
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials Bootcamp Style (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Exploring SSL and Its Related Components
Aurora Bataclan
GSEC Practical v.1.4.b (Option 1)
November 2003

Abstract

In a rapidly advancing technological society such as ours, the threat to our
privacy grows stronger everyday. It is possible for unethical third parties to spy
on our electronic conversations, to steal from us financially by taking our credit
card information, or worse yet to use our information to steal our identity.
Cryptography (vis-à-vis SSL) allows us to protect our privacy in the face of such
threats by enforcing the four cornerstones of secure communication:
confidentiality, data integrity, authentication and non-repudiation.

In this paper we will discuss SSL and how it helps us to overcome the security
challenges that face us today. We will start off by examining the types of
encryption utilized by SSL, followed by a more detailed look at how public-key
cryptography works. We will then discuss where SSL resides on the TCP/IP
protocol stack, as well as how the SSL Handshake takes place. Finally, we will
take a look at certificates, a player in SSL transactions, so that we can gain a
better understanding of how clients authenticate server certificates.

Challenges of Online Communication Today

Everyone uses the Internet nowadays, and it has evolved such that many people
just can’t get along without it. However, due to the nature of the Internet, it is
possible for someone to eavesdrop on our online conversations; to tamper with
our information as it is being transmitted through the wire; it is possible for an
unethical third party to pose as someone else, someone we trust, perhaps an
online store or a bank that we rely on for services. When our personal
information is on the line, we want to have some degree of confidence that it is
protected, that no one can snoop our traffic (eavesdropping). You want to have
some degree of certainty that when making online purchases, you truly are giving
your credit card information to Amazon or TheGap and not to some hacker
posing as your favorite online store (impersonation or spoofing). You want to
ensure that the $20.00 you agreed to pay for that sweater doesn’t get morphed
in-transit to a $2,000.00 charge on your credit card (tampering of data).

Secure Sockets Layer (SSL) is a protocol developed by Netscape whose goal is
to secure data transmitted over the Internet. SSL protects us from those hazards
mentioned above. It accomplishes this by utilizing a combination of techniques
to enforce the four cornerstones of secure communication; namely,
confidentiality, integrity, authentication and non-repudiation. Confidentiality is
achieved through the encryption of transmitted data; data integrity is achieved
through the application of message authentication codes (MACs); authentication,

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

and non-repudiation are achieved through the use of RSA’s Public Key
Cryptography. Although SSL is application independent and can be
transparently utilized by any number of applications, it is optimized for HTTP.
Most people will encounter SSL whenever they go online to shop and pay for
their items with their credit card, or when they do online banking. When you visit
a secure site and see the “https://” string prepended to your URL (as well as the
closed padlock on the bottom right corner of your browser), you are participating
in a transaction utilizing the SSL protocol. This means that data exchanged
between you and the server you are communicating with is encrypted, a
validation of the server’s identity has taken place, and you can be rest assured
that the data you send to the server will not be altered along the way (or that if it
is altered, it will invalidate your transaction).

For purposes of this discussion we will focus on the most prevalent use for SSL –
the communication between a web server (“SSL server”) and a browser (“SSL
client”). It should be noted, though, that this is only for ease of discussion. In
actuality, the potential uses for SSL are quite varied and not limited to the HTTP
protocol.

The Four Strongholds of Secure Communication

Before we go any further, let us go over the definitions of the four pillars of
secure communication: confidentiality, data integrity, authentication and non-
repudiation.

a. Confidentiality. This means that when two parties are communicating, it
is not possible for someone to eavesdrop on their conversation. Encrypting an
online conversation helps to ensure confidentiality because a hacker won’t be
able to make heads or tails out of the data that is flowing through the wire. There
are two kinds of encryption schemes to choose from: symmetric (shared-key)
encryption and asymmetric (public-key) encryption. An example of a public-key
algorithm would be RSA (developed by Rivest, Shamir and Adleman), and an
example of a symmetric algorithm would be DES (Data Encryption Standard,
used by the U.S. Government) or Triple-DES (DES applied three times).1

b. Data Integrity. This means that a message is not tampered with or
dropped while in transit to its final destination. SSL utilizes something called
Message Authentication Code (“MAC”) to ensure that a message has not been
tampered with. MACs are hashing algorithms, a function which you put a
message through. Hashing algorithms accept messages of any length, and the
output is called a ‘message digest’, which is of fixed length. Two of the most
popular hashing algorithms are SHA-1 and MD5.

1 Introduction to SSL, http://docs.sun.com/source/816-6156-10/contents.htm

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

c. Authentication. This means ensuring that the entity you are
communicating with really is whom you think it is. This is accomplished by way
of public-key encryption. In addition, certificates provide a way of binding a
public key to a name. There is, however, a caveat: these methods are effective
to the extent that the private key is kept a secret. If one is careless with storage
of the private key, and it falls into the wrong hands, then it is possible for the
unscrupulous third party to impersonate the true owner of the private key.

d. Non-repudiation. Authentication and non-repudiation go hand-in-hand. If
you can prove that a message originated from a certain entity, then that entity
cannot later deny having sent the message. That is non-repudiation.

Encryption Types Used by SSL: Symmetric vs. Asymmetric

There are two types of encryption that SSL uses: symmetric and asymmetric.
Symmetric encryption means that a single key is used for both encryption and
decryption of data:

Encryption: plaintext --> symmetric key --> ciphertext
Decryption: ciphertext --> symmetric key --> plaintext

Figure 1. Encryption and decryption with shared (symmetric) keys.

In the figure above, note that the term plaintext stands for non-encrypted data,
while the term ciphertext represents encrypted, unreadable data. This type of
encryption is very fast, providing high network throughput. The downside to
symmetric key encryption is that it requires both parties involved to be vigilant
about keeping the symmetric key a secret. Let’s say Alice and Bob are
communicating via symmetric encryption. As long as no one else has the secret
symmetric key, Alice has some certainty she really is communicating with Bob
and vice-versa. But what if a third party, Lucy, were to obtain the symmetric key?
Not only can Lucy pose as Bob or Alice (violating authentication and non-
repudiation), she can also decrypt any messages sent by either party (violating
confidentiality), as well as tamper with any message she chooses before sending
it on its merry way or dropping it altogether (violating message integrity).

Asymmetric encryption, on the other hand, involves the use of a key pair: a
public key and a private key:

Encryption: plaintext --> Alice’s public key --> ciphertext
Decryption: ciphertext --> Alice’s private key --> plaintext

Alternatively,

Encryption: plaintext --> Alice’s private key --> ciphertext
Decryption: ciphertext --> Alice’s public key --> plaintext
Figure 2. Encryption and decryption using public (asymmetric) keys.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

These keys utilize cryptographic algorithms that, mathematically, are functional
inverses of each other. Although the algorithms used to derive the keys are
mathematically related, one of its inherent properties is that, given one of the
keys, it is virtually impossible to derive the other. As stated by Dana Mackenzie
in her article “The Code War”:

“The security of many public-key systems ... is explicitly based on
the long-standing challenge in the branch of mathematics known as
number theory ... Given a (very, very large) number obtained by
multiplying two other numbers, find the two (very large) numbers
that were multiplied to produce it. These numbers can be thought
of as keys that lock and unlock the encryption code. The task of
finding these keys is so difficult that snoops must either be bizarrely
lucky ... or they must solve a problem that has stumped the
smartest people in the world for more than 2000 years.”2

As its name implies, the public key can made freely available. It can be
distributed either via email, or by storing it on a publicly accessible directory. The
private key, on the other hand, is kept secret. For example, if Alice and Bob
were to communicate using asymmetric encryption, each of them would have two
keys: a public key, which they would send to each other or store in a public
place, and a private key, which each of them keeps secret and guards closely.
The idea behind asymmetric encryption is that any data that is encrypted with the
public key can only be decrypted with the private key, and any data encrypted
with the private key can only be decrypted with the public key. Asymmetric
encryption is slower than its symmetric counterpart, utilizing more resource
overhead, hence it has a lower network throughput.

SSL uses asymmetric encryption only for authentication. According to
Netscape’s DevEdge article How SSL Works: “Netscape has licensed RSA
public key cryptography from RSA Data Security Inc. for use in its products,
specifically for authentication.”3 After both parties have been successfully
authenticated, client and server agree upon a symmetric (shared) key, which is
used for the remainder of the session (bulk data encryption).

Public Key Cryptography: A Closer Look

Many online discussions and tutorials depicting the how public key cryptography
works use the names ‘Alice’ and ‘Bob’ to illustrate the two parties that wish to
authenticate each other via PKI. I will maintain that convention in this paper.
Before we delve into the details, however, let us take a moment to clarify the
terminology we will be using in the discussion below.

2 Dana Mackenzie, The Code War, http://www.beyonddiscovery.org/content/view.article.asp?a=3420
3 How SSL Works, http://developer.netscape.com/tech/security/basics/index.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Notation Meaning
MSG Alice’s message to Bob
pub-key Public key
priv-key Private key
Apub-key, Apriv-key Alice’s public key and private key, respectively
Bpub-key, Bpriv-key Bob’s public key and private key, respectively
(MSG) Parentheses around ‘MSG’ indicates encryption of MSG
{MSG} Curly brackets around ‘MSG’ indicates decryption of MSG
(MSG)Apub-key MSG has been encrypted using Alice’s public key
{MSG}Apub-key MSG has been decrypted using Alice’s public key
MSGH Hashed Message
sym-key Symmetric (shared) key

In describing how public key cryptography works, we are making the assumption
that Alice and Bob already have each other’s public keys. We are also not
concerning ourselves, at least momentarily, with certificate validation. The main
purpose of this section is to depict how two parties would use public key
cryptography to: (1) authenticate each other; and (2) transmit a shared key.

Step 1: Alice has a message to send

Alice wants to send a confidential message, MSG, to Bob.

Step 2: Alice creates a digital signature

According to the FAQ discussions in the RSA Security website, “Sometimes one
may want to verify the origin of a document, the identity of the sender, the time
and date a document was sent and/or signed, the identity of a computer or user,
and so on. A digital signature is a cryptographic means through which many of
these may be verified.”4 Alice creates a digital signature in order to prove that
she signed the message and also to ensure integrity of the message as it goes
across the wire.

Essentially, a digital signature is a message digest that has been signed with a
user’s private key. To create a digital signature, Alice puts MSG through a hash
function (normally SHA-1 or MD5), resulting in MSGH. A hash is a one-way
function which, when applied towards plaintext, produces an indecipherable
message digest. A hash function can accept a message of any length, and will
produce a digest that is much shorter and fixed in length. Since the hash is a
one-way function, the resulting message digest cannot be reversed to produce
the original message.

4 RSA Laboratories, Cryptography FAQ, “What is a digital signature and what is authentication?”
http://www.rsasecurity.com/rsalabs/faq/2-2-2.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Alice encrypts MSGH with her private key. The result is a hashed message which
has been digital signed by Alice (using her private key). That’s all a digital
signature is. Depicted another way, this is what creating a digital signature looks
like (where hash_function would correspond to a hashing algorithm like SHA-1 or
MD5):

MSG à <hash_function> à MSGH à (MSGH)Apriv-key

Graphically depicted, this is what Alice’s digital signature looks like:

(MSGH)Apriv-key
Figure 3: Alice’s digital signature

As mentioned above, Alice creates a digital signature to accomplish two things:
(1) to prove that she signed the message and (2) to prove the integrity of the
message. The way this is done will become clearer as we go through the
remainder of the steps, but as a heads up, since she signed the message with
her private key, that means it can only be decrypted with her public key. That
means, when Bob (later on down the line) decrypts the digital signature using
Alice’s public key, he will know that the message must have come from Alice
because he was able to decrypt it successfully using her public key. Next, the
reason hash functions can prove message integrity is because Bob also knows
what hash function to use for messages sent by Alice. Later on, when he
receives the plaintext version of MSG, he can run a hash through it and see if the
message digest matches what Alice sent. If it matches (i.e., checksum comes
out identical) then he knows the message has not been tampered with.
Therefore, because of that, we can now see how digital signatures accomplish
two things: authentication and verification of message integrity. It should be
noted that since Bob can authenticate that Alice sent the message, this also
accomplishes non-repudiation (if Bob can prove that Alice sent the message, she
cannot say at some later time that the message didn’t come from her).

At this point Alice actually attaches her message, MSG, to her digital signature.
She then encrypts the entire message with Bob’s public key and sends it to Bob.

Figure 4: Alice’s digital signature with message attached, encrypted with Bob’s public key

Step 3: Bob receives Alice’s message

When Bob receives Alice’s message, the first thing he does is to decrypt the
message with his private key. This will result in Alice’s digital signature with
MSG attached:

((MSGH -)Apriv key MSG) Bpub-key

(MSGH -)Apriv key MSG

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 digital signature plaintext message
Next Bob ensures the message truly came from Alice by extracting her digital
signature, (MSGH)Apriv-key. Bob already has Alice’s public key, so he can use that
to decrypt the hashed message. Bob extracts Alice’s digital signature from the
packet, uses her public key to decrypt it, and ends up with the message digest:

{(MSGH)Apriv-key} Apub-key --> MSGH

Step 4: Bob creates his own hash of MSG

In the message that Bob received from Alice was a plaintext version of MSG. At
this point both Alice and Bob know which hashing algorithm (aka “message
authentication code”, or “MAC”) to use because they have already agreed upon it
(i.e., as part of the SSL Handshake, which is discussed below). Bob now needs
to ensure the integrity of the message he has received. He does this by running
MSG through a hash function (the same one Alice ran MSG through). If the
message has not been tampered with, the resulting hash will be identical, bit for
bit, to the hashed message that Alice sent him (which was sent with the digital
signature). If the message has been tampered with, Bob will detect a
discrepancy between the two hashed messages, and the conversation will be
terminated.

Graphically depicted, here is what Bob does:

MSG à <hash_function> à MSGH

If Bob’s MSGH = Alice’s MSGH, the integrity of MSG is intact, and the
conversation between Bob and Alice can continue securely. That concludes the
use of public key cryptography for authentication.

Using Public Key Cryptography to transmit the Shared Key

It was mentioned above that public key cryptography can also be used to
transmit shared (symmetric) keys. This can be done in conjunction with the use
of digital envelopes. According to RSA Laboratories, Cryptographic FAQ:
“When using secret-key cryptosystems, users must first agree on a session key,
that is, a secret key to be used for the duration of one message or
communication session. In completing this task there is a risk the key will be
intercepted during transmission. This is part of the key management problem
Public-key cryptography offers an attractive solution to this problem within a
framework called a digital envelope.”5

Essentially, a digital envelope is a combination of two things: (1) a message that
has been encrypted with a shared symmetric key; and, (2) a symmetric key that

5 RSA Laboratories, Cryptography FAQ, “What is a digital envelope?”,
http://www.rsasecurity.com/rsalabs/faq/2-2-4.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

has been encrypted with another party’s public key. The procedure for
transmitting a shared key using public key cryptography and digital envelopes is
as follows:

Step 1: Alice creates a random session key (aka, shared symmetric key, sym-
key). How this is done will be further explained below, in the discussion of the
SSL Handshake Protocol.

Step 2: Alice encrypts the message she wants to send to Bob with the
symmetric key:

(MSG) sym-key

Step 3: Alice encrypts the symmetric key (sym-key) with Bob’s public key (Bpub-

key):

sym-key à (sym-key) Bpub-key

Step 4: Alice puts the output from Steps 2 and 3 together, and voila! She now
has a digital envelope. Graphically depicted, this is what the digital envelope
looks like (note that the left side is the encrypted message, the right side is the
encrypted symmetric key):

 Encrypted Message Encrypted symmetric key

(MSG) sym-key (sym-key) Bpub-key

Figure 5: A digital envelope

Step 5: Bob reads the message by using his private key to decrypt the
symmetric key.

{(sym-key) Bpub-key} Bpriv-key --> sym-key

Step 6: Bob reads MSG by using sym-key to decrypt it.

{(MSG) sym-key} sym-key --> MSG

And that is how Bob and Alice can use public key cryptography to exchange
symmetric keys. From the discussion above, we can see how public key
cryptography is well suited to securely authenticating both parties in an SSL
transaction.

SSL connections vs. SSL sessions

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

At this point we now turn our attention away from public/symmetric encryption
and focus more on the actual SSL protocol.

An SSL connection is a transient, peer-to-peer relationship between two hosts
within a network. Every connection is associated with a session; in fact, it is
possible for more than one connection to be associated with one session.
Connections associated with a session acquire that session’s cryptographic
security parameters.

An SSL session is an association between a client and a server created by the
SSL Handshake Protocol. It is the SSL Handshake Protocol that defines the
cryptographic security parameters that are valid for a given session. Sessions
are created to avoid the resource overhead of having to renegotiate new
cryptographic security parameters for each new connection.

SSL on the TCP/IP Protocol stack

In the TCP protocol stack, you will find SSL in between the Application and
TCP/IP (Transport) layers, leveraging the capabilities of the TCP protocol to
ensure reliable end-to-end connectivity. SSL is actually comprised of several
sub-protocols, as depicted below: 6

SSL Handshake
Protocol

SSL Change
Cipher Spec
Protocol

SSL Alert Protocol HTTP

SSL Record Protocol
TCP
IP

Figure 6. The SSL Protocol Stack

SSL Record Protocol

The higher level SSL Protocols (SSL Handshake Protocol, SSL Change Cipher
Spec Protocol, SSL Alert Protocol) use the SSL Record Protocol to transmit
messages “in a secure manner with message integrity ensured”. 7 The way it
does this is as follows:

• The SSL Record Protocol takes an application message to be transmitted
(from the higher level SSL protocols)

• The data is fragmented into sizes 16KB or smaller

6 Information on how the SSL Protocols function was gleaned from four separate sources:
http://134.193.15.25/vu/course/cs596A/lessons/topic20/SSL/sld011.htm,
http://www.windowsecurity.com/articles/Secure_Socket_Layer.html, http://wp.netscape.com/eng/ssl3/3-
SPEC.HTM#7-3 and http://mit.iddl.vt.edu/courses/cs5244/coursecontent/mod6/lesson3/sec23.html
7 http://www.windowsecurity.com/articles/Secure_Socket_Layer.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

• At this point it is possible to compress the data. However, compression is
not an option in SSL version 3.0; hence, this operation does not take
place.

• A Message Authenticate Code (MAC) value of the application message is
created and added to the data fragment.

• The application message and the MAC are encrypted using symmetric
encryption.

• An SSL Record header is appended to the fragment.
• The unit is passed down the TCP protocol stack as a TCP segment.

Change Cipher Spec Protocol

This protocol consists of a single byte (value=1). Its purpose is to verify that
future transactions for a given session will use the agreed upon CipherSpec and
keys.

Alert Protocol

This protocol consists of two bytes. The first byte can take one of two types of
values: warning message, or fatal message. If a fatal message is delivered, the
SSL session is terminated. The second byte contains error codes.

Handshake Protocol

The Handshake Protocol initiates the session between client and server. This is
where client and server authenticate each other, negotiate an encryption
algorithm, a MAC algorithm and cryptographic keys to be used. The Handshake
Protocol consists of four distinct phases:

Handshake Protocol Phase 1. The association between client and server is
initiated, security settings are established. The client initiates Phase 1 of the
Handshake Protocol by sending a “client_hello” message. The following
parameters can be found in the client_hello message:

Parameter Meaning
SSL version
number

Highest version of SSL which the client supports

Cipher Suite Key exchange methods and CipherSpec supported by
the client. Examples are: RSA, Diffie-Hellman,
Fortezza; RC4, RC2, DES, 3DES,

Random data Random structure (combination of 32-bit timestamp
and 28 bytes from a random number generator)

Session ID Session identifier. A Session ID of 0 signifies a new
session.

Compression Compression method supported by client
Figure 7. Information sent by the client inside the “client_hello” message.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The server responds in kind with a server_hello message:

Parameter Meaning
SSL version
number

Lowest version of SSL supported by the client and the
highest version supported by the server

Cipher Suite Cipher Suite chosen by the server from the list of
options presented by the client

Random data Random structure (combination of 32-bit timestamp
and 28 bytes from a random number generator)

Session ID If client session ID = 0, server’s session ID will be the
value of a new session; else, server’s session ID will
be same as client’s session ID

Compression Compression method chosen by the server from the
list of options presented by the client.

Figure 8. Information sent by the server inside the “server_hello” message.

Handshake Protocol Phase 2. In this phase the server sends the client its
certificate (in which the client will find the server’s public key). If the server does
not have a certificate, it will send the client a server_key_exchange message, in
which the client and server can create keys to use for future communication. If
the server requires client authentication (which is optional with SSL), it is at this
point that the server would request certificate information from the client. At the
end of Phase 2, the server sends the client a server_done message, then it waits
for the client’s response.

Handshake Protocol Phase 3. The client authenticates the server by verifying
information received (from the server). If the server requested a client certificate,
it is at this point that the client would send its certificate back to the server. If the
client successfully authenticates the server, it generates a pre-master secret key.
It uses a temporary RSA key from the server_key_exchange message OR the
server’s public key from the certificate to encrypt the pre-master secret.

Handshake Protocol Phase 4. Client sends the server a change_cipher_spec
message, which establishes the agreed-upon cryptographic settings as the
current configuration for the session. In response, the server will also send a
change_cipher_spec message to the client. This concludes the handshake, and
the session is closed. However, the session state is left open so that
communication could resume at any time using the agreed-upon parameters.

Generation of the Symmetric Key8

Both server and client have the same premaster secret (since the client sent the
server the premaster secret in Handshake Protocol Phase 3). They both process

8 The information on how symmetric keys are generated were obtained from: Introduction to SSL,
http://docs.sun.com/source/816-6156-10/contents.htm

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

the premaster secret through a hash algorithm to generate a master secret. The
client and server then respectively process the master secret to generate session
keys. Note that both server and client and perform these steps separately. They
each end up with their own session keys, which are synonymous to symmetric
keys. The symmetric keys are used to encrypt/decrypt data during the SSL
session.

The client then sends a message to the server with the session key to be used
for the remainder of the SSL session (for data generated by the client). The
client also sends a separate encrypted message to the server indicating that the
client portion fo the SSL handshake is complete. The server does the same; it
sends a message to the client with the session key to be used for the remainder
of the SSL session (for data generated by the server), as well as sends a
separate message to the client indicating the server piece of the SSL handshake
is also complete.

How SSL Uses Certificates

Certificates are a way of binding a public key to a name. According to
DevEdge’s Online Documentation: “A certificate is an electronic document used
to identify an individual, a server, a company, or some other entity and to
associate that identity with a public key. Like a driver’s license, a passport, or
other commonly used personal IDs, a certificate provides generally recognized
proof of a person’s identity.”9 For instance, if Alice wants to communicate with
her online bank (let’s call it “E-Bank”) via SSL, how does she know it’s really E-
Bank she’s talking to? Certificates provide a means for Alice to consult with a
trusted third party (aka, “trusted CA”) to verify that E-Bank really is whom it says.

How a certificate is authenticated

When a certificate is being authenticated, the authenticating party needs to verify
four items10: (1) the certificate has not yet expired; (2) they need to check
whether the CA that signed the certificate is a CA that they trust; (3) to make sure
the certificate has not been tampered with, the CA’s digital signature is also
verified; finally, (4) the verifying party needs to make sure that the server’s
domain name and its DN value on the certificate are the same:

(1) Verifying that the certificate has not expired

9 http://docs.sun.com/source/816-6154-10/
10 The information on how certificates are authenticated was derived from
http://docs.sun.com/source/816-6156-10/contents.htm

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The client checks the validity period in the certificate and ensures that it has not
expired.

(2) Verifying that the signing CA is a trusted one

If Alice wants to communicate with E-Bank, she initiates the conversation with
the E-Bank server (i.e., via her browser). What she will get from E-Bank is a
certificate. The certificate will be signed by a certificate authority (“CA”). In her
browser, Alice maintains a list of CAs that she trusts. If you’re using Internet
Explorer, you can find the list of trusted CAs by selecting Tools --> Internet
Options --> Certificates --> Certificates.

Figure 9. List of trusted CAs stored on an Internet Explorer browser

If the CA that signed E-Bank’s certificate is on the list of Alice’s trusted CAs, she
can move on to Step 3.

(3) Verifying that the certificate has not been tampered with

The certificate from the server contains a digital signature signed by the
certificate issuer. Recall that a digital signature is a message digest that is
signed by a user’s private key. If the CA is on the list of Alice’s trusted CAs, then
she has the CA’s public key stored in her repository (on her browser). She uses
that public key to decrypt the CA’s digital signature. She also verifies that the
server certificate hasn’t been altered since the digital signature was signed. If
that is successful, then she knows that the cert is valid. She can then move on to
the next step.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

(4) Verifying that the server’s domain name and its DN value on the certificate
are the same

This step is not technically part of the SSL handshake, but as part of a security
precaution, the client needs to determine that the server’s domain name and the
DN value on the certificate are identical.

(5) Client authenticates server certificate

Assuming all the previous steps completed successfully, the client can now
authenticate the server certificate.

By authenticating the server’s certificate, the client now has some assurance that
she is communicating with the correct entity, and the SSL connection can
proceed as usual.

Conclusion

That sums up our discussion of SSL. We saw where SSL resides on the TCP/IP
protocol stack, we discussed the types of encryption SSL uses, the process
behind public key cryptography and the SSL Handshake. We saw the role that
certificates play in the SSL handshake, as well as how the client can authenticate
a server certificate. SSL is a wonderful tool for us to have today; without it, all E-
Commerce transactions would be impossible. This all happens under the covers,
without any need for manual intervention from the end user; however, it would
benefit everyone to have some understanding of how SSL works and how it
protects their information. As this paper illustrates, there are many components
to SSL; it is my hope that this discussion was able to provide a clear overview of
SSL’s various parts and how they interact with each other.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

References

Onyszko, Tomasz . Secure Socket Layer. 19 July 2002 URL:
http://www.windowsecurity.com/articles/Secure_Socket_Layer.html (15 Oct.
2003)

Harn, Lein. Secure Web Applications – SSL. 22 December 2000 URL:
http://134.193.15.25/vu/course/cs596A/lessons/topic20/SSL/sld001.htm (15 Oct.
2003)

Oliva, Mark. Lesson 3: Secure Sockets Layer.
http://mit.iddl.vt.edu/courses/cs5244/coursecontent/mod6/lesson3/sec23.html (19
Nov. 2003)

Netscape Communications Corporation. Introduction to SSL. 09 October 1998
URL: http://docs.sun.com/source/816-6156-10/contents.htm (19 Oct. 2003)

Mackenzie, Dana. The Code War. February 2003. URL:
http://www.beyonddiscovery.org/content/view.article.asp?a=3420 (01 Oct. 2003)

Internet Draft SSL 3.0 Specification. Work-in-progress. URL:
http://wp.netscape.com/eng/ssl3/3-SPEC.HTM#7-3 (19 Nov. 2003)

Netscape Communications Corporation. How SSL Works. 1999
http://developer.netscape.com/tech/security/basics/index.html (01 Oct. 2003)

RSA Laboratories. RSA Laboratories' Frequently Asked Questions About
Today's Cryptography, Version 4.1. 2000. URL:
http://www.rsasecurity.com/rsalabs/faq/index.html (01 Oct. 2003)

Netscape Communications Corporation. Secure Sockets Layer. 2003
http://wp.netscape.com/security/techbriefs/ssl.html (01 Oct. 2003)

Verisign, Inc. Introduction to Public Key Cryptography.
http://www.verisign.com/repository/crptintr.html (01 Oct. 2003)

Netscape Communications Corporation. Introduction to Public-key
Cryptography. 1998. URL: http://docs.sun.com/source/816-6154-10/ (19 Nov.
2003)

Last Updated: October 28th, 2016

Upcoming Training

SANS Sydney 2016 Sydney, Australia Nov 03, 2016 - Nov 19, 2016 Live Event

SANS Gulf Region 2016 Dubai, United Arab
Emirates

Nov 05, 2016 - Nov 17, 2016 Live Event

SANS Miami 2016 Miami, FL Nov 07, 2016 - Nov 12, 2016 Live Event

Community SANS Detroit SEC401 Detroit, MI Nov 07, 2016 - Nov 12, 2016 Community SANS

SANS London 2016 London, United
Kingdom

Nov 12, 2016 - Nov 21, 2016 Live Event

Healthcare CyberSecurity Summit & Training Houston, TX Nov 14, 2016 - Nov 21, 2016 Live Event

SANS San Francisco 2016 San Francisco, CA Nov 27, 2016 - Dec 02, 2016 Live Event

Community SANS San Diego SEC401 San Diego, CA Dec 05, 2016 - Dec 10, 2016 Community SANS

Community SANS St Louis SEC401 St Louis, MO Dec 05, 2016 - Dec 10, 2016 Community SANS

Community SANS Richmond SEC401 Richmond, VA Dec 05, 2016 - Dec 10, 2016 Community SANS

SANS Dublin Dublin, Ireland Dec 05, 2016 - Dec 10, 2016 Live Event

SANS Cyber Defense Initiative 2016 Washington, DC Dec 10, 2016 - Dec 17, 2016 Live Event

SANS vLive - SEC401: Security Essentials Bootcamp Style SEC401 - 201612, Dec 13, 2016 - Feb 02, 2017 vLive

Community SANS Virginia Beach SEC401 Virginia Beach, VA Jan 09, 2017 - Jan 14, 2017 Community SANS

Community SANS Marina del Rey SEC401 Marina del Rey, CA Jan 09, 2017 - Jan 14, 2017 Community SANS

SANS Security East 2017 New Orleans, LA Jan 09, 2017 - Jan 14, 2017 Live Event

Mentor Session - SEC401 Philadelphia, PA Jan 10, 2017 - Feb 21, 2017 Mentor

Community SANS New York SEC401 New York, NY Jan 16, 2017 - Jan 21, 2017 Community SANS

Community SANS Chantilly SEC401 Chantilly, VA Jan 23, 2017 - Jan 28, 2017 Community SANS

SANS Las Vegas 2017 Las Vegas, NV Jan 23, 2017 - Jan 30, 2017 Live Event

SANS vLive - SEC401: Security Essentials Bootcamp Style SEC401 - 201701, Jan 30, 2017 - Mar 08, 2017 vLive

SANS Southern California - Anaheim 2017 Anaheim, CA Feb 06, 2017 - Feb 11, 2017 Live Event

Community SANS Albany SEC401 Albany, NY Feb 06, 2017 - Feb 11, 2017 Community SANS

SANS Munich Winter 2017 Munich, Germany Feb 13, 2017 - Feb 18, 2017 Live Event

Community SANS Seattle SEC401 Seattle, WA Feb 13, 2017 - Feb 18, 2017 Community SANS

SANS Scottsdale 2017 - SEC401: Security Essentials Bootcamp
Style

Scottsdale, AZ Feb 20, 2017 - Feb 25, 2017 vLive

Community SANS Philadelphia SEC401 Philadelphia, PA Feb 20, 2017 - Feb 25, 2017 Community SANS

SANS Scottsdale 2017 Scottsdale, AZ Feb 20, 2017 - Feb 25, 2017 Live Event

SANS Dallas 2017 Dallas, TX Feb 27, 2017 - Mar 04, 2017 Live Event

Community SANS Minneapolis SEC401 Minneapolis, MN Feb 27, 2017 - Mar 04, 2017 Community SANS

Community SANS Boise SEC401 Boise, ID Mar 06, 2017 - Mar 11, 2017 Community SANS

http://www.giac.org/registration/gsec
http://www.sans.org/link.php?id=41552&mid=98
http://www.sans.org/sydney-2016
http://www.sans.org/link.php?id=44142&mid=98
http://www.sans.org/gulf-region-2016
http://www.sans.org/link.php?id=43402&mid=98
http://www.sans.org/miami-2016
http://www.sans.org/link.php?id=45510&mid=98
http://www.sans.org/Community SANS
http://www.sans.org/link.php?id=43862&mid=98
http://www.sans.org/london-2016
http://www.sans.org/link.php?id=44680&mid=98
http://www.sans.org/healthcare-cyber-security-summit-2016
http://www.sans.org/link.php?id=43372&mid=98
http://www.sans.org/san-francisco-2016
http://www.sans.org/link.php?id=45792&mid=98
http://www.sans.org/Community SANS
http://www.sans.org/link.php?id=45535&mid=98
http://www.sans.org/Community SANS
http://www.sans.org/link.php?id=45327&mid=98
http://www.sans.org/Community SANS
http://www.sans.org/link.php?id=45022&mid=98
http://www.sans.org/dublin-2016
http://www.sans.org/link.php?id=27544&mid=98
http://www.sans.org/cyber-defense-initiative-2016
http://www.sans.org/link.php?id=43002&mid=98
http://www.sans.org/vLive
http://www.sans.org/link.php?id=45972&mid=98
http://www.sans.org/Community SANS
http://www.sans.org/link.php?id=46927&mid=98
http://www.sans.org/Community SANS
http://www.sans.org/link.php?id=45567&mid=98
http://www.sans.org/security-east-2017
http://www.sans.org/link.php?id=47182&mid=98
http://www.sans.org/mentor/about.php
http://www.sans.org/link.php?id=47067&mid=98
http://www.sans.org/Community SANS
http://www.sans.org/link.php?id=46335&mid=98
http://www.sans.org/Community SANS
http://www.sans.org/link.php?id=45632&mid=98
http://www.sans.org/las-vegas-2017
http://www.sans.org/link.php?id=47442&mid=98
http://www.sans.org/vLive
http://www.sans.org/link.php?id=45637&mid=98
http://www.sans.org/anaheim-2017
http://www.sans.org/link.php?id=46742&mid=98
http://www.sans.org/Community SANS
http://www.sans.org/link.php?id=45490&mid=98
http://www.sans.org/munich-winter-2017
http://www.sans.org/link.php?id=46460&mid=98
http://www.sans.org/Community SANS
http://www.sans.org/link.php?id=47497&mid=98
http://www.sans.org/vLive
http://www.sans.org/link.php?id=47262&mid=98
http://www.sans.org/Community SANS
http://www.sans.org/link.php?id=45642&mid=98
http://www.sans.org/scottsdale-2017
http://www.sans.org/link.php?id=45647&mid=98
http://www.sans.org/dallas-2017
http://www.sans.org/link.php?id=46922&mid=98
http://www.sans.org/Community SANS
http://www.sans.org/link.php?id=46575&mid=98
http://www.sans.org/Community SANS

