
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Case Study in Information Security
GSEC – Assignment 1: Option 2

Version 1.4b

Using LDAP to solve one company's problem of
uncontrolled user data and passwords

Author: Andres Andreu
October 30, 2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 1

1. Abstract
This case study will analyze a massive undertaking of centrally consolidating
user data, and in particular passwords, from numerous sources. The effort goes
way beyond just the securely capturing and storing of the data but it builds a
framework whereupon the data can be successfully used by numerous disparate
applications for authentication, authorization, access control, and overall data
management. This project faced some hurdles which seem all too common in
the IT industry today. The number of applications for the company had grown
out of control due to legitimate business needs and with each application came
the responsibility and burden of user data security and management in very
different fashions. Each target application existed in an island, or in a stand-
alone model.

The analysis will show how using open source tools we faced the challenge, put
a solid solution in place, and did so without losing control of the technology and
while keeping the budget at hand manageable. Commercial software
alternatives were analyzed but we were after the maximum level of flexibility,
control, robustness, and resilience. As such, very expensive and closed third
party solutions did not appeal to us.

2. Before
2.1 The Challenges
The challenges our company (we will refer to it by the bogus name “Foo”) faced
were daunting and 2 fold. Foo is a very large media company with
offices/employees in over 110 countries. Moreover, Foo's client base ranges
from very large Fortune 50 companies to smaller, yet still global clients. There
was an IT driven requirement for change as well as a user community, or
business, driven one.

On the technological/IT front was challenge 1 - the problem of inconsistent
authentication mechanisms (mostly third-party driven), with different standards,
across numerous unrelated global applications. This was coupled with the end-
user facing issue, or challenge 2, of too many un-synchronized passwords to
remember for different, disparate, applications/data sources. These challenges
were set forth to me and I was tasked with designing, architecting, and deploying
a technology solution that would centralize end-user address-book type
data/password management, standardize authentication mechanisms,
standardize & centrally enforce corporate application password policy, and
subsequently introduce the end-user community into a single-password
environment across all targeted applications/systems. This was supposed to be
accomplished while keeping overall cost to a minimum. The cost factor was
important but not as important as the time frame. Foo had operated in chaos for
way too long and it was affecting client confidence in Foo's technological
capabilities. The engineering effort would end up spanning across multiple IT
disciplines including software engineering, networking, and security.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 2

We had to contend with budget constraints, the number of user objects in
question (initially 10,000+), and the fact that the design had to factor in user data
external to Foo. This rendered advanced authentication equipment/methods
such as biometrics equipment, smart cards, dual-channel mechanisms, etc, too
expensive and just downright unrealistic. The bottom line is that we at Foo had
to design and implement a solution that would work for Foo and Foo's clients
accessing our applications and data. Moreover, all the target applications for the
authentication piece were web based so browser usage was a hard,
unavoidable, requirement and the end-user authentication experience had to be
simply browser based. Besides that, we could not factor in the introduction of
any devices, or extraneous software, to a clients environment. We had to create
a solution to be effective when facing 2 lowest common denominators, the
human being (end-user) and the web browser.

2.2 The Team
The team was put together and led by me. As is typical in I.T. these days the
team members and I wore many hats during the life cycle of the project. I
managed the work of the internal team, as well as all outside contractors but I
played a major hands-on role as well. I directly led the architecture and
engineering efforts in a totally hands-on fashion.

3. During
3.1 The Design Decisions
A solution like the one we were tasked to build at its heart has a central data
store, or repository of some sort. The traditional norm of a database came to
mind immediately. At Foo, the Oracle1 and MySQL2 databases are used
extensively on other projects, and are actually a documented company standard.
But from our years of experience neither one of these database server software
is truly optimized for high performance in read (SELECT in the SQL world)
operations as opposed to heavy writes. MySQL2 is generally known for its
positive performance in SELECT SQL operations. But we were facing a data set
that would not change often but would be read heavily. The LDAP protocol
seemed like the right fit because it is optimized for few writes but many reads.
Our experience based decisions are echoed all over the web if research takes
place. In particular, according to Jon Roberts3, “The LDAP specifications require
support for the indexing of any attribute. Because data in a directory is pre-
normalized, appropriate queries are answered in optimal time (i.e. with
performance on at least the same order of magnitude as with any other database
system)...” On the replication front LDAP also had the edge due to its effective
transactional replication capabilities.

3.2 The Technology
In order to maximize the flexibility, internal control of technology, and robustness
of the proposed solution, all of the technologies chosen to meet all of the
requirements were entirely open in nature. Due to flexibility limitations and lack
of Foo control, proprietary technology was decided against from the onset of the
effort. The exact technologies chosen and implemented for the final solution are:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 3

• SuSE Linux
• OpenLDAP version 2.0.X
• XML
• Apache
• Tomcat
• SOAP based web services
• JBoss 3.X
• J2EE 1.4
• MySQL 3.X
• Perl 5.8.X
• Ruby 1.6.

At the heart of the solution is an OpenLDAP based directory. OpenLDAP is
described as “... an open source implementation of the Lightweight Directory
Access Protocol”4. We did extensive research into the various commercial
options for directory based solutions and basically decided to start our own from
scratch with a possible migration path to something commercial in the future.
The contender at design time was Sun Microsystems' I-Planet5 LDAP server. So
an internal requirement for the engineering team was to build something solid
based on documented standards so that if we ever decided migration off
OpenLDAP was necessary, it would be as smooth as possible. But, OpenLDAP
has stood the test of time thus far for us. We are now into the second year with
this solution in production on a global scale and no longer are seeking to replace
it.

3.3 The Schema
With technologies collectively decided upon we were set to start designing the
foundation of the solution, or the LDAP/directory schema. Often times data level
schemas are designed with functionality alone as a focus. But we were
designing with security, authentication, passwords, and functionality as focal
points.

The overall directory tree schema of the Foo directory went through an analysis
phase where we built mock directories and tested each setup. In analyzing high
load query performance we decided that a flat structure for user objects would
serve Foo best to keep all queries contained to one level. Multi-level tree
searches were just not responding as quickly as the flat hierarchy when running
queries side by side with large data loads as the search targets. Hence, the user
object organizationalUnit looks like:

• ou=people,dc=foo,dc=com

as opposed to something like:

• ou=internalPeople,dc=foo,dc=com
• ou=externalPeople,dc=foo,dc=com

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 4

where a query for any user object could possibly have to hit 2 sub-levels. After
all, when a query request for user data is submitted it is impossible to know up
front whether that object is internal to Foo or external. Under high query load the
flat structure proved to be more robust.

For user object data, the foo.schema was designed with Smith's RFC 27986 as a
focal point. From there we utilized SUP, or upwards inheritance, from
inetorgperson to inherit from top. Downwards, we referenced RFC 22527 by
Wahl, Coulbeck, Howes, & Kille. We did this to define Foo's customized schema
based on industry accepted standards. There are 2 levels of customization for
the schema post-inheritance, authorizedPerson and fooPerson (which has
upward SUP to authorizedPerson). The objectClass for authorizedPerson looks
like:

objectclass (
1.3.5.1.4.1.10903.101.5
NAME 'authorizedPerson'
DESC 'Extension of inetOrgPerson that contains authorization roles'
SUP inetOrgPerson
STRUCTURAL
MAY (hasAccessRole)
)

In foo.schema then there is:

objectclass (
1.3.5.1.4.1.10903.200.1001.1000
NAME 'fooPerson'
DESC 'authorizedPerson subclass with specific attributes for Foo'
SUP authorizedPerson
STRUCTURAL
MUST (internalOrExternal)
MAY (customAttrib1 $ customAttrib2 $ customAttrib3
 $ customAttrib4 $ customAttrib5 $ customAttrib6)
)

with the required attribute of:

attributetype (
1.3.5.1.4.1.10903.200.1001.1
NAME 'internalOrExternal'
DESC 'Flag denoting whether a person is an employee or not'
EQUALITY caseIgnoreMatch
SUBSTR caseIgnoreSubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{20}
SINGLE-VALUE
)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 5

The required (MUST) attribute of internalOrExternal is key from a security
perspective because we needed a clear way of differentiating between internal
users (Foo employees) and external ones (non Foo employees that have been
granted access to Foo data sources). Keeping in line with the flat hierarchy of
data for better performance, we totally adhere to the flat hierarchy while still
being able to differentiate all user objects (as internal to Foo or not [i.e. External])
by building this attribute in to the user object schema. There are further custom
schema extensions for foo.schema but they are beyond the scope of this security
discussion. The final objectClass level hierarchy for objects in
ou=people,dc=foo,dc=com looks like:

• objectClass: top
• objectClass: inetOrgPerson
• objectClass: authorizedPerson
• objectClass: fooPerson

The technical requirement at hand was that we had to store user objects both
internal to Foo and external as well. Numerous clients that do not directly work
for Foo are granted access to specific applications hosted within Foo's
infrastructure. So this aspect of the directory was designed to provide granular
level control of centrally managed and stored access control data.

One of the baseline foundations that we decided to build upon was Zeilenga's
RFC 31128. This document states that

“... storage schemes often use cryptographic strength one-way
hashing. Though the use of one-way hashing reduces the potential
that exposed values will allow unauthorized access to the Directory
(unless the hash algorithm/implementation is flawed), the hashing of
passwords is intended to be as an additional layer of protection.”

Further details of Foo's implementation can be seen in section 3.5 below.

3.4 Application Access Control
In analyzing the overall goal of tight application access security for Foo and for
our numerous clients, we determined that username and password should simply
not be enough to gain access in to any Foo resource. Luc Russell states that
“[a]ccording to the principles of Role Based Access Control (RBAC), users are
granted membership into roles based on their competencies and responsibilities
in the organization. The operations that a user is permitted to perform are based
on the user's role.”9 Thus, user objects would have to be granted a very specific
access privilege (one per specific application), using the hasAccessRole
attribute, to gain legitimate access to any Foo application resource. The
foo.schema was designed to improve on the traditional 2-factor, crackable and
brute-forceable, authentication of username and password. Foo's user object
level schema design revolves around the forcing of a tri-factor data-based
authentication model.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 6

3.5 LDAP Access Control
Foo's ldap design forces a tri-factor data-based authentication model. So
basically the destination applications need to understand this. They are taught
how to query for this third factor in order to actually use the data presented by the
framework. Rather then support the typical uid:userPassword LDAP bind model,
we at Foo found it far more secure to implement the tri-factor model which comes
with security requirements at different levels. There is more up-front work to do
designing the overall scheme but the extra work provides a more secure and
resilient infrastructure.

3.5.1 Access to LDAP data
We limit LDAP data read access to strategic accounts with the ability to perform
LDAP bind actions. This is done via OpenLDAP's ACL mechanism in the file
“slapd.conf”. A snippet from Foo's environment looks like:

defaultaccess none

access to attr=userPassword
by dn.children="ou=admin,dc=foo,dc=com" write
by anonymous auth
by self write
by * auth

access to dn="cn=FooAdmin,dc=foo,dc=com"
 by * none

access to dn.subtree="dc=foo,dc=com"
 by dn.children="ou=admin,dc=foo,dc=com" write

For each object granted access via the ACL, an LDIF file is created (and
maintained in a CVS repository) as such:

dn: cn=xAdmin,ou=admin,dc=foo,dc=com
objectclass: top
objectclass: person
cn: xAdmin
sn: Admin
userpassword:: {SSHA}2K48+ANSpPaWQsp4g+vL2OlOt3h8AhH9

That LDIF data is then ingested to the respective LDAP server (isolated to a
replicated slave) where read access is being granted. The LDIF data is added
with the ldapadd utility that comes standard with OpenLDAP distributions. Foo's
master LDAP server has the equivalent methodology with only a few strategic
accounts having write privileges and they are monitored via verbose logging.

This modular approach provides LDAP (protocol) level security in a loosely
coupled fashion. It gave us the ability to tightly design access control to the
directory itself. In this way we can also allow granular levels of access control.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 7

For example, object A is granted read access to server A, by default, object A is
not allowed to see any data on server B. On server B there would have to be an
explicit addition of object A's data and then a corresponding ACL entry in
slapd.conf to make this access possible.

With this mechanism Foo's model allows only one very specific account per
application, or any other access granted entity, to bind to an LDAP server. The
reason for not allowing anonymous bind, and to only allow strategic access with
read permissions, is that according to RFC 31128 “... [i]t is RECOMMENDED that
hashed values be protected as if they were clear text passwords...” We at Foo
took this recommendation very seriously.

Thus, very specific and controlled accounts are allowed to bind to LDAP and then
only those accounts are allowed to perform lookups, or to perform a query,
against the stored data. The data that is made available to these legitimately
binding accounts are the basic attributes used for the Foo tri-factor authentication
model are:

1. mail
2. userPassword
3. hasAccessRole

3.5.2 The Authentication Attributes
1. mail – this is the only true unique element in Foo's data set.

2. userPassword – this attribute has the very flexible ability to store a
password in hash form. Foo's deployment, as an organizational
standard, stores nothing password related in clear text. The deployment
supports the following one-way hashing algorithms:

• MD5
• SHA
• CRYPT (supported but not used)

For each one of these hashing schemes both hexadecimal and Base 64
encodings are supported. The solution had be this flexible because we would be
importing hashed password data from numerous disparate and legacy
databases.

We had no control over the legacy data we would face at Foo. As an example
we will hash the string p@s$w0rD. The stored data in Foo's hashed
userPassword attribute would then look like one of the following:

MD5 hex {MD5}6b92a5db2a5cbc46e854767bbf0cf8eb

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 8

MD5 hex {MD5}6b92a5db2a5cbc46e854767bbf0cf8eb
MD5 base64 {MD5}a5Kl2ypcvEboVHZ7vwz46w==
SHA hex {SHA}25eac497991ea306b643be3896913409fdfc53a3
SHA base64 {SHA}JerEl5keowa2Q744lpE0Cf38U6M

3. hasAccessRole - this is a multi-value custom attribute that has the
following structure in the schema:

attributetype (
1.3.5.1.4.1.10903.101.2
NAME 'hasAccessRole'
DESC 'Property of an authorizedPerson denoting an accessRole'
EQUALITY distinguishedNameMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
)

As values this attribute accepts basic strings in the following format:
uniqueIdentifier=XXX,ou=roles where “XXX” is typically a unique resource
identifier. Thus the authentication module has the secure ability to accept a
username and password but that will get a user no-where unless the appropriate
accessRole is also present for that respective user object upon query time.

3.6 Authentication
Now that the framework for this tri-factor model was in place we created some
mechanisms that would utilize it. Standardized authentication, leveraging the
now single password hash stored in LDAP, would be challenging because we
were facing numerous, very different systems. So we set out to create at least a
flexible choice of authentication mechanisms that all communicated appropriately
with the Foo LDAP space. The following modules/options were designed and put
in place:

1. SOAP based web service performing the authentication function. This
was written in Java and compiled using Ant. Leveraging the built in
JBoss abstraction of Apache::Axis this was compiled as a sessionBean
based web service and its details exposed via WSDL (for pseudo-code
and a snippet of the WSDL see appendix A). One of the serious
challenges at hand was the fact that the web service had to accept a
password in the clear. The reason for this is that we would never know
what the stored hash was. So we needed to, as securely as possible,
read a password in the clear and then hash this submitted password for
comparison based on the respective stored hashing scheme. Based on
this, TLS was a must for all SOAP clients utilizing this service. The
SSL/TLS certificate was applied server side and all respective clients had
to factor in an https call for authentication query data. Each respective
client is also given a static unique identifier string which identifies the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 9

accessRole privilege that needs to be checked on each authentication
query. There is a MySQL database that stores that client id data.

2. Built an LDAP TCP reverse proxy to allow direct access for those
applications that were natively X.500 clients and have been presented
with Foo bind credentials. The proxy protects the server on an
infrastructure level by never allowing TCP sockets directly to the server.
In this fashion the LDAP clients get access to the data while not allowing
sockets on ports other than those used for directory services.

3. Implemented the Radius protocol, as per Rigney, Willens, Rubens, &
Simpson's RFC 286510, as a custom server written in Ruby that
effectively communicates with Foo's LDAP. It was written to understand
the tri-factor model and overcome all of the inflexibilities inherent in
existing Radius solutions. We found all readily available Radius servers
operated in a pure directory bind model and that was just not sufficiently
secure for Foo's goals. For a snippet of the server code, see Appendix
B.

3.7 Replication
Replication model - the solution was being implemented for a globally dispersed
organization with offices in over 100 countries and even more globally dispersed
clients who needed access to LDAP controlled applications. The strategic design
of the LDAP infrastructure consists of a slurpd4 based model with one master in
the NY data center and 4 physical slaves:

• one in the main NY data center
• one in a separate co-location in NY
• one in the company's data center in London
• and one in the company's data center in Hong Kong

The lessons learned from 9/11 and the recent Northeast power outage guide the
strategic locations of servers holding key data with redundancy and high
availability heavily in mind. Moreover, a warm spare master server is being
created as this case study is being written.

3.7.1 The Master
The master LDAP server is a very hardened SuSE Linux Enterprise Server
(SLES) 8 with a strict IP-Tables configuration running internally. It has also been
put through an extensive Bastille11 hardening process. Furthermore, this server
is strategically positioned on a highly isolated segment of the Foo network.

3.7.2 The Slaves
Each one of the LDAP slaves is a very hardened SuSE Linux Enterprise Server
(SLES) 8 with IP-Tables running internally. They also go through an extensive
Bastille11 hardening process. Hence the slave servers are protected all the way
down to an OS level as part of the holistic approach followed during this project.

3.8 The Infrastructure
From a network infrastructure perspective, Foo has a meshed IPSec based

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 10

Nortel VPN to rely on. But we needed the LDAP framework to be highly
available. So we decided to build in full redundancy and be operational over the
public internet if there were ever problems with the VPN connections. For all
remote replications we utilize ssh tunnels riding on top of the ip-sec VPN tunnels
with secondary route paths across the public internet. Since IPSec and SSH,
from an encryption perspective, are mutually orthogonal this works beautifully
and we, in essence, have data moving to 3 physically distant destinations with
nested encryption. SSH works at the session layer (5) while IPSec operates at
the network layer (3) of the OSI model and so the 2 layers of encryption literally
just ride one above the other.

From a network downstream perspective, we sliced the globe by region. 4
regions were addressed as per the way Foo has its regional boundaries
established: EAME, NA, AP, LATAM. Each respective regional device look
upstream to their regional LDAP slaves as the primary service provider. They
also have secondary and tertiary backup configurations to look at other region's
LDAP slaves via SSH tunnels over the public internet. To provide an example:
an application server in Paris looks to London as the primary upstream regional
LDAP slave. It will attempt to establish the initial connection over port 389 via the
IPSec VPN. If that fails it will attempt to establish the connection to the same
server in London via an SSH tunnel over the public internet. If that also fails the
server will attempt an SSH tunnel connection to an LDAP slave at a highly
available co-located site in NY. If that fails as well it will attempt the same type of
connection to an LDAP slave residing in Hong Kong.

3.9 The Tools
For the ingestion and management of data we internally built numerous web
based tools. For convenience all of them are accessible via the https protocol so
a simple browser is all that is necessary. We utilize TLS certificates on all of
these ingestion points so as to subvert any attempts at sniffing on Foo's
transmissions. These tools range in functionality from the ability to create a
single user object to the uploading/ingestion of a comma-separated value (CSV)
file with mass amounts of data for processing/ingestion. One of the most
beneficial aspects of the tool set is that a user can have access revoked to one,
or a set of, application(s) by some very simple GUI based clicking mechanisms.
The changes are reflected throughout the global LDAP framework in near real-
time. Slurpd is fully transactional and operates very efficiently thus enhancing
the overall security at hand by ensuring that changes of data, especially the
removal of access roles, are propagated out to the LDAP slaves quickly and
reliably.

3.9.1 Domino XML2LDAP Bridge
We also coded a Java based servlet to be hosted on a Lotus Domino server that
would stream out XML of all the addressbook data. We then built a bridge
program to pull these XML streams from Domino via https, parse through the
stream, and then fully synchronize the target LDAP master server every hour.
The whole process is controlled by cron statements and is almost militaristically
timed/synchronized. The bulk of the Foo internal user community is managed by

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 11

these sets of functional code. No human intervention, other than the globally
dispersed Lotus administrators, is necessary for the data to get into LDAP in a
fresh manner every hour.

3.9.2 Password Change Tool
In order to minimize the need for human administrators we built a small but
effective tool to allow external user's to manage their own passwords.
Presenting appropriate credentials an external user is given a 2 hour window to
hit a very specific https entity to effect a password change in LDAP. The link,
which includes a very large random string which has a corresponding directory
on the web server, is emailed to the account seeking to effect the change. A
cron script runs every hour that does an rm (remove) on any directory that is
older (by timestamp of creation) than 2 hours. A successful password change
also kills the directory that just allowed the password change. This is done
entirely in Perl utilizing the CGI module.

3.10 Data Purposes
From a data perspective we identified the following uses for the data that would
be stored in the Sleepycat database and exposed via LDAP:

1. Authentication
2. Application/DB
3. Data Management
4. Single Sign On (SSO) Environment
5. Access Control

4. After
The current state is that Foo has gained great benefit from the labors of the
design, architecture, and deployment presented in this document. In specific, in
the following areas:

1. Authentication – numerous software systems now enjoy the benefit of a
single password environment when before each operated as an island of
data/functionality. Particular software systems at Foo that are all now
using LDAP exclusively for authentication:

• Foo's corporate web-based e-mail system
• Foo's client facing extranet (4 globally dispersed deployments)
• Foo's corporate intranet suite (5 distinct web applications)
• Foo's client facing high speed file transfer solution
• Foo's wireless network via Radius
• Foo's VPN solution
• Foo's PDA (Palm OS & Blackberry OS) Address Book

2. Application/DB – Foo has enabled LDAP to be the master source of user
data for numerous applications and put in place synchronization
mechanisms to regularly update the destination systems' databases.

3. Data Management – Foo uses LDAP for central data management.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 12

4. Distributed Single Password Model – LDAP has enabled Foo to achieve
a single password model irrespective of an environment full of disparate
systems.

5. Single Sign On (SSO) Environment – In specific cases, such as the
intranet suite, LDAP has enabled a true SSO environment.

6. Access Control – Integration between LDAP and strategic applications
has enabled LDAP to be a strict source of access control enforcement.

The bottom line for Foo is that prior to this solution being in place password
strength enforcement was impossible. There was a legitimate real world reason
for this in the fact that end-user pressure was intense. Business had to run and
the user's simply had too many passwords to keep track of. So as not to forget
passwords many violations of sound security practices were taking place, not as
overt violations but for business continuity. Password strength was softened for
ease of remembrance and this in turn eroded the security strengths of the
respective applications and data sources. Moreover, breach level of risk was at
an all time high because the end user community was managing all of their
passwords in very exposing fashions.

Couple the rogue password issue with the fact that Foo had very little control of
application user access control and the situation was such that client confidence
in Foo's security was far from optimal. There were just too many applications,
with too many users, with too many realms to manage, and not enough qualified
administrators. This is no longer an issue since our implementation has
centralized the access control data. We also built a very easy to use web based
administrative tool that empowers non-administrator types with very simple but
effective capabilities in the access control space. These folks are not IT staff but
control user access within their own mini-space, and now do so effectively with
very little training because the tool we built was designed with them as the focal
point.

A lot of work also went into the integration efforts to get applications to accept
credentials from an LDAP source. While this was very painstaking work, and
there was very little re-usable code, Foo's enterprise level of application
architecture now has a coherence and unity that, at Foo, was once looked upon
with nirvana-like qualities. The fact that the same unified source is authenticating
a user is facilitating single-sign on capabilities at Foo. The reason for this is that
application B now knows that a user establishing a session to it from application
A was authenticated using the same source of data. Thus, the source is trusted
just as if the user object went directly to application B.

While we now operate at risk of one password meaning a potential breach to
many systems, it means we face a different level of potential offender. Social
engineering aspects aside, there at least has to be some strong technical
knowledge present to steal a users password. This level of risk is very different
then simple knowing that 10 passwords are scribbled on a piece of paper and
sitting in an unlocked drawer in an exposed cubicle. Foo user's now have an
easier time simply remembering one password that will in turn (coupled with the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 13

proper access role in LDAP) grant them access to multiple specific resources. It
has allowed Foo as a whole to operate in a more secure space in the context of
end-user password strength and management.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 14

References:

1. Oracle 9i database URL: http://otn.oracle.com/products/oracle9i/index.html

2. MySQL Database Server
URL: http://www.mysql.com/products/mysql/index.html

3. Roberts, Jon: “Why use a Lightweight Directory Access Protocol (LDAP)
server?”.
URL: http://www.mentata.com/ldaphttp/why/ldap.htm

4. “OpenLDAP 2.0 Administrators Guide”:
URL: http://www.openldap.org/doc/admin20/intro.html

5. Sun ONE Directory Server
URL: http://wwws.sun.com/software/products/directory_srvr/home_directory.html

6. Smith, M. “ Definition of the inetOrgPerson LDAP Object Class.” April 2000.
URL: http://www.faqs.org/rfcs/rfc2798.html

7. Wahl, Mark; Coulbeck, Andy; Howes, Tim; Kille, Steve, “Lightweight Directory
Access Protocol (v3): Attribute Syntax Definitions.” December 1997
URL: http://www.faqs.org/rfcs/rfc2252.html

8. Zeilenga, K. “LDAP Authentication Password Schema.” May 2001.
URL: http://www.faqs.org/rfcs/rfc3112.html

9. Russell, Luc, “Introduction to Securing Web Applications with JBoss and
LDAP” URL: http://www.developer.com/java/ejb/article.php/3077421

10. Rigney, Carl; Rubens, Allan; Simpson, William; Willens, Steve, “Remote
Authentication Dial In User Service (RADIUS)” June 2000
URL: http://www.ietf.org/rfc/rfc2865.txt

11. Bastille Linux
URL: http://www.bastille-linux.org

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 15

Appendix A
Snippet from WSDL:
...
<wsdl:message name="authenticateUserRequest">
 <wsdl:part name="in0" type="xsd:string" />
 <wsdl:part name="in1" type="xsd:string" />
 <wsdl:part name="in2" type="xsd:string" />
</wsdl:message>

<wsdl:message name="authenticateUserResponse">
 <wsdl:part name="authenticateUserReturn" type="xsd:boolean" />
</wsdl:message>

<wsdl:portType name="LDAPLogin">
<wsdl:operation name="authenticateUser" parameterOrder="in0 in1 in2">
<wsdl:input message="impl:authenticateUserRequest"
name="authenticateUserRequest" />
<wsdl:output message="impl:authenticateUserResponse"
name="authenticateUserResponse" />
</wsdl:operation>
</wsdl:portType>
...

Pseudo-code for Authentication Web Service:

public boolean authenticateUser(mail, password, AccessString)
 Open up connections to the target OpenLDAP directory
 Setup SearchControls for subtree scope
 establish array of String objects { "hasAccessRole", "userPassword" }
 search targetContext (mail)

 if user object exists in LDAP
 get user password and accessrole attribute (based on AccessString)
 if the attributes have legit values
 get password, cast it as byte array and convert to string
 get accessrole attrib as multi-value

 if password is in hex
 loop thru enum of multi value attrib
 if accessrole value exists return true
 if password is base64 encoded
 loop thru enum of multi value attrib
 if accessrole value exists return true

 close connection to the target OpenLDAP directory
 else return false

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 16

Appendix B
Snippet from Radius Server:

def run_server

server = UDPsocket.open
server.bind ($radius_address, $radius_port)

start_time = Time::now
loop {
 build_ldap_cache
 start_time = Time::now
 while Time::now - start_time < $max_time_per_run

 if select ([server], nil, nil, 10)
 m = server.recvfrom (4096)
 server.send (_radius_response (m[0]), 0, m[1][2], m[1][1])
 end
 end
}

end

