windows tools to accomplish post-exploitation

goals.

When the victim visits the attacker’s malicious web page hosting a self-signed Java

applet, modern versions of Java prompt the user with a security warning. However,

assuming the user will not always show proper security awareness, this warning may be

ignored and the malicious applet will be run. As a result, once the prompt is accepted,

the attacker’s Meterpreter session is established as shown in figure 5.

Finding!Evil!in!the!Whitelist! 21
!

Josh!Johnson,!jcjohnson34@gmail.com! ! !

Figure 5. Successful attack yields a Meterpreter session for attacker

At this point, the payload was running and Java.exe has been logged by AppLocker.

Even though the payload is a Java-based Meterpreter session, other post-exploitation

actions can still be observed in the AppLocker logs as well. For example, if the attacker

runs the Meterpreter “shell” command, cmd.exe executes and is reflected in the

AppLocker logs. From a Windows shell, subsequent commands are also logged by

AppLocker. In the case of this attack, the attacker confirmed network connectivity by

pinging the system he controls as shown in figure 6.

Figure 6. Attacker executing “shell” and “ping” commands on compromised system

Shown in figure 7, the attacker discovered a sensitive file called passwords.txt. Once

the attacker found this file, it was transferred to the attacker-owned system using the

built-in Windows FTP client. Figure 8 shows the attacker creating and running an FTP

script that is able to exfiltrate the ‘passwords.txt’ file.

Finding!Evil!in!the!Whitelist! 22
!

Josh!Johnson,!jcjohnson34@gmail.com! ! !

Figure 7. Attacker discovers “passwords.txt” file

Figure 8. Attacker constructs FTP script and executes it to steal passwords.txt

AppLocker has not prevented any of the actions at this point since whitelisted, built-

in Windows tools have been used by the attacker. However, logs have been created that

can help defenders identify and respond to this issue. If the

AppLocker_Log_Analysis.ps1 script is used with the -checkjava switch, it becomes

apparent that this machine may have been compromised. The console output of the script

is shown in Figure 9. Immediately, an analyst running the script should become aware

that cmd.exe, ping.exe and ftp.exe were run on the compromised system. As long as

Finding!Evil!in!the!Whitelist! 23
!

Josh!Johnson,!jcjohnson34@gmail.com! ! !

these are not normally run on the users’ system, this should be a strong indicator that

further analysis is required.

Figure 9. Results of -checkjava switch showing alerts for potentially dangerous files

Once the AppLocker_Java_logs.csv file is opened and examined, additional

indicators will be uncovered. If Java-based business applications have been inventoried,

reviewing these logs against the known applications should show anomalous Java usage.

Figure 10 shows the .csv file opened in Excel.

Finding!Evil!in!the!Whitelist! 24
!

Josh!Johnson,!jcjohnson34@gmail.com! ! !

Figure 10. Results of -checkjava switch, opened in Microsoft Excel

In the CSV file, the logged JavaApp field actually includes the URL from which the

malicious applet originated. If this URL is not recognized, it may be worth investigating

to see if it is legitimately used for business purposes or if this is a malicious site. This

could also be helpful if web server is still serving the file and the incident response team

needs a copy of the “SiteLoader.jar” file for analysis. Furthermore, the randomly named

“.payload” files and their location within the user’s AppData directory could be another

indicator that an attack has occurred against this system. With all of this data, an incident

response team should be able to isolate the infected PC even though AppLocker does not

have the capability to prevent this type of intrusion.

Future enhancements to the AppLocker_Log_Analysis.ps1 script could include the

capability to automatically retrieve files of interest based on the Java Usage Tracker logs.

Other script interpreters like Perl or Python may have or develop functionality similar to

Java’s Usage Tracker; if this becomes available, these logs could also be integrated with

AppLocker logs to provide a clearer picture of the code executing on a PC. However, if

non-Microsoft script interpreters must be whitelisted, it may be worthwhile to implement

additional compensating controls such as virtualizing the systems that run these

applications and consistently reverting to a known clean state. If non-Microsoft script

interpreters can be excluded from the whitelist, this script can be a useful detective

control that takes advantage of AppLocker’s powerful logging capabilities to detect

threats that have bypassed AppLocker.

5. Conclusion
AppLocker provides significant protection against malware on Windows systems.

An effective AppLocker implementation has the ability to limit the execution of

executables, certain types of scripts, installers and libraries to a list of known and

approved files. While not as flexible as some commercial whitelisting products,

AppLocker does provide options to create rules based on file location, hash value or

publisher. These three options are accommodating to most types of Windows software

and can, if created properly, provide significant assurance that only whitelisted files may

Finding!Evil!in!the!Whitelist! 25
!

Josh!Johnson,!jcjohnson34@gmail.com! ! !

run on the system. A design goal when developing application whitelisting policies

should be to force attackers to use exploits instead of allowing for users to fall victim to

social engineering and run potentially malicious executables.

Although AppLocker has the ability to greatly reduce an attacker’s options for

gaining access to a system, it is not a foolproof technology. Attackers who use exploits

to gain access to an AppLocker-protected system have full use of any whitelisted

applications, and sophisticated attackers can accomplish a great deal of post-exploitation

work using only tools native to the Windows operating system. Furthermore, inherent

weaknesses such as the inability to prevent macros within Office documents leave

distinct opportunities for attackers to run malicious code against systems running

AppLocker. Implementation weaknesses like whitelisting script interpreters that are not

compatible with AppLocker can be significant, self-inflicted holes in an otherwise robust

whitelisting policy. Lastly, since so many business applications run on Java, whitelisting

the Java Runtime Environment opens additional attack vectors and demands

compensating controls to protect systems running AppLocker.

Organizations should regularly review AppLocker policies, looking for potentially

weak rules and testing the protection on production systems. With an understanding of

what holes may exist in an AppLocker policy, additional preventive and detective

controls may be implemented. The regular review of AppLocker logs can be an effective

detective control, showing which files have been blocked and possibly more importantly,

which files have been permitted to run. Since attackers do not necessarily need anything

other than a set of credentials and built-in Windows tools to traverse an internal network,

AppLocker logs should be reviewed for signs of this activity. Additionally, if a weak

rule exist such as whitelisting a path that does not have strict write-access permissions,

additional monitoring should be implemented as a compensating control. AppLocker’s

built-in logging provides the possibility for an effective detective control on top of the

tool’s excellent preventive capabilities.

The sample PowerShell scripts in Appendix A and Appendix B serve as examples of

the powerful detection capabilities that are associated with AppLocker log aggregation

and review. These techniques could be further expanded to better automate the alerting

process and improve the performance of the scripts. Additional statistical analysis could

Finding!Evil!in!the!Whitelist! 26
!

Josh!Johnson,!jcjohnson34@gmail.com! ! !

also be implemented to automatically detect anomalous activity within AppLocker logs

for an individual system or group of systems.

With a proper understanding of AppLocker’s strengths and weaknesses, organizations

can build low-cost, effective application whitelisting policies that provide significant

protection on Windows systems. If additional detective and preventive measures are

taken to cover weaknesses in the AppLocker policies on systems, an attacker’s task of

compromising a system and maintaining persistence becomes significantly more difficult.

As a result, if no budget for commercial options is readily available, AppLocker can still

be implemented with reasonable effort to implement the first of the quick wins in the

Critical Security Controls.

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

Finding!Evil!in!the!Whitelist! 27
!

Josh!Johnson,!jcjohnson34@gmail.com! ! !

References

Beuhring, A., & Salous, K. (2014, January 1). APT Detection with Whitelisting and Log

Monitoring. Retrieved December 2, 2014, from
https://dl.mandiant.com/EE/library/MIRcon2014/MIRcon_2014_IR_Track_APT_Det
ection.pdf

Critical Security Controls for Effective Cyber Defense. (n.d.). Retrieved December 1,
 2014, from https://www.sans.org/critical-security-controls/

Jönsson, P., & Iveson, S. (2014). Security. In F5 Networks Application Delivery
 Fundamentals Study Guide (1st ed., pp. 168-170). Philip Jönsson & Steven Iveson.

Kazanciyan, R., & Hastings, M. (2014, August 7). Investigating PowerShell Attacks.
 Retrieved December 2, 2014, from
 https://www.fireeye.com/content/dam/legacy/resources/pdfs/fireeye-lazanciyan-
 investigating-powershell-attacks.pdf

Kennedy, D., & Kelley, J. (2010, January 1). PowerShell - It's Time to Own. Retrieved
 December 2, 2014, from http://media.blackhat.com/bh-us-
 10/presentations/Kennedy_Kelly/BlackHat-USA-2010-Kennedy-Kelly-PowerShell-
 Its-Time-To-Own-slides

Microsoft. (2012, June 21). AppLocker Settings. Retrieved January 29, 2015, from
 https://technet.microsoft.com/en-us/library/ee844171.aspx

Microsoft. (2012, June 27). AppLocker Step-by-Step Guide. Retrieved December 2,
 2015, from https://technet.microsoft.com/en-us/library/dd723686(v=ws.10).aspx

Microsoft. (2012, October 18). AppLocker Overview. Retrieved December 2, 2014, from
 https://technet.microsoft.com/en-us/library/hh831440.aspx

Microsoft. (2012, October 18). Requirements to Use AppLocker. Retrieved January 29,
 2015, from https://technet.microsoft.com/en-us/library/ee424382(v=ws.10).aspx

Microsoft. (2014, June 5). Plan security settings for VBA macros for Office 2013.
 Retrieved December 2, 2014, from https://technet.microsoft.com/en-
 us/library/ee857085(v=office.15).aspx

Microsoft. (n.d.). AppLocker Cmdlets in Windows PowerShell. Retrieved December 2,
 2014, from https://technet.microsoft.com/en-us/library/ee460962.aspx

Microsoft. (n.d.). Understanding AppLocker Rules. Retrieved December 2, 2014, from
 https://technet.microsoft.com/en-us/library/dd759068.aspx

Microsoft. (n.d.). You can circumvent AppLocker rules by using an Office macro on a

Finding!Evil!in!the!Whitelist! 28
!

Josh!Johnson,!jcjohnson34@gmail.com! ! !

 computer that is running Windows 7 or Windows Server 2008 R2. Retrieved
 December 2, 2014, from http://support.microsoft.com/kb/2532445

Milunski, J., Dereszowski, A., & Cox, R. (2012, January 1). Reverse Engineering
 Malware and Mitigation Techniques. Retrieved December 2, 2014, from
 video.ch9.ms/teched/2012/eu/SIA404.pptx

Mount Knowledge. (2011, January 28). Bypassing Windows AppLocker using VB script
 in Word and Excel. Retrieved December 2, 2014, from
 http://www.mountknowledge.nl/2011/01/28/bypassing-windows-applocker-using-vb-
 script-in-word-and-excel/

Olsen, P. (2014, January 23). Do not fumble the lateral movement. Retrieved December
 2, 2014, from http://sysforensics.org/2014/01/lateral-movement.html

Oracle. (2014, August 1). Java Platform, Standard Edition: Usage Tracker Overview.
 Retrieved December 2, 2014, from http://docs.oracle.com/javacomponents/usage-
 tracker/overview/

Stevens, D. (2011, January 23). Circumventing SRP and AppLocker, By Design.
 Retrieved December 2, 2014, from
 http://blog.didierstevens.com/2011/01/24/circumventing-srp-and-applocker-by-design/

Finding!Evil!in!the!Whitelist! 29
!

Josh!Johnson,!jcjohnson34@gmail.com! ! !

Appendix A - PowerShell Script for Audit Mode Analysis
(AppLocker_Audit_Collection.ps1)

import-module ActiveDirectory
########## Configuration ##########

Change $AuditMode to "$false" if you want to search for Enforcement events
where AppLocker blocked files from running.
Leaving it at $true will search for events in which AppLocker would have
blocked files if it were in enforcement mode.
$AuditMode = $true

Change startDate and endDate to configure the timespan for log collection
$startDate = [datetime]"1/1/2015 8:00:00 AM"
$endDate = Get-Date

Modify $pcList variable to adjust what systems are being queried. The below
line searches for all of the Computer
objects in the "gseclab.com" domain, so this should be modified to search
within your AD structure. It can also be
populated with a comma separated list of PC names instead of searching AD.
$pcList += @((Get-ADComputer -Filter * -SearchBase "DC=gseclab,DC=com" -
Property * | Select-Object Name).name)

###################################
Function Get-AsyncEvent{
#Get-AsyncEvent from Jason Walker at https://gallery.technet.microsoft.com/Get-
AsyncEvent-multi-Get-ed5c68c3
[CmdletBinding()]
 param(

[Parameter(Mandatory=$false,ValueFromPipeline=$true,ValueFromPipelineByProperty
Name=$true,Position=0)]
 [Alias("CN","Computer")]
 [String[]]$ComputerName = $env:COMPUTERNAME,

 [Parameter(Mandatory=$true,Position=1)]
 [HashTable]$FilterHashtable,

 [Parameter(Mandatory=$false)]
 [Int64]$MaxEvents = 25,

 [Parameter(Mandatory=$false)]
 [Int]$ThrottleLimit = 20,

 [Parameter(Mandatory=$false)]
 [System.Management.Automation.PSCredential]
 [System.Management.Automation.Credential()]$Credential =
[System.Management.Automation.PSCredential]::Empty
)

Begin
{
 $Start = Get-Date
 $RunspaceCollection = @()
 $ProgressCounter = 0

 Write-Verbose "Removing ComputerName and ThrottleLimit from
PSBoundParameters because they will be splatted"
 $null = $PSBoundParameters.Remove('ComputerName')
 $null = $PSBoundParameters.Remove('ThrottleLimit')

 If(-not $PSBoundParameters.MaxEvents){
 #Write-Verbose "Maxevents not specified. Adding default value to
PSBoundParameters"
 #$PSBoundParameters.Add('MaxEvents',$MaxEvents)
 }
 $PSBoundParameters.GetEnumerator() | ForEach-Object
{"PSBoundParameters:$($_.Key) = $($_.Value)"} | Write-Verbose

Finding!Evil!in!the!Whitelist! 30
!

Josh!Johnson,!jcjohnson34@gmail.com! ! !

 $RunspacePool =
[RunspaceFactory]::CreateRunspacePool(1,$ThrottleLimit,$host)
 $RunspacePool.Open()
 $Parameters = $PSBoundParameters

 $Scriptblock = {
 Param(
 $Computer,$Parameters
)
 Try{
 Get-WinEvent -ComputerName $Computer @Parameters -ErrorAction Stop
 }
 Catch{
 Write-Warning $_
 }
 }
 }
 Process
{
 Foreach($Computer in $ComputerName)
 {
 #Create a PowerShell object to run and add the command.
 $Powershell =
[PowerShell]::Create().AddScript($ScriptBlock).AddArgument($Computer).AddArgume
nt($Parameters)
 #Specify runspace to use
 $Powershell.RunspacePool = $RunspacePool
 #Create Runspace collection
 [Collections.Arraylist]$RunspaceCollection += New-Object -TypeName
PSObject -Property @{
 Runspace = $PowerShell.BeginInvoke()
 PowerShell = $PowerShell
 Computer = $Computer
 }
 }
 While($RunspaceCollection){
 Foreach($Runspace in $RunspaceCollection.ToArray())
 {
 If($Runspace.Runspace.IsCompleted)
 {
 $ProgressCounter++
 Write-Progress -Activity "Collecting Event Logs" -Status "Last
completed: $($Runspace.Computer)" -PercentComplete
(($ProgressCounter/$ComputerName.Count)*100)
 #Display results
 $Runspace.PowerShell.EndInvoke($Runspace.Runspace)
 $Runspace.PowerShell.Dispose()
 Write-Verbose "Removing $($Runspace.Computer)"
 $RunspaceCollection.Remove($Runspace)
 }
 }
 }
}
End{
 $RunspacePool.Close()
 $TimeSpan = New-TimeSpan -Start $Start -End (Get-Date)
 Write-Verbose "Script elapsed time : $($TimeSpan.Hours) hours
$($TimeSpan.Minutes) minutes and $($TimeSpan.Seconds) seconds"
 }
}

if($AuditMode){
 $exeID = 8003
 $msiID = 8006
}
else{
 $exeID = 8004
 $msiID = 8007

}
$myEXEEvents = @()

Finding!Evil!in!the!Whitelist! 31
!

Josh!Johnson,!jcjohnson34@gmail.com! ! !

$myEXEEvents += Get-AsyncEvent -ComputerName $pcList -FilterHashtable
@{logname="Microsoft-Windows-AppLocker/EXE and DLL"; ID=$exeID;
starttime=$startDate; endtime=$endDate} | select-Object MachineName,
TimeCreated, Message

if($myEXEEvents.count -gt 0){
 $myEXEEvents | export-csv "AppLocker_EXE_Events.csv"
 write-host "EXE events written to AppLocker_EXE_Events.csv`n"
}
else{
 write-host "No EXE Events found.`n"
}

$myMSIEvents = @()
$myMSIEvents += Get-AsyncEvent -ComputerName $pcList -FilterHashtable
@{logname="Microsoft-Windows-AppLocker/MSI and Script"; ID=$msiID;
starttime=$startDate; endtime=$endDate} | select-Object MachineName,
TimeCreated, Message
if($myMSIEvents.count -gt 0){
 $myMSIEvents | export-csv "AppLocker_ScriptInstaller_Events.csv"
 write-host "MSI Events written to AppLocker_ScriptInstaller_Events.csv`n"
}
else{
 Write-Host "No Script/MSI Events found.`n"
}

Finding!Evil!in!the!Whitelist! 32
!

Josh!Johnson,!jcjohnson34@gmail.com! ! !

Appendix B - PowerShell Script to Monitor Whitelisted Files
(AppLocker_Log_Analysis.ps1)

<#

.SYNOPSIS
This script is used to collect AppLocker logs from endpoints, storing them in
local CSV files and alerting on potentially dangerous execution of applications
that could indicate post-exploitation actions. Optionally, additional switches
can be used to perform analysis on the logs.

.DESCRIPTION
Additional switches can be used to perform analysis on the logs.

-nologs Does not collect logs from endpoints. This is only
 useful when -checkpaths is used as well.

-getstats Summarizes the collected AppLocker logs, collecting the
 hash as well as statistical information about each
 executable that was run. NOTE: This can take quite
 some time to run if a large number of machines are
 being analyzed.

-checkpaths Analyzes directories in potentially weak path rules to
 ensure files are not added/modified. A file
 `"AppLocker_Monitored_Paths`"is created that lists
all
 of the files in each path as well as their SHA256
Hash.

-checkjava Correlates AppLocker events where Java.exe is run with
 Java_usagetracker files to provide insight on which
 Java files were run. NOTE: Java Usage Tracker must
 be enabled and logging to users' home directories
for
 this switch to work.

.EXAMPLE
./AppLocker_Log_Analysis.ps1

Retreives logs for the endpoints defined in the "$pcList" variable. Alerts on
any potentially dangerous executables being run on these endpoints. Alerts are
written to AppLocker_Alerts.csv. If there are alerts on a PC where users would
not normally run these executables, consider checking the machine for
additional signs of compromise.

.EXAMPLE
./AppLocker_Log_Analysis.ps1 -nologs -checkpaths

Retreives a list of files in the directories defined in the $pathsToMonitor
variable. Alerts if new files are added to the monitored directories or if
existing files are modified. This option does not pull logs from endpoints.

.EXAMPLE
./AppLocker_Log_Analysis.ps1 -getstats

Retreives logs from the endpoints defined in the "$pcList" variable.
Additionally calculates the SHA-256 hash of each executable, the number of
times each executable was run as well as the first seen and last seen run times
for each executable.

.EXAMPLE
./AppLocker_Log_Analysis.ps1 -checkjava

Retreives logs for the endpoints defined in the "$pcList" variable.
Additionally, if Java.exe is observed in the logs, the script will attempt to
scrape .java_usagetracker files to determine which Java executable was run and
with which arguments. Results are written to AppLocker_Java_Logs.csv.

Finding!Evil!in!the!Whitelist! 33
!

Josh!Johnson,!jcjohnson34@gmail.com! ! !

.LINK
http://www.sans.org/reading-room/

#>
param(
 [switch]$nologs,
 [switch]$getstats,
 [switch]$checkpaths,
 [switch]$checkjava
)

import-module ActiveDirectory
########## Configuration ##########

Change startDate and endDate to configure the timespan for log collection
$startDate = [datetime]"1/1/2015 8:00:00 AM"
$endDate = Get-Date
Modify $pcList variable to adjust what systems are being queried. The below
line searches for all of the Computer
objects in the "gseclab.com" domain, so this should be modified to search
within your AD structure. It can also be
populated with a comma separated list of PC names instead of searching AD.
$pcList += @((Get-ADComputer -Filter * -SearchBase "DC=gseclab,DC=com" -
Property * | Select-Object Name).name)

Modify $pathsToMonitor to indicate the paths which should be inventoried and
then monitored for changes/additions.
This can be a comma separated list of paths or a single directory.
$pathsToMonitor=@("\\dc-01\netlogon")

###################################
Function Get-AsyncEvent{
 #Get-AsyncEvent from Jason Walker at
https://gallery.technet.microsoft.com/Get-AsyncEvent-multi-Get-ed5c68c3
 [CmdletBinding()]

 param(

 [Parameter(Mandatory=$false,ValueFromPipeline=$true,ValueFromPipelineByPr
opertyName=$true,Position=0)]
 [Alias("CN","Computer")]
 [String[]]$ComputerName = $env:COMPUTERNAME,

 [Parameter(Mandatory=$true,Position=1)]
 [HashTable]$FilterHashtable,

 [Parameter(Mandatory=$false)]
 [Int64]$MaxEvents = 25,

 [Parameter(Mandatory=$false)]
 [Int]$ThrottleLimit = 20,

 [Parameter(Mandatory=$false)]
 [System.Management.Automation.PSCredential]
 [System.Management.Automation.Credential()]$Credential =
[System.Management.Automation.PSCredential]::Empty
)

 Begin
 {
 $Start = Get-Date
 $RunspaceCollection = @()
 $ProgressCounter = 0

 Write-Verbose "Removing ComputerName and ThrottleLimit from
PSBoundParameters because they will be splatted"
 $null = $PSBoundParameters.Remove('ComputerName')
 $null = $PSBoundParameters.Remove('ThrottleLimit')

 If(-not $PSBoundParameters.MaxEvents){

Finding!Evil!in!the!Whitelist! 34
!

Josh!Johnson,!jcjohnson34@gmail.com! ! !

 #Write-Verbose "Maxevents not specified. Adding default
value to PSBoundParameters"
 #$PSBoundParameters.Add('MaxEvents',$MaxEvents)
 }

 $PSBoundParameters.GetEnumerator() | ForEach-Object
{"PSBoundParameters:$($_.Key) = $($_.Value)"} | Write-Verbose

 $RunspacePool =
[RunspaceFactory]::CreateRunspacePool(1,$ThrottleLimit,$host)
 $RunspacePool.Open()
 $Parameters = $PSBoundParameters

 $Scriptblock = {
 Param(
 $Computer,$Parameters
)

 Try{
 Get-WinEvent -ComputerName $Computer @Parameters -
ErrorAction Stop
 }
 Catch{
 Write-Warning $_
 }
 }
 }
 Process
 {
 Foreach($Computer in $ComputerName)
 {
 #Create a PowerShell object to run and add the command.
 $Powershell =
[PowerShell]::Create().AddScript($ScriptBlock).AddArgument($Computer).AddArgume
nt($Parameters)
 #Specify runspace to use
 $Powershell.RunspacePool = $RunspacePool
 #Create Runspace collection
 [Collections.Arraylist]$RunspaceCollection += New-Object -
TypeName PSObject -Property @{
 Runspace = $PowerShell.BeginInvoke()
 PowerShell = $PowerShell
 Computer = $Computer
 }
 }

 While($RunspaceCollection){
 Foreach($Runspace in $RunspaceCollection.ToArray())
 {
 If($Runspace.Runspace.IsCompleted)
 {
 $ProgressCounter++
 Write-Progress -Activity "Collecting Event
Logs" -Status "Last completed: $($Runspace.Computer)" -PercentComplete
(($ProgressCounter/$ComputerName.Count)*100)
 #Display results

 $Runspace.PowerShell.EndInvoke($Runspace.Runspace)
 $Runspace.PowerShell.Dispose()
 Write-Verbose "Removing $($Runspace.Computer)"
 $RunspaceCollection.Remove($Runspace)
 }
 }
 }
 }
 End{
 $RunspacePool.Close()
 $TimeSpan = New-TimeSpan -Start $Start -End (Get-Date)
 Write-Verbose "Script elapsed time : $($TimeSpan.Hours) hours
$($TimeSpan.Minutes) minutes and $($TimeSpan.Seconds) seconds"
 }
}

Finding!Evil!in!the!Whitelist! 35
!

Josh!Johnson,!jcjohnson34@gmail.com! ! !

Function checkPaths{
 $filename = "AppLocker_Monitored_Paths.csv"

 $hashArr=@()
 foreach($path in $pathsToMonitor){
 $filesToHash = get-childitem $path -file -force -name
 foreach($file in $filesToHash){
 $filepath = $path + "\" + $file
 $applockerInfo = get-applockerfileinformation -Path
$filepath
 $filehash = $applockerInfo.hash.hashdatastring
 $hashObj = [pscustomobject]@{'Path' = $path; 'File' =
$file; 'Hash' = $filehash; }
 $hashArr += $hashObj
 }
 }
 if(test-path $filename){
 $loadedFiles = import-csv $filename
 $foundNew = 0
 foreach($newHash in $hashArr){
 $newPath = [String]$newHash.path
 $newFile = [String]$newHash.file
 $newHashUnique = [String]$newHash.hash
 $found = 0
 $counter = 0
 foreach($loadedFile in $loadedFiles){
 $loadedPath = [String]$loadedFile.path
 $loadedFile = [String]$loadedFile.file
 $loadedHash = [String]$loadedFiles[$counter].Hash
 $counter++
 if($found -eq 0){
 if(($loadedPath -eq $newPath) -and
($loadedFile -eq $newFile) -and ($loadedHash -eq $newHashUnique)){
 $found = 1
 }
 }
 }
 if($found -eq 0){
 #we didn't find the newhash object
 write-host 'ALERT: Changed or new file:'$newHash.File
"Located in:"$newHash.path
 $foundNew =1
 }
 }
 if($foundNew -eq 1){
 $save = Read-Host 'Do you want to add these changes to the
monitored list? (y/n)'
 if($save -eq 'y'){
 $hashArr |export-csv $filename
 write-host "Wrote changes to "$filename
 }
 }
 else{
 write-host "No new files or changes in monitored paths."
 }
 }
 else{
 write-host "First time monitoring paths. Wrote results to
"$filename
 $hashArr | export-csv $filename
 }
}
Function getLogs{

 $myEXEEvents += Get-AsyncEvent -ComputerName $pcList -FilterHashtable
@{logname="Microsoft-Windows-AppLocker/EXE and DLL"; ID=8002;
starttime=$startDate; endtime=$endDate} | select-Object MachineName, @{Label =
"TimeCreated";Expression = {Get-Date $_.TimeCreated -Format "M/d/yyyy
HH:mm:ss"}}, Message, UserId
 if($myEXEEvents.count -gt 0){
 $myEXEEvents | export-csv $exename
 write-host "EXE events written to $exename`n"

Finding!Evil!in!the!Whitelist! 36
!

Josh!Johnson,!jcjohnson34@gmail.com! ! !

 }
 else{
 write-host "No EXE Events found.`n"
 }

 $myMSIEvents += Get-AsyncEvent -ComputerName $pcList -FilterHashtable
@{logname="Microsoft-Windows-AppLocker/MSI and Script"; ID=8005;
starttime=$startDate; endtime=$endDate} | select-Object MachineName, @{Label =
"TimeCreated";Expression = {Get-Date $_.TimeCreated -Format "M/d/yyyy
HH:mm:ss"}}, Message, UserId
 if($myMSIEvents.count -gt 0){
 $myMSIEvents | export-csv $msiname
 write-host "Script/MSI Events written to $msiname`n"
 }
 else{
 Write-Host "No Script/MSI Events found.`n"
 }

 $unique = import-csv $exename | Sort-Object Message -unique | select-
object MachineName,Message,TimeCreated

 <#Parse the csv for "blacklisted" apps that have been run.
 Sources for below data at: http://sysforensics.org/2014/01/lateral-
movement.html and
https://dl.mandiant.com/EE/library/MIRcon2014/MIRcon_2014_IR_Track_APT_Detectio
n.pdf

 – AT.EXE (scheduled jobs/tasks)
 – SCHTASKS.EXE (scheduled jobs/tasks)
 – CMD.EXE (Obviously common, but I included it anyway.)
 – NET.EXE (net view, etc.)
 – NET1.EXE (net use)
 – NETSTAT.EXE (netstat -ano)
 – REG.EXE (reg query and reg add)
 – SC.EXE (interact with services)
 – SYSTEMINFO.EXE (system profiling)
 – TASKKILL.EXE (kill running processes – taskkill /f /im <process_name>
or by PID.)
 – TASKLIST.EXE (tasklist /v)
 – POWERSHELL.EXE (interact with powershell)
 – NBTSTAT.EXE (profile)
 – XCOPY.EXE (copy files around)
 – NSLOOKUP.EXE (profile)
 – QUSER.EXE (profile)
 – PING.EXE (check connectivity)
 – FTP.EXE (download/upload)
 – BITSADMIN.EXE (download/upload)
 – ROUTE.EXE (adding persistent routes)
 – REGSVR32.EXE (services)
 – MAKECAB.EXE (compression before exfil)
 #>
 $blacklist =
"AT.EXE","SCHTASKS.EXE","CMD.EXE","NET.EXE","NET1.EXE","NETSTAT.EXE","REG.EXE",
"SC.EXE","SYSTEMINFO.EXE","TASKKILL.EXE","TASKLIST.EXE","POWERSHELL.EXE","NBSTA
T.EXE","XCOPY.EXE","NSLOOKUP.EXE","QUSER.EXE","PING.EXE","FTP.EXE","BITSADMIN.E
XE","ROUTE.EXE","REGSVR32.EXE","MAKECAB.EXE"

 $alertsCSV = @()
 foreach($file in $unique){
 foreach($badexe in $blacklist){
 $exeWildcard = "*\"+$badexe+"*"
 if($file.message -like $exeWildcard){
 write-host "ALERT: Found " $badexe " on "
$file.machinename
 $alertData = [pscustomobject]@{'MachineName' =
$file.machinename; 'FilePath' = $file.message -replace " was allowed to
run.",""; 'TimeCreated' = $file.timecreated}
 $alertsCSV += $alertData
 }
 }
 }

Finding!Evil!in!the!Whitelist! 37
!

Josh!Johnson,!jcjohnson34@gmail.com! ! !

 $alertsCSV | export-csv "AppLocker_Alerts.csv"
 write-host "`n"
}
Function checkJava{
 $fullCSV = import-csv $exename
 $javaInstances = @($fullCSV | where {$_.message -like "*JAVA.EXE*"})
 $javaInstances += @($fullCSV | where {$_.message -like
"*JP2LAUNCHER.EXE*"})
 $machineNames = $javaInstances | Group-Object machinename

 if($javaInstances.count -ne 0){
 $found = 0
 $AppLockerJavaCSV=@()
 foreach($machine in $machineNames){
 $users = $machineNames.Group | Group-Object UserID

 foreach($user in $users){
 $sid = [System.Security.Principal.SecurityIdentifier]$user.name
 $username =
$sid.Translate([System.Security.Principal.NTAccount]).value -creplace
'^[^\\]*\\',''
 $UTPath = "\\" + $machine.Name +
"\c$\Users\"+$username+"\.java_usagetracker"
 if(test-path $UTPath){
 $java_usagetracker = get-content $UTPath
 $fDate = $user | ForEach-Object {$_.Group |Sort-Object
{$_.TimeCreated -as [datetime]} | Select -First 1}
 $lDate = $user | ForEach-Object {$_.Group |Sort-Object
{$_.TimeCreated -as [datetime]} | Select -Last 1}

 $possibleStartTime = [DateTime]$fDate.TimeCreated
 $possibleEndTime = [DateTime] $lDate.TimeCreated

 $tz =
[Regex]::Replace([System.TimeZoneInfo]::Local.StandardName, '([A-Z])\w+\s*',
'$1')#from https://getatip.wordpress.com/category/powershell
 $formattedStartTime = '{0:ddd MMM dd HH:mm:ss yyyy}' -f
[DateTime]$possibleStartTime.AddSeconds(-2)
 $yr = $formattedStartTime -match "([0-9]{4})"
 $DateMinusYear = $formattedStartTime -replace "\s([0-
9]{4})$", ""
 $finalStartDate = $DateMinusYear +" " + $tz +
" " +$Matches[0]

 $formattedEndTime = '{0:ddd MMM dd HH:mm:ss yyyy}' -f
[DateTime]$possibleEndTime.AddSeconds(2)
 $yr = $formattedEndTime -match "([0-9]{4})"
 $DateMinusYear = $formattedEndTime -replace "\s([0-
9]{4})$", ""
 $finalEndDate = $DateMinusYear +" " + $tz + " "
+$Matches[0]

 foreach($line in $java_usagetracker){
 $splitLine = $line.Split(",")
 $dateSection = $splitLine[1].replace("`"","")

 if(($dateSection -le $finalEndDate) -and ($dateSection
-ge $finalStartDate)){
 $appName = $splitLine[3]
 $appArgs = $splitLine[12]
 $classPath = $splitLine[13]
 $javaData = [pscustomobject]@{'MachineName' =
$machine.Name; 'TimeRun' = $dateSection; 'JavaApp' = $appName; 'AppArgs' =
$appArgs; 'ClassPath' = $classPath}
 $AppLockerJavaCSV += $javaData
 $found++
 }
 }
 }
 else{
 write-host "Couldn't find - "$UTPath". Unable to search for
Java app execution."

Finding!Evil!in!the!Whitelist! 38
!

Josh!Johnson,!jcjohnson34@gmail.com! ! !

 }
 }
 }
 $AppLockerJavaCSV | export-csv "AppLocker_Java_Logs.csv"
 if($found -gt 0){
 write-host "ALERT: Found $found instances of Java running. Check
AppLocker_Java_Logs.csv for details.`n"
 }
 }
}
Function getStats{

 $fullCSV = import-csv $exename
 $unique = $fullCSV | Sort-Object Message -unique | select-object
MachineName,Message,TimeCreated
 if(Test-Path "Applocker_Statistics.csv"){
 $oldStats = import-csv "AppLocker_Statistics.csv"
 $oldStats_copy = $oldStats
 $newStatsArr = @()
 $foundObj
 foreach($currentApp in $unique){
 $found = 0

 foreach($oldFile in $oldStats_copy){
 $currentMessage = $currentApp.Message -replace " was
allowed to run.",""
 if($oldFile.filepath -eq $currentMessage){
 $found = 1
 $foundObj = $oldFile
 }
 }
 if($found -eq 0){
 $matches = 0
 $newAppObj
 $filepath = "\\" + $currentApp.machinename + "\"+
$currentApp.message -replace "%OSDRIVE","c$" -replace "%WINDIR%","c$\Windows" -
replace "%SYSTEM32%","c$\Windows\System32" -replace
"%PROGRAMFILES%","c$\Program Files (x86)" -replace " was allowed to run.",""
 $fullpath64 = "\\" + $file.machinename + "\"+
$file.message -replace "%OSDRIVE%","c$" -replace "%WINDIR%","c$\Windows" -
replace "%SYSTEM32%","c$\Windows\System32" -replace
"%PROGRAMFILES%","c$\Program Files" -replace " was allowed to run.",""
 $matches = $fullCSV | group-object message | where
{$_.name -like $file.message}
 $filehash = "null"
 if(test-path $filepath){
 $applockerInfo = get-applockerfileinformation
-Path $filepath
 $filehash = $applockerInfo.hash.hashdatastring
 }
 elseif(test-path ($fullpath64)){
 $applockerInfo = get-applockerfileinformation -Path
$fullpath64
 $filehash = $applockerInfo.hash.hashdatastring
 }
 else{
 $filehash = "file not available"
 }

 $fDate = $fullCSV | group-object message | foreach-
object {$_.Group| sort-object {$_.TimeCreated -as [datetime]} | select -First
1} | where {$_.message -like $currentApp.message}
 $lDate = $fullCSV | group-object message | foreach-
object {$_.Group| sort-object {$_.TimeCreated -as [datetime]} | select -Last 1}
 |where {$_.message -like $currentApp.message}

 $newData = [pscustomobject]@{'MachineName' =
$currentApp.machinename; 'FilePath' = $currentApp.message -replace " was
allowed to run.",""; 'Hash' = $filehash; 'NumRuns' = $matches.count;
'FirstSeen' = $fDate.TimeCreated; 'LastSeen' = $lDate.TimeCreated}
 $newStatsArr += $newData
 }

Finding!Evil!in!the!Whitelist! 39
!

Josh!Johnson,!jcjohnson34@gmail.com! ! !

 else{
 $oldLastSeenTime = $foundObj.LastSeen
 $matches = @($fullCSV | where {$_.message -like
$currentApp.message}| where {[datetime]$_.TimeCreated -gt
[datetime]$oldLastSeenTime})
 $lDate = $fullCSV | group-object message | foreach-
object {$_.Group| sort-object {$_.TimeCreated -as [datetime]} | select -Last 1}
 |where {$_.message -like $currentApp.message}
 $newMatches = [int]$foundObj.numRuns + $matches.count
 $foundObj.numRuns = $newMatches
 $foundObj.LastSeen = $lDate.TimeCreated
 $newStatsArr += $foundObj
 }
 }
 $newStatsArr | export-csv "AppLocker_Statistics.csv"
 write-host "Statistics written to AppLocker_Statistics.csv"
 }
 else{
 $statsCSV= @()
 foreach($file in $unique){
 $matches = 0
 $fullpath = "\\" + $file.machinename + "\"+ $file.message -
replace "%OSDRIVE%","c$" -replace "%WINDIR%","c$\Windows" -replace
"%SYSTEM32%","c$\Windows\System32" -replace "%PROGRAMFILES%","c$\Program Files
(x86)" -replace " was allowed to run.",""
 $fullpath64 = "\\" + $file.machinename + "\"+ $file.message
-replace "%OSDRIVE%","c$" -replace "%WINDIR%","c$\Windows" -replace
"%SYSTEM32%","c$\Windows\System32" -replace "%PROGRAMFILES%","c$\Program Files"
-replace " was allowed to run.",""
 $matches = $fullCSV | group-object message | where {$_.name
-like $file.message}
 $filehash = "null"
 if(test-path $fullpath){
 $applockerInfo = get-applockerfileinformation -Path
$fullpath
 $filehash = $applockerInfo.hash.hashdatastring
 }
 elseif(test-path ($fullpath64)){
 $applockerInfo = get-applockerfileinformation -Path
$fullpath64
 $filehash = $applockerInfo.hash.hashdatastring
 }
 else{
 $filehash = "file not available"
 }
 $fDate = $fullCSV | group-object message | foreach-object
{$_.Group| sort-object {$_.TimeCreated -as [datetime]} | select -First 1} |
where {$_.message -like $file.message}
 $lDate = $fullCSV | group-object message | foreach-object
{$_.Group| sort-object {$_.TimeCreated -as [datetime]} | select -Last 1} |where
{$_.message -like $file.message}
 $newData = [pscustomobject]@{'MachineName' =
$file.machinename; 'FilePath' = $file.message -replace " was allowed to
run.",""; 'Hash' = $filehash; 'NumRuns' = $matches.count; 'FirstSeen' =
$fDate.TimeCreated; 'LastSeen' = $lDate.TimeCreated}
 $statsCSV += $newData
 }
 $statsCSV | export-csv "AppLocker_Statistics.csv"
 write-host "Statistics written to AppLocker_Statistics.csv"
 }
}
$today = get-date -format Mddyy
$date = get-date
$msiname = "AppLocker_"+$today+"_"+$date.Hour+"_msi_events.csv"
$exename = "AppLocker_"+$today+"_"+$date.Hour+"_exe_events.csv"

if(!$nologs){
 getLogs
}
if($getstats){
 getStats
}

Finding!Evil!in!the!Whitelist! 40
!

Josh!Johnson,!jcjohnson34@gmail.com! ! !

if($checkpaths){
 checkPaths
}
if($checkjava){
 checkJava
}

!

