
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 1 -

Vilas L Ankolekar
GIAC Security Essentials Certification (GSEC) Practical Assignment,
Version 1.4b, Option 1
Application Development Technology and Tools: Vulnerabilities and threat
management with secure programming practices, a defense in-depth
approach
10 November 2003

Abstract

This paper addresses the security challenges that exist due to programming
flaws, and explains how simple programming practices can reduce the risks. The
paper starts with a description of common application vulnerabilities and risks.
The vulnerabilities that are discussed include Buffer overflows, SQL Injection,
Script Injection, XML injection and others. The application development
platforms, technologies and tools that are widely used in the industry and the
vulnerabilities that exist in them are discussed next. The technology and tools
discussed include Web Services, Wireless, JAVA, C/C++, Web and Database.
Further, the secure programming practices that can be used to avoid the
vulnerabilities are presented. Since more and more organizations are embracing
the outsourcing business model, the importance of having good security
practices in such an environment is briefly touched upon. In the end, case study
examples have been provided to illustrate the use of secure coding principles.

A Firewall provides security to the Organization’s infrastructure to a great extent,
but it is not adequate. By identifying vulnerabilities and taking steps to reduce
risks during application development stage, organizations can add one more
layer of defense against threats. This illustrates the defense in-depth approach to
securing applications from real world threats.

1.0 Introduction

The Internet has made inroads into every corner of our lives. Web applications
and Web services are the major forces behind the Internet. For the past few
years, the pitch over security in applications has reached a new crescendo. New
attacks and vulnerabilities are being reported on almost daily basis. “Bad guys”
are looking for every opportunity to exploit these vulnerabilities and cause
damage on every front. In these circumstances application developers cannot
take security for granted. The security in Applications has to be “by design” and
not by chance.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 2 -

When discussing security, it is often emphasized that configuring routers,
installing firewalls, securing application servers or providing secure
applications access will make applications secure. But security has many
aspects and dimensions. Designing applications so that they are secure is a
neglected but critical aspect of a defense in-depth approach to securing
applications.

The reasons to either ignore or not to spend enough time on securing
Applications during development may include:

� Non-existence of secure programming standards: Many
organizations think a Firewall is all it takes to secure the
applications. Security design during application design is given least
priority and hence no standards exist. Although non-existence of
standards should not be an excuse, unless organizations create
standards and enforce them, security will not be considered a
priority.

� Due to tight schedules and market pressures, and in order to
release applications to production as quickly as possible, project
managers do not plan enough time for security during coding and
testing.

� Over-reliance on Network security, Operating System (OS) security
and other application security: Many developers think that Network
security and OS Security will provide all the protection needed. For
many, the meaning of secure applications is to use Secure Socket
Layer (SSL) communications. This complacency and over reliance
on other security solutions means they give no considerations to
secure coding.

� Many developers do not understand security implications in the
tools and technologies they use. Application developers spend
great deal of time making Applications work, but may compromise
on security unknowingly due to their lack of knowledge. Together
with lack of written security standards, the problems multiply.

� Many developers tend to believe that “Obscurity is security”: who
would want to attack my application? But before they realize it,
somebody will find the vulnerability in the code. Easy access to
Internet resources has turned even script kiddies into dangerous
hackers.

� The application developed today may not be web enabled and

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 3 -

hence security is not considered a requirement. But developers do
not realize that eventually most applications will be interfaced to the
Web. Also, even though not web enabled, these applications can
still be exploited through other web-enabled applications.

� Outsourcing of development: Development Outsourcing changes
the definition of perimeter and brings a new dimension to the whole
security issue. Security has to be thought in a totally different
perspective since a third party has the access to internal network
that may not follow security best practices. In order to insure that
the code delivered by outsourcing companies is not malicious or
does not have security flaws, it is essential that these companies
also follow secure programming practices.

Designing secure applications is not very difficult. General approach to
securing an application program should include:

q Understand the application development environment in which the
application program is developed and deployed, and identify the
security risks associated with it.

q Apply secure coding principles to application programs, while
making the best use of security infrastructure that is built into the
application development and deployment environment.

This paper addresses the security challenges that exist due to
programming flaws, and explains how simple programming practices can
be used to overcome the risks. Various sections included in this paper are
as follows:

• Common application Vulnerabilities: This section gives an overview
of most of the vulnerabilities that are being exploited by the hackers,
which include Buffer Overflow, Format strings, Script Injection and
others.

• Application Development Platform, Technology and Tools: This
section gives an overview of the application development tools,
technologies and vulnerabilities around them.

After reading the “Common application Vulnerabilities“ and “Application
Development Platform, Technology and Tools“ sections, it is intended that
the reader will be able to appreciate the relation among various

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 4 -

technologies, tools and the common application vulnerabilities.

• Secure programming practices: The secure programming practices
are presented in this section using a model that represents an abstract
view of a program.

• Security issues in the outsourcing model: This section includes
discussion on security considerations in an outsourcing environment.

• Code reviews, source code analyzers and tools: In this section the
importance of code review is discussed. Also, various source code
analyzers and tools are briefly described.

• Case study examples: In this section a few examples of programming
flaws and means to avoid them are discussed.

• Conclusion

It cannot be emphasized enough that a firewall provides security to the
Organization’s infrastructure to a great extent, but it is not adequate. Security
experts agree that best way to deal with the security is to adopt a defense in-
depth strategy. One simple security flaw, apart from causing increased
application maintenance cost, also can cause considerable public relations
damage to an organization. Documenting secure programming practices,
making them as mandatory standards and auditing the application code to check
for compliance, organizations can mitigate risks of attacks and can reduce the
application maintenance costs and prevent public relations disasters.

By identifying vulnerabilities and taking steps to reduce risks during application
development stage, organizations can add one more layer of defense against
threats. The addition of multiple layers of defense illustrates the defense in-
depth approach to securing applications from real world threats. While this
paper may not address all the issues in all the tools and technology, the
techniques presented in this paper can be extended to other technology and
tools as well. If more information is needed the reader is encouraged to go
through the references provided at end of the paper.

2.0 Common application Vulnerabilities

The following are some of the vulnerabilities that are commonly exploited by
hackers. These vulnerabilities are caused mainly due to bad programming
practices.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 5 -

2.1.1 Access Control flaws

Access control is a mechanism through which applications control data and
functions access, allowing only authorized users to perform allowed functions.
Access control issues include un-authorized access to the system, functions and
access to sensitive data.

While some Access Control flaws may be the result of lack of a clear security
policy, improper application design can also cause access control issues. One of
the main reasons that can cause Access Control issues is the inadequate input
validation. As described in the “Secure programming practices” section, Input
Validation is one of the most significant sources of vulnerabilities in applications.

2.1.2 Buffer Overflows

The buffer overflow, one of the common security vulnerabilities, occurs when the
application does not perform adequate size checking on the input data. This
programming flaw can be used to overwrite memory contents. When the data
written to the buffer exceeds the allocated buffer length, the excess data spills
over to adjacent memory space. This memory space is normally the application’s
program stack that is used to store the address of next piece of code that it will
execute. Through Buffer Overflow attack, this memory space can be overwritten
causing the application to lose control of its execution.

Under buffer overflow conditions programs may behave in a very strange
manner. The results can be unpredictable. In many instances they may not
respond or in other words they may hang. This “hang” situation of the application
program can turn into a “Denial of Service (DoS)” attack thus making program
inaccessible.

A clever attacker can also exploit the buffer overflow conditions to run arbitrary
OS commands. By initiating a Buffer Overflow attack, the attacker will insert the
address of her piece of code into the memory, causing attacker’s code to run
when the application finishes the current execution. When an application runs in
a context of a privileged user such as root on UNIX and Admin on Windows, the
Buffer Overflow attack can have dangerous consequences. The arbitrary
command executed can be a Trojan horse, and the attacker can hijack the host
machine.

Buffer Overflow attacks are not easy to initiate. But if the attacker is successful, it

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 6 -

can have very devastating effect on the host machine. The application developer
needs to exercise every caution during applications design and development so
that these vulnerabilities do not exist. As such, it is not difficult to avoid Buffer
Overflow vulnerability. As described in the “Secure programming practices “
section, simple techniques such as Input Validation can be used to avoid this
vulnerability.

2.1.3 SQL Injection

In a SQL Injection attack, the attacker is able to modify the SQL command that is
being executed at the backend database to read, delete, or insert data. The SQL
command injection is carried out by variety of means, including form inputs in a
HTML page. Many applications create dynamic SQL queries using the input data
and these queries are run against backend databases. The application becomes
vulnerable to SQL Injection in situations where the dynamic SQL is created
without data validation. To illustrate an example consider the following code
segment:

String sql = “Select a from b where name =” + in_name;

In the above code if the in_name variable is not validated there is likelihood that
this code is susceptible to the SQL Injection attack.

Using this vulnerability, it is possible to crash a smooth running database. It is
also possible to access sensitive data. If the attacker is able modify the data
using this vulnerability, there is every chance that the confidentiality, integrity and
availability of data will be greatly compromised.

The SQL injection vulnerability is normally caused by poor design, such as
improper data validation.

2.1.4 Script Injection and Cross Site Script (XSS) Injection

When an attacker is able to insert scripting commands into the client’s web
requests it is called a “Script Injection” attack. A method in which a user is tricked
in to clicking on an URL link embedded with script command is termed as Cross
Site Script (XSS) injection attack. Attackers employ social engineering
techniques to trick the user and to carry out XSS attacks.

 XSS vulnerable links are sent to the unsuspecting users via email or they are

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 7 -

displayed at several places, including at discussion forums and banners on a
web site. When a user clicks on such an URL, through URL redirection the
information about that user is sent back to the attacker. The information that is
sent might include the session cookies generated during login to a web site. With
this stolen cookie, without needing user name and password, the attacker can
login to the web site as the user who had clicked on the malicious URL link. In
this way the attacker can hijack the session and may manage to take full control
of the user’s session.

Apart from session hijacking, through XSS, the attacker can also cause other
serious problems: steal files from the victim’s machine, install a Trojan horse and
even modify the data being displayed on the user’s browser. XSS attacks can
have serious consequences when an attacker is able to modify information
presented to the user.

Exploiting XSS vulnerability is easy and almost all the web pages exhibit some
kind of XSS vulnerability. It is possible to mitigate this risk to a great extent by
employing good design principles as detailed in the “Secure programming
Principles” section.

The following paper provides a good discussion on XSS vulnerability: [xss1]

2.1.5 Format strings

In programming languages like ‘C’, printing functions such as printf () and sprintf
() can be called without specifying a format parameter. That means if an
application is coded to print without specifying the formats, the application will
accept any input, including the strings that are used to control the output format.
In such a case there is a possibility that the application has format string
vulnerability.

Using this vulnerability it is possible to carry out a Buffer Overflow attack by
providing various format strings as input. Strings like “%n”,”%d”,”%s” etc, when
provided as inputs to a print function that has no format specification, it can
corrupt the memory addresses. A crafty attacker can use this vulnerability to
modify memory addresses, insert her code in that memory space and thus carry
out a Buffer Overflow attack.

For a good discussion on Format String vulnerability following paper is
recommended: [format-string]

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 8 -

2.1.6 Command Injection/Shell escape

A Command Injection attack occurs when the attacker is able to specify and
execute commands on the OS shell. This attack is more prevalent in shell scripts,
such as PERL/CGI programs. Since these scripts are run mostly under elevated
set of privileges, the exploit can do a considerable amount of harm. Even a Java
program may be subject to an attack if it has been coded to use
System.RunTime class.

2.1.7 Race Conditions

When an application is executing discrete steps, it is possible to intercept the
application between various steps and execute a piece of code. For example,
consider a case where an application writes data to a file. Imagine that it has two
steps, the first one is file security check and the second step is writing actual
contents to that file. It is possible, as soon as the file check is complete and
before the write step, to substitute a new file. If a hacker can exploit this
vulnerability, security can easily be compromised.

For more on race conditions please refer to the following:[race]

In the above section, we discussed most of the common application
programming vulnerabilities. If we carefully analyze the vulnerabilities discussed
so far, we see common threads: almost all of them are caused by simple
programming flaws like Input Validation errors, Output Validation errors and other
flaws in programming logic.

In the following section we will discuss various application development platform,
technology and tools, and understand how they influence the security
environment.

3.0 Application Development Platform, Technology and Tools

Although application developers may not get to choose technology or tools for
development, organizations do have array of tools and technologies to choose
from; from emerging technologies like Web services to age-old languages like C.
Many are proprietary and many are open source. When choosing a particular
technology many factors affect the decision, but often security is not given
consideration. It is good practice to consider security even while choosing a

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 9 -

technology. Since the platforms on which the technologies are implemented also
influence the security, it would certainly help thinking about security in the
platform decisions too. In other words, security must be thought from the word
“go” and it should be given consideration throughout the application development
life cycle. Security design should not be an afterthought.

As for the technology and tools, the security environment will also depend on
how the developers use them. To better understand the technology impact on
security, the developer also needs to understand the technology. The following is
a brief introduction to technology and tools. Also, an attempt has been made to
list the possible vulnerabilities along with the technology overviews.

3.1.1 Web Applications

The Internet has become the backbone of the new economy and web
applications are the enabler of this great industrial revolution. Web applications
facilitate presenting the personalized content to the user. They are dynamic and
in almost all cases access a back-end database. HTML is the lingua franca of the
web applications and HTTP is the protocol used for web communication.

A variety of technology and tools are used to generate the contents and provide
a user interface and process the page after submitted by the user. One of the
oldest server side technologies is CGI (Common Gateway Interface). Newer
tools and technologies include Java server pages, Active server pages, PHP
(hypertext processor), Java Script and Perl etc.

CGI is one of the most popular technologies that are used for processing the
page on the server. Apart from being popular, it is also one of weakest links as
far as the security is concerned. Since “Shell escape” is a commonly used
feature in CGI, there is a chance that this is exploited for attacks.

Since wide variety of tools and technologies are used in the web development,
there is a possibility most of the vulnerabilities described in the “Common
application Vulnerabilities “ section exist in the web applications.

3.1.2 Web Services

Web Services, meaning a service offered on the web, is a revolutionary
technology that enables application-to-application communication. One of
greatest benefit of Web Services is that applications can be interfaced without

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 10 -

having to know the underlying mechanics of implementation. The following is a
link to a tutorial on web services: [web-services-tutorial]

Typically, in order to communicate with a Web Service, a business application
sends a request to a given URL using the SOAP (Simple Object Access
Protocol) over HTTP. The Web Service, after receiving the request, processes it,
and returns a response. The classic examples include getting driving directions,
getting a stock quote etc.

In simple terms, a Web Service is a discrete business process that performs
following functions:

� Through the Web Service Description Language (WSDL), a Web Service
exposes and describes itself. In order that other applications can
understand and access it, a Web Service defines its functionality and
attributes [wsdl]

� Through Universal Description, Discovery, and Integration (UDDI), a Web
Service gets published into electronic Yellow Pages, so that applications
can easily locate it [uddi]

� Using industry standard protocols, SOAP and HTTP, Web Services can
easily be invoked.

� When a Web Service is invoked, the results are passed back to the
requesting application over the same Internet standard protocol that is
used to invoke the service.

Currently there are two major competing Web Services platforms that are
available to the industry: JAVA and .NET. Essentially these two platforms use
similar underlying technology: XML. In the following web site you can learn lot
about web services: [webservices]

3.1.2.1 Simple Object Access Protocol (SOAP)

The Simple Object Access Protocol (SOAP) is a lightweight, XML-based protocol
for exchanging information in a decentralized, distributed environment [soap]

SOAP supports different styles of information exchange, including Remote
Procedure Call style (RPC) and Message-oriented exchange. RPC style
information exchange allows for request-response processing. In the RPC style
an endpoint receives a procedure-oriented message and replies with a correlated
response message. In the Message-oriented information exchange a message is

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 11 -

sent but the sender may not expect or wait for an immediate response. Message-
oriented information exchange is also called Document style exchange.

In summary, Web Services are based on XML and HTTP and there are two
competing platforms: JAVA and NET.

3.1.2.2 Security issues in Web Services related to programming

The possible programming-related security issues in Web Services are as
follows:

• Buffer Overflow: Since Web Services are exposed as APIs, the data
parameters are well known to other applications. The openness of Web
Service, which is supposed to be a boon for application integration, can
also be a bane. The attacker can send an input parameter larger than the
actual size, and if the application is not able to handle the parameter, this
might result into a Buffer overflow attack. Also, the attacker could send
malformed data that might crash the system.

• XML Injection attack: This is due to the fact the backbone of Web Service
is XML, and any inputs passed in XML can be the subject of injection
attack.

• SQL Injection: Web Services are also interfaced with the back-end
database, which increases vulnerability to a SQL injection attack.

3.1.3 Wireless Applications

Wireless applications provide “Anytime, Anywhere” access to the web
applications, making them great productivity enablers. Wireless applications are
designed to be easy to use and they are intelligent enough to run on many
devices by providing appropriate content delivery and user interfaces. With the
convergence of cell phones and PDAs, the user interface is no longer a major
issue. Various statistics indicate that the users base of mobile networking is
increasing at a fast rate and it is going to reach the same users base as wired
users. With the growing user base, organizations are finding greater need to
wireless enable their applications and almost all the industries are embracing the
Wireless technology.

Several topologies and techniques are used for wireless communication.
Wireless technologies use one of these protocols for communications: WAP
(Wireless Access Protocol), Bluetooth or 802.11b/a/g. Each of these protocols

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 12 -

has built-in security to avoid break-ins from hackers, but they are not sufficient.
Attackers use “Eavesdrop” techniques to hack into network and if the data is not
encrypted properly, the data can be stolen. The other common security issue
faced in wireless is losing the device. Since the devices are small and portable it
is easy to lose. So, it is essential to secure the device access by using strong
passwords or using authentication mechanisms like Biometrics. As a means to
provide one more layer in the defense, it is important that the Wireless
applications should also be coded using “Secure Programming Practices” in
order to provide secure access.

Since Wireless applications also use same underlying tools as in the case of
Web applications, if not coded correctly they are likely to have following
vulnerabilities: Buffer Overflow, Cross-site scripting, Script Injection, SQL-
Injection, format strings, shell escape.

3.1.4 XML

XML is the EXtensible Markup Language. It is called extensible because it is
actually a “metalanguage”. XML is used for describing other language, which lets
you design customized markup languages for limitless different types of
documents. XML can do this because it is written in SGML, which is the Standard
Generalized Markup Language. XML defines new a way of communication
across the web.

XML is also the backbone of Web services technology. For more info on XML
follow this link: [xml]. Since XML constitutes an important part in web
communication, the security in XML is very crucial. On general XML security
issues follow this link: [xml-secure].

A bad design in XML can result in injection attacks. Avoiding this vulnerability
should be the primary objective during design time.

3.1.5 C/C++

C/C++ still remains one of the most popular languages for programming for CGI.
One of most common vulnerabilities in C is the “Format Strings”. Also, improper
memory management can cause vulnerabilities that can result in buffer-overflow
attacks. Developers need to be extra cautious when developing web applications
in C by following strict programming guidelines.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 13 -

With regards to vulnerabilities, it is common to have Buffer Overflow, Cross-site
scripting, Script Injection, SQL-Injection, format strings, and shell escape
vulnerabilities, if secure programming techniques are not used.

3.1.6 JAVA

The program language that was designed to write portable code for the Internet,
JAVA by design is inherently one of the most secure programming languages. As
in the case of other tools, what makes it vulnerable is insecure programming. It
may not be uncommon to have a “Shell Escape” attack in JAVA if
System.RunTime is used.

 SUN’s security guideline on java [sun-java1] is recommended reading on Java
security.

3.1.7 Database Servers

Present day database servers are driving forces behind the IT infrastructure.
With the provision of native support to JAVA, XML and other leading edge
technologies inside the database, they are no longer just database servers. Most
of the databases, including Oracle, support terra bytes of data and at the same
time they act as application servers. They support latest technology like Web
services and also facilitate exchanging of information in a decentralized,
distributed environment. They are the power horse of IT departments with almost
all the features of an Operating system built right into them.

Databases also have language extensions inside them along with Structured
Query Language (SQL) support. PL/SQL in Oracle is one such example.

With such complexity, the management of database is a Herculean task, which is
made easier by the management tools provided by the database vendors. But,
managing security in database is a major issue, which has to be carefully
planned and executed. This difficulty is not due to security flaws in the database,
but due to bad or non-existent security policies and poor application design. As a
matter of fact, the databases have the infrastructure built in for the highest level
of security.

Since databases support almost all the tools natively and as external procedures,
application developers favor using them because it is easier to access and
manipulate data with the supported tools. Again, security is a major concern

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 14 -

since the application resides very near to the data. Almost all attacks are
possible in a database environment. Any small flaw in the application can easily
compromise Confidentiality, Integrity and Availability.

3.1.8 Other Application tools

Other application design tools and technologies include ActiveX, VBScript,
Shockwave, Flash, NET platform and more. All of these tools can have one or
more vulnerability discussed in the previous sections.

As we have seen so far, the application development tools and technologies
greatly influence the security environment. The security approach will also differ
based on the application tools and technologies that we choose. The technology
like JAVA has built-in security infrastructure that make security implementation
easy. Also, some technologies have more security issues than others.
Implementing a sound security solution becomes easy if the developer
understands the risks involved in a development and deployment environment.

4.0 Secure Programming Practices

While going through various vulnerabilities in the previous sections, one common
thread is that most of these flaws are easily avoidable. The threats due to these
vulnerabilities can be easily managed by proper discipline during the design and
developmental stages. Assuming that the proper design methodology is used in
development, in this section we will discuss some simple programming principles
that can be used to prevent flaws due to programming errors.

4.1.1 Programming Model

If we draw a model of application program it will look as shown in Fig: 1. It is a
simple model, but illustrates the essential aspects of any application. This model
is adapted from [david2]. The common characteristics of an application program
are:

• Inputs
• Program Logic
• Call outs to external routines
• Access to data (might include read, write or both)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 15 -

• Outputs

Each of these characteristics creates a possible threat vector and correlates to
one of the vulnerabilities discussed in the previous sections. In order that the
threats are managed well, the expectations from good programming practices
are:

• The application should know what is coming in. All the input data should
be validated and all the unnecessary input data should be discarded. The
Benefits: Avoiding Buffer flow, Script injection, SQL Injection, Format
Strings vulnerabilities and Countering SPAM etc.

• The application should be structured and written with good flow and
controls. This includes program flow, data handling, memory handling,
error handling etc. The benefits: Avoiding Buffer Flow, Race conditions,
Script Injection vulnerabilities.

• The application should only call other external resources that it knows, in
other words, should call only the trusted resources. Also, it should make
sure that only valid data is passed to and received from the external
resources. The benefits: Avoiding Command Injection/ Shell escape,
Cross-Site scripting vulnerabilities.

Program Logic Output Input

Call out to external programs

Database

Fig.1

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 16 -

• The application should limit access to only the data as needed for the
program logic and processing. If using databases for data access, the
application should insure that only validated queries are passed. The
“Principle of least privileges” should be strictly followed. The benefits:
Avoid SQL Injection, DATA theft etc.

• The application should guard what is being sent out; the output should be
properly formatted and data should sent only as per the user’s privileges
without disclosing too much of program information. The benefits:
Avoiding Script Injection, Format Strings, Buffer overflow etc.

Each of the characteristics should be carefully managed in order to design
secure application. There are excellent references ([david1], [david2], [owasp1],
[owasp2]) on the web that explain how these can be managed to design a secure
program. The following sections include secure programming principles from
these references.

4.1.2 Input Validation

Un-validated inputs pose the greatest threat among all the types of programming
flaws. As per the “The Ten Most Critical Web Application Security Vulnerabilities”
security paper published by Open Web Application Security Project [owasp2],
“Un-validated parameter” is one of the top vulnerabilities. This proves the
importance of validating input before accepting and processing it. In general
following principles should be adopted in input validations:

• Data type validations: Check what type of data is input and validate
against the data type the application is expecting. Proper error handling
should be part of the program flow and control design in case of data type
mismatch. Examples of data types include string, integer, URL, user
defined data types etc. Although we could rely on programming tools to
catch such mismatches, since some tools are forgiving in the matters of
data type mismatches, this may not be reliable. Code reviews and peer
reviews can help discover such errors. If an URL is used as data type, it is
also important to validate the existence of such an URL.

• Check if the parameter is necessary. It is good practice to remove all the
unnecessary parameters.

• Enforce number validation, including specifying ranges.
• Check for the data length and enforce minimum and maximum lengths:

Hackers can initiate Buffer overflow attack as a direct result of data length

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 17 -

validation errors that occur when input data is specified more than data
length.

• Check for Nulls and check if it is allowed as input, since many
programming languages do not handle “null” values in an efficient manner.

• Validate the character sets that are being input. It is easy to bypass
validations if input is provided in a different character set.

• Check for specific patterns and legal values.
• If the program is validating for a call-out to an external application, it is

very important to validate in the context of the security environment of
called applications.

• Do not rely on client side validation. It is very important to realize that
attackers even use applications like “Telnet” to access web applications by
totally bypassing the client. Also, it is possible to make client validation
ineffective by using proxy attack, popularly known as man-in-the-middle-
attack. If the application depends on the client validation, it may eventually
turn into a hacker’s tool.

In short, all the input data should be validated before processing and if data does
not pass validations, the errors should be handled properly.

4.1.3 Program control and logic flow

One of the important goals to remember while designing an application is that it
should have a good internal structure. Using sound “Software Engineering
Principles” should help in achieving such goals. The program flow should be
such that the program easily recovers from any erroneous conditions and does
not lose control of its execution. Hackers rely on such flaws in the application to
take control of the application and effectively take control of the system on which
the application is running.

Points to consider while designing are:

• Principles of least privilege: Operate only at a privilege that is required to
run the application. In this way even if the application loses control of its
execution the damages will be limited.

• Do not combine data and program control.
• Handle errors properly: Many applications, when an error is encountered,

do not fail safely. Instead of stopping the processing of the request any
further, in order to make the applications “dumb user proof”, they continue

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 18 -

execution by assuming certain conditions. Although this makes application
very user friendly, it may also turn it into a hacker’s tool. User friendliness
should not compromise security. It is also a good practice not to fail
completely, but to fail-safe. Failing completely might give an opportunity
for “Denial Of Service” attacks.

• Carefully handle errors: When an error is encountered it is important to
display proper messages, but limit the messages only to the extent to
indicate that there was a problem. It is good practice to log errors into a
separate log file and display only cryptic messages to the user.

• Do not allow race conditions: A good example of a race condition can be
illustrated when an application creates a temporary file. These are
traditionally created in a shared directory, e.g. /tmp or /var/tmp. The trick
commonly used by the attacker is to create a symbolic between some
important file and the temporary files and cause the secure program to
modify the important file. Precaution needs to be taken while dealing with
temporary files, including not re-using the same temporary file, getting a
random file names, clearing the temporary files etc.

4.1.4 Calling external routines

Almost all programs call external routines. Examples include library files, shell
escapes to perform OS operations, call-outs to URLs, web services etc. Calling
an external routine is tantamount to handing over the execution of the program to
that routine. Great care needs to be exercised while calling out to external
routines, including validating input parameters being passed, validating the
output parameters etc. But, the first and foremost thing to determine is whether
the external routine that is being called is safe. It is very important to understand
the security model of the external resource that is being used in a program, and
failing to do so may compromise security. Things to consider include:

• Validate inputs and outputs
• Use Application Programming Interfaces while calling out external routines
• Understand the security model of the application being called and decide if

it is safe to call that routine.
• Handle the returns carefully
• Have ways to know if the external resource is responding or not. The

application should time-out and appropriate actions should be taken if the
external resource does not respond within a reasonable time limit.

• Do not pass sensitive data to the external routine. If there is a need to

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 19 -

send such data use secure channels and if possible use encryption. There
may be a need to send sensitive data to a library routine where it is not
possible to use secure channels or encryption. In such a situation it is very
important understand the security environment. If the environment is risky
it is recommended that such library routine should not be used.

4.1.5 Database access

Applications normally access data through interfaces provided by databases,
except in the cases where the language used for programming is native to the
database. One such example of language that is native to the database is
PL/SQL in Oracle Database. JAVA is also supported in many databases, thus
giving more choice to developers.

The main objective of secure data access is to limit the data access on a needed
basis. The best approach is to use the security model built in the database itself
instead of implementing other custom approaches. Points to consider are:

• Use the security model built inside the database. Modern databases have
excellent security infrastructure built for security and it is a waste of time to
implement a custom solution. There is an also risk that the custom
security solution is not efficient.

• Check what is passed as input while querying the database. If building a
dynamic query utilizing user inputs, check carefully for SQL Injection
attacks.

• Use “Principles of least privileges”. By doing so, in case of an attack, the
damage will be minimal.

Avoiding data thefts should be the most important goal while protecting the data
access through applications.

4.1.6 Handling Output

Handling output is as important as handling input. After all, one program’s output
is another program’s input. As a responsible citizen, any program should
judiciously send back the information. Good principles in handling outputs
include:

• Avoid format string error: A common mistake in languages like “C” is to

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 20 -

take the user’s input as a format parameter to control the program’s
output. This amounts to giving control of programs to the end users by
allowing them to run their programs through format strings. Developers do
not realize that the formatting programs are very powerful. If used craftily,
a Format String attack can easily be initiated using this vulnerability. The
application should not format output based on user’s input.

• Don’t give out too much information: While handling exceptions do not
give too much information. If the user base is not trusted, it is often
enough to say that the application has failed, instead of saying why the
application has failed. If more information is required, it is a good practice
to log exceptions as errors in the error files.

• Don’t include comments in the outputs. The case in point is web
applications; the HTML file can be easily viewed and this may provide
online education for the hackers about the application, its versions etc.

• Do not display configuration information. It may be possible to set up
application servers or firewalls not to display configuration information. If
possible do not allow access to configuration files.

• Have a way to handle unresponsive outputs. Make provisions for time-
outs.

So far we have seen a few common approaches that can be applied during
application program design. Although it is not possible to guarantee that the
programs will be 100% secure, adopting these recommendations should at least
help in avoiding most security vulnerabilities.

Having discussed programming principles, let us briefly discuss the security
issues involved in an outsourcing development model.

5. 0 Security issues in the outsourcing model

Information Technology Outsourcing refers to employing external service
agencies to provide services for various IT functions. The services thus
outsourced may include entire IT functions or partial functions like Software
Development. There is plenty of literature available on the benefits of outsourcing
from top research organizations and as well on the Internet. The economical
benefits of outsourcing outweigh many disadvantages that exist in the
outsourcing model and hence there is a tendency to overlook these pitfalls during
outsourcing decisions. As in the case of internal development, security in the
outsourced development is also often neglected. Still, lack of secure

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 21 -

programming practices can have a significant impact. The risks involved are
many. In addition to potentially containing any of the vulnerabilities discussed so
far, the code delivered by an outsourcing company may also contain hidden
routines with malicious purposes. In order to insure that the code delivered by
outsourcing companies is not malicious or does not have security flaws, it is
essential that these companies also follow secure programming practices

There are many reasons why code delivered by outsourcing companies may
pose dangerous security threats. They include:

• The very important benefit that outsourcing provides, the low cost, may
be a de-motivating factor to the outsourcing company; to keep the cost
down, the outsourcing company may not employ good security
controls.

• Lack of control over the developers employed by the outsourcing
company.

• Developers may lack skills to understand security implications and
employ enough security controls.

In a paper titled “Outsourcing impact on security issues”, by Malgorzata
Pankowska discusses these and other issues. The following is the link for this
paper: [malgorzata]. The paper emphasizes how important it is to have security
controls for an outsourcing project.

The outsourcing agencies should be subject to stringent security controls and
should be audited to make sure that security standards are adopted by
outsourcing agencies as well.

6.0 Code reviews and source code scanners

A developer has just finished coding an application. She has reviewed the code
to her satisfaction and finds no flaws in her program. Now the question is: can
she certify that the program is without any vulnerability? As per the application
design and development best practices, the answer should be “NO”. Because,
there are chances that the developer has overlooked some part of her application
code. Even in cases where the developer is 100% sure about her application
program, it is a good practice to employ code reviews and peer-reviews to make
sure that the application program has been coded according to the best
established practices. Assuming that the peer-review is a part of application
design and development process, reviewing code for Security flaws also should

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 22 -

be added to that process.

In the cases where it is humanly impossible to scan the code for flaws, source
code scanners and testing tools can be used. The popular code scanners include
RATS (Rough Auditing Tool for Security), Flawfinder, Pscan, Splint (Secure
Programming Lint), ESC/JAVA (Extended Static Checking for Java).

There are also other tools like AtStake WebProxy, SPIKE Proxy, WebserverFP,
KSES, Mieliekoek.pl, Sleuth, Webgoat and AppScan, which are useful in testing
the vulnerabilities in the application. Among these tools, Webgoat is an open
source tool that is aimed at educating developers on the most common web
application security and design flaws using practical exercises [pen-test3]. The
following paper is a good reference on Source code analyzers: [giac].

As for the database related scanning tools, please refer to [NGSSoftware]
website.

Although these tools cannot point out 100% of the flaws, they will be helpful in
identifying the flaws those would have missed otherwise.

7.0 Case study examples

In this section we will see few cases of programming flaws that can cause
vulnerabilities and which can be easily exploited. The examples have been
simplified to make it easy to follow.

(The case study examples are adapted from these references: [david1], [david2],
[owasp1], [pen-test2], [sql-inject1], [sql-inject2], [sql-inject3], [sql-inject4])

7.1.1 Input validation case

As we had discussed in earlier sections, applications can be subjected to attacks
if the inputs are not validated. Let’s consider following code segment:

<html><head><title> Order Entry System</title></head><body><center>
<h1>Order Entry Form</h1>
<FORM METHOD="POST" ACTION="/submitorder.jsp">
<table><tr><td> Item </td><td> <INPUT TYPE="text"NAME="itemnumber">
</td>
<td><INPUT TYPE="HIDDEN" name="itemprice" value="4.25">

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 23 -

<td> Quantity: </td><td><INPUT TYPE="text"NAME="totalnum">
</td>
</tr>
<tr><td><INPUT TYPE="submit" VALUE="Checkout"></td></tr>
</table></FORM></body></html>

The above code will render a screen shown in Fig.2 to the user. This screen is a
front end for hypothetical Order Entry system.

After entering required information, when the user submits the request,
“submitorder.jsp” a Java Sever Page is called to process the order.

Fig.2

Although the user is presented with only two of the input parameters, the third
parameter “itemprice” is hidden within the form. This hidden parameter can easily
be seen using “View/Source” options available in the browser. If the user edits
the “itemprice” using her favorite text editor, saves the page to her local drive,
and submits the form, if the “submitorder.jsp” page does not validate the inputs,
there is a good chance that the user gets a discounted price!

This case, apart from illustrating the importance of input validation, also brings
out other pertinent points, including:

- Use caution when using hidden variables in a web page. Hidden fields
should not store sensitive information. If there is a need to use hidden
fields to store critical information, consider using encryption.

- Pages are subject to source code disclosure issues. Examine the page
source to check if any sensitive information is disclosed.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 24 -

7.1.2 SQL Injection case

SQL injection attacks are great security threats to the information that is stored in
the databases. It is easy to carry out a SQL injection attack if the application
does not perform basic data validations. In the code snippet below we will see
how a SQL injection can be carried out:

<html>
<head>
<title> Quote Information</title>
</head>
<body>
<center>
<h1>Quote Information</h1>
<FORM METHOD="POST" ACTION="/getquotes.jsp">
<table><tr><td> User Name: </td><td> <INPUT
TYPE="text"NAME="inusername"> </td>
<td>Password: </td>
<td><INPUT TYPE="password"NAME="password"> </td>
</tr>
<tr>
<td><INPUT TYPE="submit" VALUE="GetquotesInfo"></td>
</tr>
</table>
</FORM>
</body>
</html>

The above code segment renders a screen with input fields for entering user
name and password for a hypothetical Quote Information system. This is a
typical system used by the Sales Managers/Agents of an organization to see
their quote information, commission information and other pertinent data.

After filling out the information, on submission the web page calls a Java Server
Page: “getquotes.jsp”. The “getquotes.jsp”, has an embedded JDBC statement
to access the database and to get the sales commission information from quotes
table. Following is a typical dynamic query that is used to get the information
based on the user name provided:

“ Select * “ +
“ From quotes where user_name = “+ inusername;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 25 -

If the application is coded such that the “inusername” is substituted in the above
query without validation, it is very easy to carry out SQL injection attack. We
need to simply provide user name as below:

username union select * where 1 = 1

When submitted, the dynamic query will look like as shown below:

Select *
 From quotes where user_name = username union select * where 1 = 1

The above query will return all the values from the database even though the
user name supplied is not valid and this will make hackers job easy.

Hackers use wide variation of SQL injection attacks. The following papers
provide more information on various SQL Injection techniques: [sql-inject1], [sql-
inject2], [sql-inject3], [sql-inject4]

The database is the heart of most enterprises. If the application has SQL
injection vulnerability it is easy to compromise the very heart of enterprise. So it
is important that every effort is made to avoid this vulnerability.

7.1.3 Command injection case

JAVA is a powerful language. When it is provided natively within the database, it
can be used to do more sophisticated programming, right within the database.

One of the features that a developer needs most is the ability to call external
programs, including host commands, from within the database. With the
availability of JAVA within the database, the task has become very easy.

For example, there is need to use the Operating System email utility to send an
email based on certain data conditions. Although there are other ways to
accomplish this, one of the ways is:

- Create a Java class to execute a host command. Load that Java class in to
the database using database vendor supplied routine.

- Define a wrapper database function to call the Java class.
- Use the function to call the mailing program.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 26 -

In an Oracle Database environment a sample Java class to call host command
would look like this:

CREATE OR REPLACE AND COMPILE JAVA SOURCE NAMED
"CallHostMail" AS
import java.io.*;
public class CallHostMail {
 public static String sendMail(String MailArgs){
 try{
//call host mail routine by passing the arguments
 Runtime.getRuntime().exec(MailArgs);
 return("0");
 }
 catch (Exception e){
 System.out.println("Error running mail: " + MailArgs +
 "\n" + e.getMessage());
 return(e.getMessage());
 }
 }
}

A wrapper function in Oracle can be created like this:

CREATE or REPLACE FUNCTION Call_Host_Mail_Program_Func(MailArgs
bIN STRING)
RETURN VARCHAR2 IS
LANGUAGE JAVA
NAME ‘CallHostMail.sendMail(java.lang.String) return String';

Although the developer’s intention was to send mails using this program, but this
program can also be used to run any host command, e.g:

Call_Host_Mail_Program_Func ('/usr/bin/cp /home/abc/a.txt
/home/abc/b.txt').

The above execution will copy files, from a.txt to b.txt.

This function can be very useful since it allows calling any host command from
database, but there is a danger in it too. A malicious user can insert commands

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 27 -

like this: Call_Host_Mail_Program_Func ('/usr/bin/rm *.*) and wipe out all the
data files from the host directory!.

How do we avoid this type of injection? Again, the answer is input validation. This
example makes another strong case for input validation, which is a common
thread in all the cases of programming related vulnerabilities. Also, it is very
important that the developer understands the technology that she is using and
the security implications of using such a technology.

The following references illustrate examples for Buffer Overflow, Format strings
vulnerabilities: [format-string], [buf-overflow] (please check under “Papers written
by NISR team members before NGSSoftware”, for these two references)

8.0 Conclusion

As mentioned earlier, firewalls provide security to the Organization’s
infrastructure to a great extent, but it is not adequate. Security experts agree that
best way to deal with the security is to adopt defense in-depth strategy.

Application developers have a responsibility in securing their organization’s
infrastructure. They have to follow certain guidelines and programming standards
while designing the code to prevent their code being used as a hacker’s tool.
Following the practices discussed in this paper and making them as a standard,
application developers can secure their code. Secure coding alone may not wipe
out all vulnerabilities, but application developers must at least do their part.

In summary, the secure programming practices include:

q Understand the application development environment in which the
application program is developed and deployed, and identify the
security risks associated with them.

q Apply basic secure coding principles to application programs, while
making the best use of security infrastructure that is built into the
application development and deployment environment. The coding
principles include:

• The application should know what is coming in. This helps avoid Buffer
flow, Script injection, SQL Injection, Format Strings vulnerabilities and
Counter SPAM etc.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 28 -

• The application should be structured and written with good flow and
controls. This helps to avoid Buffer Flow, Race conditions, and Script
Injection vulnerabilities.

• The Application should only call the trusted resources. Also, they
should make sure that only valid data is passed to and received from
external resources. This helps to avoid Command Injection/ Shell
escape, and Cross-Site scripting vulnerabilities.

• The application should limit access to the data only as needed for the
program logic and processing. This helps to avoid SQL Injection,
DATA theft etc.

• The application should guard what is being sent out: This helps to
avoid Script Injection, Format Strings, Buffer overflow etc.

As we have discussed in the paper, the application development tools and
technologies greatly influence the security environment. The security approach
will also differ based on the application tools and technologies that are chosen.
The technologies like JAVA, NET have built-in security infrastructure that make
security implementation easy. Also, some technologies have more security
issues than others. Understanding the tools and technologies and identifying the
security risks associated with them is a major step towards achieving a good
security solution.

By identifying vulnerabilities and taking steps to reduce risks at the application
development stage, organizations can add one more layer in their defense
against threats. This strategy of adding more and more layers of defense,
illustrate the principles behind the defense in-depth approach of securing the
applications from real world threats.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 29 -

References

[david1] David A. Wheeler , Secure Programming for Linux and Unix HOWTO,
v3.010 Edition, 3 March 2003, http://www.dwheeler.com/secure-programs

[david2] David A. Wheeler , Programming Secure Applications for UNIX-Like
Systems, 30 March 2003,
 http://www.dwheeler.com/secure-programs/secure-programming.pdf

[owasp1] A guide to building secure web applications, The Open Web
Applications Project, Version 1.1, Sep 22, 2002,
http://belnet.dl.sourceforge.net/sourceforge/owasp/OWASPGuideV1.1.pdf

[owasp1-guide-page] “The OWASP Guide to Building Secure Web Application
and Web Services” Web Page, http://www.owasp.org/documentation/guide

[owasp2] Ten most critical Web Applications Securities, January 13, 2003,
http://umn.dl.sourceforge.net/sourceforge/owasp/OWASPWebApplicationSecurit
yTopTen-Version1.pdf

[razvan] Razvan's Application Security Page
http://members.rogers.com/razvan.peteanu

[sans] Eric Cole, Jason Fossen, Stephen Northcutt, Hal Pomeranz, SANS
Security Essentials with CISSP CBK, 2003, Version 2.1, SANS Press

[cert] The CERT® Coordination Center (CERT/CC) Home Page, www.cert.org

[secure-code1] Mark.G.Graff, Kenneth R. van Wyk, Secure Coding, Principles
and Practices, 1st edition (July 2003), O'Reilly & Associates

[sun-java1] Security Code Guidelines, 2 February, 2000,
http://java.sun.com/security/seccodeguide.html

[sun-java2] Security, Learn how built-in Java security features and tools protect
your program and system from invaders.
http://developer.java.sun.com/developer/technicalArticles/Security/

[web-services-tutorial] Eric Armstrong, Stephanie Bodoff, Debbie Carson et
al,The Java Web Services Tutorial, et al, February 19, 2003,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 30 -

http://java.sun.com/webservices/docs/1.1/tutorial/doc/

[xml-secure] XML Security Home Page,
http://www.xml.org/xml/resources_focus_security.shtml

[malgorzata] Malgorzata Pankowska, “Outsourcing impact on security issues”,
http://figaro.ae.katowice.pl/~pank/secout2.htm

[wsdl] Web Services Description Language (WSDL) Home Page, 1.1,
http://www.w3.org/TR/wsdl

[uddi] Universal Description Discovery Integration (UDDI) Home Page,
http://www.uddi.org

[xml] Extensible Markup Language (XML) Home Page, www.xml.org

[webservices] Web Services Home Page, http://www.webservices.org

[owasp3] The Open Web Application Security Project Home Page,
http://www.owasp.org

[hackexposed] Joel Scambray, Stuart McClure, George Kurtz, Hacking Exposed
(Second Edition) 2001, Osborne/McGraw-Hill

[oracle-security] Marlene Theriault, Aaron Newman, Oracle Security Handbook,
2001, Osborne/McGraw-Hill

[cgi-security] Cgisecurity Home Page, http://www.cgisecurity.com/

[webservice-oreilley] O’Reilley’s Webservices.xml.org Home Page,
http://webservices.xml.com (Nov 10,2003)

[webproxy] AtStake WebProxy Home Page http://www.atstake.com/webproxy

[spike] SPIKE Proxy Home Page http://www.immunitysec.com/spike.html

[kses] KSES Home Page http://sourceforge.net/projects/kses

[mieliekoek] Mieliekoek.pl SQL Insertion Crawler,
 http://www.securityfocus.com/archive/101/257713

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 31 -

[sleuth] Sleuth http://www.sandsprite.com/Sleuth

[webgoat] Webgoat Home Page, http://www.owasp.org/development/webgoat

[appscan] AppScan Home Page,
http://www.sanctuminc.com/solutions/appscan/index.html

[ngsssoftware] NGSSoftware Home Page, http://www.nextgenss.com

[buf-overflow] “Buffer Overflow for beginners” Web Page,
http://www.nextgenss.com/papers.html ((please check under “Papers written by
NISR team members before NGSSoftware” for this reference)

[esc/java] Compaq Systems Research Center Home Page, “Extended Static
Checking for Java”, http://www.research.compaq.com/SRC/esc/Esc.html
2000.

[format-string] David Litchfield, “Windows 2000 Format String Vulnerabilities”
Web Page, http://www.nextgenss.com/papers.html (please check under “Papers
written by NISR team members before NGSSoftware” for this reference)

[flawfinder] “’Flawfinder” Homepage,
http://www.dwheeler.com/flawfinder/

[giac] Thien La, Secure Software Development and Code Analysis Tools, GIAC
Practical Paper, September 30th, 2002, http://www.sans.org/rr/papers/46/389.pdf

[oracle-java-9i] Oracle9i Java Developer's Guide
Release 2 (9.2), March 2002,
http://download-west.oracle.com/docs/cd/B10501_01/java.920/a96656/toc.htm, =

[pen-test1] Jody Melbourne and David Jorm, Penetration Testing for Web
Applications, Part 1, June 16, 2003, http://www.securityfocus.com/infocus/1704

[pen-test2] Jody Melbourne and David Jorm, Penetration Testing for Web
Applications, Part 2, July 3, 2003, http://www.securityfocus.com/infocus/1709

[pen-test3] Jody Melbourne and David Jorm, Penetration Testing for Web
Applications, Part 3, August 20, 2003, http://www.securityfocus.com/infocus/1722

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 32 -

[pscan] DeKok, Alan. “PScan: A limited problem scanner”, July 7th, 2000.
http://www.striker.ottawa.on.ca/~aland/pscan/

[splint] University of Virginia, Department of Computer Science, Splint - Secure
Programming Lint, 2002, http://splint.org/

[sql-inject1] Pete Finniga, SQL Injection and Oracle, Part One, November 21,
2002, http://www.securityfocus.com/infocus/1644

[sql-inject2] Pete Finniga, SQL Injection and Oracle, Part Two, November 28,
2002, http://www.securityfocus.com/infocus/1646

[sql-inject3] Chris Anley, (more) Advanced SQL Injection, 18/06/2002,
http://www.nextgenss.com/papers/more_advanced_sql_injection.pdf

[sql-inject4] Chris Anley, Advanced SQL Injection In SQL Server
Applications, 2002,
http://www.nextgenss.com/papers/advanced_sql_injection.pdf

[rats] “RATS”, Rough Auditing Tool for Security Web Page,
http://www.securesoftware.com/rats.php

[race] Raynal, Frederic. “Avoiding security holes when developing an
application - 5: race conditions”, January 27, 2003,
 http://www.security-labs.org/index.php3?page=122

[xss1] David Endler, The Evolution of Cross-Scripting attacks, May 20, 2002,
http://www.idefense.com/idpapers/XSS.pdf

[xss2] Paul Lindner, Preventing Cross-site Scripting Attacks, Feb 20, 2002,
http://www.perl.com/pub/a/2002/02/20/css.html

