
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

!!
[VERSION!April!2014]!

!
! !

SECURE SOFTWARE DEVELOPMENT
FRAMEWORK: PRINCIPLES AND PRACTICES

GIAC (GSEC) Gold Certification

Author: Michael H. Matthee, michael.h.matthee@gmail.com
Advisor: Richard Carbone

Accepted: 11 November, 2014

Abstract

While larger, more resourceful organizations such as Microsoft’s Secure Development

Life-cycle may have sufficient funds and resources to develop their own customized

security processes and routines, less affluent ones usually do not. Application security

controls are best applied in context of the underlying development environment. Different

environments demand different objectives; the large disparity between free open-source

projects like OpenSSL to commercially motivated endeavors like Microsoft is simply one

of many. Although it is generally accepted that unique circumstances demand uniquely

tailored solutions, no framework exists within the software development industry to

demarcate the principles and practices of application security to unique organizational

needs and circumstances. Drawing from new developments in software engineering, a

secure application development framework is developed in this paper that is sensitive to

the culture, team, stakeholders, infrastructure, and technological characteristics of an

organization. The framework enables management to apply software security controls

that are fit for purpose, in the right manner, at the right time, and in light of their unique

organizational circumstances.! !

GIAC GSEC Gold Paper! 2!
!

Michael!Matthee:!michael.h.matthee@gmail.com! ! !

1. Introduction
A common approach is that software delivery is realized through a set of sequential

deliverables in a phased and systematic manner. The software process model of the IEEE

attempts to bring order to the delivery process by identifying a set of universal artefacts

and activities in software construction (Gustafson, Melton, Chen, Baker, & Bieman,

1988). The hypothesis states that the building blocks of this model can be arranged and

re-arranged to describe and measure a software development approach practiced within

the industry. This assertion is questionable. Scacchi (2001) argues that in the advent of

the Internet, open-source software construction, geographically distributed work efforts,

and new models of development are arising that are more sensitive to social and

organizational circumstances. Great technological shifts have happened since 1988. Yet,

the information security community still uses this model to communicate, analyze,

measure, and understand secure software practices. The Defense-in-Phase (or Phase)

strategy is depicted in Figure 1 below.

Figure 1: The conventional building blocks of a secure development process. Image was
redrawn from Merkow & Breithaupt (2014).

Secure practices such as code review, vulnerability assessments, and requirements

analysis are carefully applied during each phase of development. A summary of the

Phased approach is given by Merkow & Breithaupt (2014) and are listed below:

Requirements Design Development Test Deployment

Map Security
and Privacy

Requirements

Threat
Modeling

Security
Design Review

Static Analysis

Peer Review

Security Test
Cases

Dynamic
Analysis

Final Security
Review

Application
Security

Monitoring and
Response Plan

GIAC GSEC Gold Paper! 3!
!

Michael!Matthee:!michael.h.matthee@gmail.com! ! !

o Requirements phase: Non-functional requirements that involve application

resilience and security are mapped to critical security goals during this phase of

construction. The security goals involve the confidentiality and privacy, integrity,

availability, non-repudiation, and auditing of information.

o Design phase: Security subject matters are involved during the design and

architecture of the system to ensure that good design decisions are made. During

this phase the system is decomposed into functional blocks (e.g. using data flow

diagrams). This decomposition allows the team to assign and establish a level of

trust for each component within the system. Firstly, security threats and their

potential impact are identified and ranked for each component. Thereafter,

mitigation strategies are drawn up for each threat and then integrated into the

design. Examples of threats include spoofing a user’s identity, tampering with

system data, a user denying that he/she purchased a specific product or elevating

his/her privilege levels, an attacker gaining sensitive information such as credit

card numbers, or an attacker that executes a denial of service against a software

system. Threats can be ranked by their potential damage, how easy it will be to

reproduce or launch a specific attack, the number of customers that will be

affected by such an attack, and how easy it would be to find a vulnerability that

may assist such an attack. A peer review practice may be used to leverage

specialist expertise from across the organization to mitigate these potential threats

and vulnerabilities within the software design.

o Development phase: A static analysis tool such as Checkmarx (2014) or Sonar

(2014) can be used to detect potential code defects, perform stylistic and type

checks, as well as perform security vulnerability reviews. Performing code

inspection and reviews from time-to-time and writing unit tests help to produce a

more robust system that is less prone to exploits. The validation of boundary

conditions and the prevention of buffer overflows and underflows are some of the

benefits from implementing such secure coding practices.

GIAC GSEC Gold Paper! 4!
!

Michael!Matthee:!michael.h.matthee@gmail.com! ! !

o Testing phase: Software defects and vulnerabilities that are not discovered during

the development phase would hopefully be found by a security testing tiger team.

Potential exploits such as SQL injection, cross site scripting, and SSL hijacking

are discovered during the testing phase. Automated testing tools such as SoapUI

Smartbear (2014) can be used to automate or replay many of the tasks involved.

Such an automation practice is also known as dynamic code analysis.

o Deployment phase: The deployment phase involves the coordination between

several teams with a strong presence of managerial oversight. Teams from release

management, change management, testing, production, and operations engage

with one another to ensure that the best possible version is deployed. Ongoing

monitoring and periodic testing is conducted to ensure that the software remains

resilient in light of changing infrastructure. Infrastructural changes could involve

a change in a server’s hardware or a software patch to an operating system.

It would be reasonable to think that such an approach will prevent vulnerabilities and

produce secure software that is resilient to attack. However, this is only partially true.

The truth is that a greater attack surface is at play during software construction.

Whereas secure development practices and activities remain useful, the approach outlined

by Merkow & Breithaupt (2014) is constrained to the building blocks of Gustafson,

Melton, Chen, Baker, & Bieman (1988). As a consequence, the aforementioned Phased

approach fails to:

o Track the progress and maturity toward a secure development environment

holistically. For example, it does not reflect the side effects or vulnerabilities of

shipping a product with incomplete functionality, neither the use of bleeding edge

technologies and/or development platforms. A mechanism is required to trace the

maturity of interrelated security assets such as the requirements, technology, team

dynamics, stakeholders, and strategic opportunities during an incremental and

iterative software delivery process.

GIAC GSEC Gold Paper! 5!
!

Michael!Matthee:!michael.h.matthee@gmail.com! ! !

o Establish greater trust between the producers and consumers of software within a

tightly integrated software industry. Consider a vulnerable operating system patch

on a specific Android handset or a software dependency on a vulnerable version

of OpenSSL. Although a team may be producing secure software internally,

credible assurance of third party dependencies remains unknown while confined

to the boundaries of the Phased model. A complimentary and vendor neutral

security index (similar to CCMI) is needed that ranks an external dependency

according to its risk and potential vulnerability profile.

o Focus on establishing and maintaining a loyal, honest and dependable workforce.

The Phased approach does not detect and prevent despondent team members from

introducing malicious activities or code during the development process.

Although control checks may be in place to prevent malicious code from being

shipped, in theory, factors such as team synergy, trust, honesty and openness

amongst the team members are not addressed explicitly within the model. The

Edward Snowden incident, as an example, questions the boundaries of a

member’s loyalty to secretive programs, personal ethics, and the satisfaction of

public interest (Schneier, 2013). Regardless of the verdict, team dynamics play a

vital part in forming secure applications that are free from loopholes and prying

backdoors.

o Permit the extendibility, flexibility and adaptability of software processes to

include future enhancements and the tailoring of it to unique organizational

circumstances. The changing application vulnerability landscape mandates that

the security framework should be flexible enough to introduce newly developed

practices and methods over time in order to remain resilient to new attack vectors

(Vinod, Anoop, Firosh, Sachin, Sangit, & Siddharth, 2008). Moreover, security

testing and software deployment is best conducted as a continuous activity in

order to capture problems as early as possible during the software construction

and delivery process.

GIAC GSEC Gold Paper! 6!
!

Michael!Matthee:!michael.h.matthee@gmail.com! ! !

Unlike the Phased model that delineates a software construction process into blocks of

engineering activity, the ISO27034 standard (2014) recommends that secure development

should be approached more holistically. The software production and consumption eco-

system is a tightly knit production line where a vulnerability in one entity affects another.

Software companies, outsourced development houses, software toolkits, hardware

providers, cloud providers, and supply chains all play a role in producing a safe and

secure software product in the end. A number of “secure” development processes claim

to address these security concerns. However, none of them frame the essence of secure

development principles and practices for general applicability, nor do they fully address

application security from a holistic perspective. Two secure development processes that

are in common use today are outlined below:

o The OWASP Comprehensive, Lightweight Application Security Process

(CLASP) lists a collection of 24 security-related practices that may be reused in a

different context. The CLASP methodology has a heavy reliance upon team

organization and roles of responsibility (Information Resources Management

Association, 2013). The methodology consists of several perspectives:

! The Concepts perspective sets its focus on the authorization, confidentiality,

authentication, availability, accountability, and non-repudiation of

organizational resources. This is accomplished by spurring on a cultural

affinity toward secure principles and practices within the team through the

induction of awareness programs and the monitoring of security metrics; the

implementation of practices through the capturing of security requirements,

implementing them and constructing vulnerability remediation procedures;

and guiding those practices by publishing operational security guidelines.

! The Role-based perspective assigns roles and responsibility to the various

team members. Whereas designers, architects and project managers are

GIAC GSEC Gold Paper! 7!
!

Michael!Matthee:!michael.h.matthee@gmail.com! ! !

trained with overall security in mind, developers need only focus on the

intricacies of secure coding by following guidelines, policies and standards.

! The Activity-assessment perspective is a collection of activities (or security

controls) to be implemented during the project endeavor. Each control is

mapped and assigned to one or more roles defined in the Role-based

perspective.

! The Activity-implementation and vulnerability perspectives detail the

intricacies of implementing the various security controls and categorizing

anticipated risk exposure, respectively.

Although the CLASP methodology seems to cover most areas within a development

environment, it is not always contextually relevant (Win, Scandariato, Buyens,

Grégoire, & Joosen, 2007). The activities and practices of CLASP can be successfully

reused in medium-to-large organizations and be integrated into existing processes that

are mature, plan-driven and systematic. However, difficulties arise when attempting

to integrate the principles and practices of CLASP to existing agile processes like

eXtreme Programming (Win, Scandariato, Buyens, Grégoire, & Joosen, 2007).

o The Microsoft Secure Software Development Lifecycle (or SSDL) claims to be

the first process to comply with ISO27034 prerequisites (Microsoft, 2010).

According to the Information Resources Management Association (2013)

Microsoft SSDL’s guiding principles are to:

! Produce secure software designs using the practices listed under the Phased

approach.

! Assume that something is not required until asked for by applying the

principle of least privilege, avoiding risky default changes and enforcing

strong security controls by default.

GIAC GSEC Gold Paper! 8!
!

Michael!Matthee:!michael.h.matthee@gmail.com! ! !

! Perform secure deployments by producing deployment guides for others to

follow and by installing analysis and patch management tools to continuously

monitor events on a production system.

! Outline incident response procedures by engaging the consumer community.

In summary many of the practices established by the Microsoft SSDL are simply

elaborations and improvements to the guidelines set out by the Phased approach

previously mentioned. However, Microsoft does make the process more flexible by

defining a collection of security activities that are interchangeable across the entire

project endeavor. Microsoft admits that its process is not a solution for all environmental

characteristics and situations (Microsoft, 2010). Instead, it advocates that its process

contains a set of practices that can be reused in different contexts if desired. Whereas

CLASP addresses security from a much broader perspective, Microsoft SSDL is narrowly

focused on a set of practices while some parts of the process are characterized as

guidelines rather than specific process activities (Win, Scandariato, Buyens, Grégoire, &

Joosen, 2007). This makes practical applicability within specific situations difficult as no

framework exists to port the principles and practices of Microsoft SSDL to other project

endeavors.

Both CLASP and Microsoft SSDL have limited means to make quantitative

measurements and they both provide low visibility on any improvements made while in

use (Win, Scandariato, Buyens, Grégoire, & Joosen, 2007). Moreover, both processes

lack contextual relevance for distinct and unique organizational needs. According to the

United States Department of Homeland Security, nearly 50% of all traditional software

security assurance activities are not compatible with Agile methods while less than 10%

are natural fits to the Agile cause (Noopur, 2014). A framework is needed that would

encourage and enforce secure software practices irrespective of the selected development

approach or contextual nuances.

GIAC GSEC Gold Paper! 9!
!

Michael!Matthee:!michael.h.matthee@gmail.com! ! !

Instead of advocating a set formula for achieving information security in an organization,

the ISO27001 standard suggests that a tailored solution be used in order to satisfy the

unique needs of each and every organizational environment (ISO/IEC 27001, 2013).

Unfortunately, the standard does not indicate how such tailoring is to occur, nor does it

mention mechanisms that may be used to analyze the development environment

analytically. A recent webcast held by SANS reiterated this concern (SANS, 2014). From

this discussion, it was understood that developmental context plays a crucial role in

mitigating software vulnerabilities such as the OpenSSL Heartbleed attack from re-

occurring.

Is there a way to classify an organizational environment categorically? Moreover, can

such a classification be used to tailor a software development process to deliver the right

security controls at the right time?

Instead of advocating a silver bullet in answer to security breaches within applications, a

set of reusable principles and practices (collectively called a software security kernel) is

suggested that works for any working environment and enables management to tailor a

solution to their unique needs and situation. Furthermore, situational characteristics are

identified and are tied to the possible styles of applying security controls within an

organization. Together, the principles and practices of the security kernel forms a

Defense-in-Depth strategy that can be used to mitigate incidents in an ever-evolving

application vulnerability landscape.

2. Secure principles and practices: forming the software

security kernel

According to dictionary.com (Dictionary.com, 2014):

A principle is a general and fundamental truth that may be used in deciding

conduct or choice: to adhere to principle.

GIAC GSEC Gold Paper! 10!
!

Michael!Matthee:!michael.h.matthee@gmail.com! ! !

Whereas principles guide our actions, a practice puts them into action:

A practice is the act of doing something: he put his plans into practice

(Dictionary.com, 2014)

Together, principles and practices form decisions that people make on a daily basis.

Software practices range from the rigor of highly structured discipline-based approaches

to others that are more creative and affluent in nature. Empirical and creative security

practices involve exploration and experimentation, such as TDD, penetration testing and

malware analysis. Such practices are useful whenever a high degree of uncertainty,

ambiguity or obscurity is present within a work endeavor. These practices are classified

as crafted practices. Security practices that commonly demand more discipline and

managerial oversight are well-defined tasks with step-wise enforcement procedures, such

as executing a disaster recovery plan or a business continuity plan. These practices are

classified as plan-driven practices. The selection of one practice over another is driven by

factors both inside and outside of a team. Whether the end goal is a speedy delivery of a

website launch or the meticulous planning of a successful moon landing, different

objectives demand different approaches to achieving them. During a project endeavor

security controls may be applied in order to align engineering practices to security

principles and objectives, such as the confidentiality, integrity and availability of

information.

The term security kernel is used to highlight the maturing aspect of security within an

organization. Some of the practices that are good today are not necessarily the best option

for tomorrow. As Lee Copeland (2014) put it:

There are no best practices - there are, however, good practices in specific

contexts.

GIAC GSEC Gold Paper! 11!
!

Michael!Matthee:!michael.h.matthee@gmail.com! ! !

By employing a specific practice during a software project endeavor, management can

influence its successful outcome. An obstacle is knowing when and how a particular

practice should be employed.

2.1. Employing security practices: controlled or crafted?

According to Myburgh (2014) software engineering should be viewed as a complex

adaptive system. Whereas other engineering disciplines have clearly defined steps and

outcomes (e.g. the laws of Newton that remain consistent over time), software

engineering is somewhat more idiosyncratic in nature with a high degree of additional

complexity. This additional complexity is attributed to software’s dependence upon the

ingenuity of people and their interactions with one another.

Two primary forces are present in software engineering as a complex adaptive system.

The first force is the strategy for producing the system (a result of selected engineering

practices). The second force is the manner in which controls are enforced (a consequence

of the selected management style).

From an information security perspective, application security controls are enabled by

secure software development practices. The security practice can either be plan-driven or

crafted. This forms the first force within the situational applicability model of Myburgh

(2014).

Management and control processes together form a second force within software

engineering. Management style can be categorized as either formal or informal. A formal

management style is followed when management maintains close supervision over

production processes. In this situation, management seeks detailed visibility within the

development process, which can only be attained through close monitoring and planning

of the software construction process. An informal management style means that

management is less involved in the production of software and relinquishes discretionary

power to others working in the field (e.g. a technical lead or an architect that may drive

the technical architecture and design of a software system). In such instances, technical

GIAC GSEC Gold Paper! 12!
!

Michael!Matthee:!michael.h.matthee@gmail.com! ! !

staff has greater autonomy in their way of working while management is less involved in

the finer details.

Figure 2: Ways to control and enforce security during software development. Image was
adapted from the situational process model (Myburgh, Towards Understanding The
Relationship Between Process Capability And Enterprise Flexibility, 2009). The left
corner is colored red to denote a high degree (or frequency) of reflection while the color
blue (on the right) correlates with slowly changing and systematic regulatory demands.

However, making the impact of engineering practices visible (as in Section 2.4) provides

management with greater visibility in the defensive posture of a specific development

environment and the software that is being produced within it. This enables management

to make decisions that are more informed. Sometimes more managerial oversight (or

formal management) is required to achieve and maintain security compliance.

Compliance defines the minimum standard for ensuring that a secure development

environment is formed. Other times, however, it may be beneficial for management to

stand back (informal management) in order to allow the team to push the conventional

boundaries of application security to new frontiers.

GIAC GSEC Gold Paper! 13!
!

Michael!Matthee:!michael.h.matthee@gmail.com! ! !

The combination of the chosen management style and the selected engineering practices

form four distinct areas of operation as depicted in Figure 2. The combination of informal

management with organic engineering, which predominantly involves the use of crafted

practices, forms the crafted quality (CrQ) domain. A formal management style combined

with a well-defined software development effort and a dominance of plan-driven

practices forms the controlled quality (CoQ) domain. This range of CrQ to CoQ domains

forms a band of software engineering best practices (Myburgh, 2009). From Figure 2, this

range of good engineering practices would constitute the horizontal region between the

CrQ domain on the left and the CoQ domain on the right.

Two other combinations exist within this model, the controlled costs domain (CoC) and

the self-directed domain (SeD). The CoC domain is the result of voracious demands by

management on practices that require sufficient experimentation, exploration and

innovation to be completed successfully. An example would be the strict enforcement of

testing procedures, methods and steps during a penetration testing exercise. The

combination of crafted security practices (like penetration testing) with formalized

expectations (e.g. the number of vulnerabilities or exploits that should be found) is likely

to produce inconclusive results. This may foster politicking, cover-ups and blame shifting

within the development environment when things go wrong (Myburgh, 2009). It would

be more effective to encourage a culture that propels security awareness and reward

crafted practices such as defensive coding and penetration testing using an informal

management style. Informal rewards could be employed through the instigation of

employee prestige, team celebration and honorary respect. This stands in contrast to an

enforcement style that may utilize strict schedules and procedures while mandating pre-

determined outcomes.

At the other end of the spectrum (bottom corner of Figure 2)!resides another undesired

enforcement style. The self-directed domain (SeD) is the result of little managerial

oversight against well-defined tasks and procedures. An example of such step-wise

security practices is the planning and execution of a disaster recovery plan or even a

GIAC GSEC Gold Paper! 14!
!

Michael!Matthee:!michael.h.matthee@gmail.com! ! !

business continuity plan. Consider the following emergency: a tornado hits the premises.

In preparation for such an incident, it is important that all software repositories are

backed-up to a safe and secure remote facility. Furthermore, attention should be taken not

to leave sensitive software assets (such as requirements, blueprints or design documents)

while evacuating the facility. Failure to do so may compromise the defensive posture of

the software product. If employees are left to their own devices (and not supervised

during the evacuation procedure), they are likely to succumb to their primeval instincts

and overlook the protection of sensitive information. This would personify a self-directed

(SeD) enforcement style where workers are relied upon to save the day while

management secedes responsibility for any failure. During emergencies, it is better not to

succumb to emotional decision-making processes. In such situations, a well thought-out

and planned checklist procedure that is enforced in a controlled manner (CoQ) would be

more effective.

Security risk within a software product is the product of potential threats and the

vulnerabilities that it may expose. These threats and vulnerabilities are not restricted to

coding practices alone, but may be introduced via its environment, sometimes

unbeknownst to its creators. Thankfully, information security controls exist to mitigate

such security risks and their potential attacks against the confidentiality, integrity and

availability of software products and the information that it holds.

Determining when and how a particular security control should be applied is depended

upon the context of the environment as well as the risk exposure of the software artifact

that is to be secured.

2.2. A development environment in context

In essence security controls are not limited to the engineering intricacies of software

construction (e.g. addressing cross site scripting and SQL injection vulnerabilities) or

managerial governance (e.g. a risk management or a business continuity plan), but are

also subject to unique situational characteristics that are present during the development

effort. For example, the development environment (whether cubicles or war rooms are

GIAC GSEC Gold Paper! 15!
!

Michael!Matthee:!michael.h.matthee@gmail.com! ! !

used), the supporting tools or build systems that are used, the software’s intended purpose

and function, and the stakeholders that are involved are all situational elements that needs

to be accounted for during the enforcement of security controls. Failure to do so may

jeopardize the successful outcome of a project. An effective software development

process (SDP) should enable management to enforce software security controls at the

right time and in the right manner. It is therefore important that a project’s situational

characteristics (such as the developer’s working environment) are adequately understood

during the software development life-cycle (SDLC).

From a high-level perspective, Boehm & Turner (2003) outline five environmental

variables one could use to capture the unique situational characteristics of a specific

software project endeavor. These variables – as viewed from an information security

perspective - are examined below:

o Size: The size of a project determines how much management and control is

required during the software delivery process. A large software project endeavor

(like implementing the software control systems of a Mars expedition) requires a

significant amount of coordination and well-documented communication

channels. Consequently, interception of communications (e.g. corporate or nation

state espionage) or the spreading of misinformation (e.g. the malicious actions of

delinquent employees) becomes easier and the risk of compromise is higher. A

large-sized project would therefore require additional plan-driven practices in

order to remain secure. A smaller project, like the construction of a small web

site, can do away with most of the heaviness involved in stringent control and

planning measures.

o Criticality: The sensitivity and purpose of a particular software product

determines how critical its various deliverables are to the utility, brand and

reputation of an organization. For example, the exact, precise and secure

implementation of control software for a nuclear power facility is vital. Not only

does an imprecise implementation run the risk of system failure, moreover, the

effects of an exploited system by terrorist organizations would be detrimental. For

GIAC GSEC Gold Paper! 16!
!

Michael!Matthee:!michael.h.matthee@gmail.com! ! !

example, the software of critical infrastructure in a nation-state (such as power

plants and telecommunications) demands more plan-driven practices. In contrast,

the compromise of a personal blog would not be devastating to the general

population.

o Personnel: The demands of creative and innovative software production require

the involvement of more talented and skilled individuals. A well-defined working

environment with systematic work routines and procedures can succeed with less

skilled employees using plan-driven practices, for example factory workers that

perform routine packing tasks. In contrast, a creative and innovative creation

demands well-trained and highly skilled individuals with greater degrees of

autonomy. For example, an unskilled and inexperienced workforce tasked with

the design and development of a complex and mathematically inextricable

cryptographic function would likely produce a solution that is error-prone,

vulnerable and insecure.

o Dynamism: Detailed planning and big-design up front would work best in a stable

environment where requirements are less likely to change. A highly dynamic

environment that requires rapid response and feedback to implementation details

is best met with greater flexibility and adaptability. For example, constructing a

new software product requires more adaptability and change than maintaining an

old code-base. Constraining an upstarting development exercise to tightly, fixed

plans and procedures may inhibit the team’s ability to be ingenious and build in

new, innovative and sound protection mechanisms.

o Culture: According to Dyer (2013) a culture is not only constrained to

geographical regions like continents or countries, but is formed whenever

artifacts, norms, values and assumptions are shared collectively within a group. A

team culture that prefers clear policies and procedures is a team that thrives on

order (Boehm & Turner, 2003). Such a team would thrive when more systematic

and plan-driven practices are implemented. This is synonymous to a production-

GIAC GSEC Gold Paper! 17!
!

Michael!Matthee:!michael.h.matthee@gmail.com! ! !

line environment where each member’s tasks are well defined and pre-

determined. In contrast, a team culture that prefers to be empowered by many

degrees of freedom is a team that prefers to thrive on greater levels of autonomy

(Boehm & Turner, 2003). Such a team would likely appreciate the presence of

more crafted and creative practices that lend themselves to greater liberties for

innovation and industriousness. For example, the efficiency of researchers at a

research institution would be stifled if their creative freedoms were inhibited

through bureaucratic task lists. Applying security controls in a way that is out of

touch with the team’s culture and makeup is likely to produce despondent team

members that could foster malicious activity and behavior within the

organization.

Together, these five environmental factors characterize and contextualize a specific

environment. In some situations, a greater measure of systematic, planned and well-

defined steps, tasks and activities would be appropriate to achieve security compliance. In

other situations, the incubation of creative, innovative and fresh ideas would be more

useful in attaining excellence.

Figure 3: Five critical factors that indicate whether more plan-driven or more crafted
practices are appropriate to mitigate software security risk. The concepts were adapted
from (Boehm & Turner, 2003) for information security purposes.

Personnel
(skill levels)

Dynamism
(% Requirements-change /month)

Culture
(% Thriving on chaos vs. on order)

Size
(Number of personnel)

Criticality
(Loss due to

impact of exploits)

Crafted quality mitigates best

Neutral

Controlled quality mitigates best

Environment: Example A

Environment: Example B

GIAC GSEC Gold Paper! 18!
!

Michael!Matthee:!michael.h.matthee@gmail.com! ! !

!
By analyzing the development environment, a manager can approximate how many plan-

driven or crafted practices are needed within a particular setting. Different environmental

conditions demand different control mechanisms. Within Figure 3, these distinctive

environmental characteristics (size, culture, dynamism, personnel and criticality) are

depicted against the two categories of software security control (CrQ and CoQ). Two

fictitious environments are also depicted in Figure 3 in order to highlight the impact

different situational elements have upon effective software security controls.

Consider the first example (indicated as environment A in Figure 3). A few friends have

decided to launch a new company and their team has just been formed. The software

product is a simple company website hosted off-site. The requirements of the web site are

well understood and agreed upon by all the team members. An initial environmental

analysis for this scenario concludes the following results:

o It is a small project endeavor with few team members. From a security standpoint,

the number of communication points is few. Therefore, the use of predominantly

crafted practices is feasible.

o The team is still in the formation stage and its culture is still forming. As such, it

is still too early to determine if the team culture favors autonomy or systematic

procedures. From a cultural perspective, neither plan-driven nor crafted security

practices would negatively affect the team’s security posture. Later on, however,

the team could evolve to attain either a thriving plan-driven or a thriving craft-

driven culture.

o The engineering team is encountering a low frequency of requirements changes

within the project endeavor. Therefore, the risk of work efforts becoming obsolete

is low. This permits the team to create detailed work breakdown charts and

conduct big upfront designs sparingly. Having well-defined plans and consistent

GIAC GSEC Gold Paper! 19!
!

Michael!Matthee:!michael.h.matthee@gmail.com! ! !

ways of working produce more resilient architectural designs and software. This

characteristic would encourage the use of more plan-driven practices.

o The team consists of both highly skilled employees as well as more junior, less

experienced workers. While junior developers may find a place doing smaller,

more mundane tasks, experienced professionals could be innovating new

products, designs and solutions. The hybrid nature of the team make-up allows it

to operate well using both plan-driven and crafted practices.

o The software solution produced in this case is a company website that is hosted

off-site. Although deformations to the site could tarnish the company image and

brand name, such an incident would not necessarily be catastrophic. As a remedial

measure, the web site can be taken offline for a lock-down procedure without

adversely affecting the core business. An excessive investment in securing this

website is best invested elsewhere, on more critical software products produced

by the company. For that reason, the low criticality aspect for launching the

company website does not necessitate excessive penetration testing and

vulnerability analysis exercises. A basic security conscious implementation would

be sufficient in this instance.

In this example environment, an environmental analysis indicates that a greater

proportion of crafted development practices should be employed. Crafted practices are

best enforced using an informal management style. It is therefore recommended that

management employ a more crafted quality (CrQ) response overall in order to mitigate

software security risk for this project endeavor. In contrast, a different setting may

warrant routines that are more systematic. Such an environment would benefit from a

greater proportion of plan-driven practices and hence a greater measure of CoQ.

GIAC GSEC Gold Paper! 20!
!

Michael!Matthee:!michael.h.matthee@gmail.com! ! !

2.3. Risks in selecting a particular set of practices

While environmental characteristics help to determine the best way for employing and

managing security practices, which practices should one use? Furthermore, are there any

risks involved when selecting one particular set of security practices over another?

A set of engineering practices are often packaged together and then sold as a popular

development process. Every few years a new development process is created with

devoted followers, often claiming it to be the silver bullet for project success. Whatever

the devised process is, it would reside somewhere between either a dominant plan-driven

or a dominant crafted or “agile” spectrum (Boehm & Turner, 2003). Plan-driven

approaches are more meticulous, systematic, structured and planned. Examples of plan-

driven methodologies are: Cleanroom, Personal Software Process (PSP), Team Software

Process (TSP) and the Waterfall model. These methods run the danger of falling into

debilitating bureaucracy (Myburgh, 2010) or stifled creativity (Vliet, 2008) if not

employed in the right circumstances. In contrast, agile-driven approaches are more

experimental, self-reflective and adjusting in nature. Examples of such methods include:

eXtreme Programming (XP), Adaptive Software Development, Crystal, Scrum and

Feature-driven Development. These approaches may fall into controlled chaos and/or

politicking if not employed in the right circumstances (Myburgh, 2010).

Sometimes the discipline and tight control of a plan-driven development strategy would

be better suited than an agile approach. The United States military favors plan-driven

approaches and standards such as DoD-STD-2167 (a document-driven standard for

defining the data item descriptions of deliverables), MIL-STD-499B (which defines the

contents of a systems engineering plan) and CMMI (which integrates software and

systems engineering capability maturity models) for their structured precision (Boehm &

Turner, 2003).

Consider eXtreme Programming (XP), a light-weight agile methodology. XP seeks to

find the simplest technical solution for a problem tries to anticipate requirement changes

and encourages continuous experimentation through the rapid deployment of software for

GIAC GSEC Gold Paper! 21!
!

Michael!Matthee:!michael.h.matthee@gmail.com! ! !

customer feedback. Experimenting to see if a software product works in a nuclear facility

would prove fatal, tragic and cause unnecessary human casualties. In the nuclear

facility’s context a plan-driven approach would fit better. However, using XP to produce

a small website may be very valuable since it’s a quick, creative way to get the team to

capitalize on early time-to-market opportunities. In the latter case, the business value of

aligning development efforts to economic demands far outweigh the financial risks of

software vulnerability and compromise. In the former case, the security risks are fatal,

therefore demanding greater control mechanisms using a more plan-driven approach is

necessary.

In summary, practices should not be constrained to a fixed and pre-determined list for the

sake of conformity. Different organizations require different practices, methods and ways

of doing things in order to produce secure software products. If the right practices are not

employed at the right time, vulnerable software solutions might be constructed and then

be shipped to customers. A secure software engineering framework is needed that can be

tuned to the unique needs and circumstances of an organization.

2.4. Building blocks of a secure software framework

Instead of applying a set formula for software development blindly, adequate visibility

during the construction process is required to ensure that the software produced is in fact

safe to use and free from vulnerabilities. Three building blocks ensure that a secure

software product is delivered, namely the customer’s involvement, the solution that is

provided and the manner in which the solution is provided (involving resources, a team

and infrastructure). In turn, a number of metrics can be associated with each building

block. The metrics defined by Jacobson, Ng, McMahon, Spence, & Lidman (2013) aims

to establish maturity in the software development community with regards to the

selection and adoption of new or existing software engineering methodologies and

practices..

These metrics are depicted graphically in Figure 4. The team performs and plans some

work and completes it through a set way of working. The work satisfies a set of

GIAC GSEC Gold Paper! 22!
!

Michael!Matthee:!michael.h.matthee@gmail.com! ! !

requirements needed by stakeholders and forms a software system when implemented. In

turn, the software product (or system) capitalizes on some business opportunity enabled

by the stakeholders. Together, the team, work, way of working, requirements, software

system, opportunity and stakeholders all play a part in producing a secure software

product. Overlooking any one of these assets when attempting to produce a secure

software product is sub-optimal; communication is key. Consider a nuclear development

program. If a resourceful team member were to be captured by a terrorist organization, he

or she might leak sensitive information, or vulnerabilities of the software product, during

interrogation. The consequences of such an information leak in the team aspect (e.g.

leaking information about a SCADA system that controls a nuclear enrichment process)

could be dire. In 2010 a similar incident occurred in Iran when the Stuxnet worm (2014)

was introduced to Iran’s nuclear facility through a USB flash disk. The worm contained a

number of zero-day exploits that were targeted specifically and precisely for Iran’s

computer systems. The number of zero-day exploits used was unusually lavish,

suggesting that team members from software vendors could have participated in the

attack. On the contrary, however, if the way of working in constructing the system does

not involve security-testing exercises then the product may be prone to vulnerable

exploits.

The objective of the software security framework is to incrementally increase the

reliability, safety, dependability and security of each building block. Tracking the

maturity of these building blocks enables management to establish a secure, trusting and

dependable working environment.

Figure 5 depicts high-level activities during a project endeavor that should mature over

time. The states depicted are called activity spaces since they represent a group of

concrete and practical activities that may be pursued by the team. The first activity space

within the solution domain is called “understand the requirements”. This activity space

can be sub-divided into a number of sub-activities to make it more concrete. One such

sub-activity could be to understand the requirements of a mobile testing tool. In turn,

activities involve concrete decisions and actions on the floor. These activities involve a

GIAC GSEC Gold Paper! 23!
!

Michael!Matthee:!michael.h.matthee@gmail.com! ! !

number of practices that could increase the confidence in the software security endeavor

and its supporting environment. Referring to the requirements of a mobile testing tool

again, a set of requirement metrics for it may be:

o R1: The tool should expose the mobile application as a consumable service.

o R2: The tool should be non-invasive and require no changes to the application

itself.

o R3: The tool should be platform independent.

Each of these requirements has an associated state of maturity, moving from conception

(as the first level of maturity) to fulfillment (as the last level of maturity). The maturity

process for all software metrics is shown in Figure 6. In order to accomplish the maturing

process, each software artifact may be associated with a set of security controls and tasks

(such as vulnerability analysis, penetration testing, code reviews and test driven

development). More importantly, the maturity of one artifact (such as requirement R1

from above) is dependent on the maturity of other artifacts (such as the team, stakeholder

or opportunity assets). Referring to requirement asset R1, the following additional assets

may improve its maturity:

o Stakeholder involvement: The potential security risks of the exposed service can

be communicated to the stakeholders involved. From such a discussion, the

necessity for exposing the service publicly can be reconsidered, therefore

minimizing its attack surface. Misuse cases of the service can also be identified

and refined into the set of requirement assets.

o Customer involvement: The consumers may not be ready to consume and use the

mobile testing tool appropriately. The consumers should be trained and prepared

in the correct usage of the tool. If used incorrectly, the mobile testing tool could

inadvertently expose sensitive information to the outside world and become a

liability instead.

GIAC GSEC Gold Paper! 24!
!

Michael!Matthee:!michael.h.matthee@gmail.com! ! !

o Team involvement: The team might still be forming and not be collaborating well

enough to build a new, innovative and groundbreaking mobile testing tool.

Additional team building exercises could lift morale, improve collaboration and

increase overall trust levels in the organization.

Whereas a given requirement may be acceptable for implementation, the team could still

be in a formed state while stakeholder involvement is suspended in the represented state.

The underdevelopment of the latter may restrain the integrity, availability and non-

repudiation of the exposed service (requirement asset R1).

Each software security metric (like the team or way of working) can be associated with a

number of tickets or tasks to complete. Together, the progression of the security tasks and

activities can be displayed on a big screen to foster effective team communication,

mutual understanding and team synergy. One popular tool for displaying the project

status to team members during team gatherings is the JIRA project management tool

from Atlassian (Atlassian, 2014).

In summary, continuous measurement of the entire project environment makes software

production efforts more visible and traceable. As a result, the team is made aware of

fragilities within the larger project environment that may foster security vulnerabilities

and defects in software.

GIAC GSEC Gold Paper! 25!
!

Michael!Matthee:!michael.h.matthee@gmail.com! ! !

Figure 4: Building blocks of a software development process. Redrawn from (Jacobson,
Ng, McMahon, Spence, & Lidman, 2013).

Figure 5: Depiction of high-level activity spaces in order of increasing maturity from left
to right. Redrawn from (Jacobson, Ng, McMahon, Spence, & Lidman, 2013).

GIAC GSEC Gold Paper! 26!
!

Michael!Matthee:!michael.h.matthee@gmail.com! ! !

Figure 6: Available states for software metrics (or alphas) arranged in increasing levels of
maturity from left to right. Redrawn from (Jacobson, Ng, McMahon, Spence, & Lidman,
2013).

2.5. How do existing processes fit in to this framework?

Every software development process and methodology consists of a selection of

engineering practices and methods. While one process may value the use of a particular

practice, another could regard it superfluous at best. A set of practices that works well for

one delivery team does not necessarily translate well to another. There is no silver bullet

for the successful production of secure software. Environmental characteristics like team

structure, culture and operation; project size, criticality and make-up; as well as

stakeholder involvement, business opportunities, and the nature of requirements all play a

part in the delivery of secure software. Rather than enforce a uniform way of working

across all software project endeavors, a process and methodology is best tailored to the

unique circumstances of each situation. According to the ISO27034 standard, the

Customer Solution Endeavor

Opportunity

Identified Solution Needed Value Established Viable Addressed Benefit Accrued

Stakeholders

Recognized Represented Involved In Agreement Satisfied for
Deployment Satisfied in Use

Requirements

Conceived Bounded Coherent Acceptable Addressed Fulfilled

Software System

Architecture
Selected Demonstrable Usable Ready Operational Retired

Team

Seeded Formed Collaborating Performing Adjourned

Work

Initiated Prepared Started Under Control Concluded Closed

Way of Working

Principles
Established

Foundation
Established In Use In Place Working Well Retired

Maturing software artifacts: the basis for a secure software engineering metric system

GIAC GSEC Gold Paper! 27!
!

Michael!Matthee:!michael.h.matthee@gmail.com! ! !

tailoring process should be conducted from a holistic perspective and include factors that

are both external and internal to the organization (ISO/IEC 27034, 2014). The tailoring

can be conducted by first performing an analysis of the environment (outlined in Section

2.2) where after a set of practices are selected in line with the business needs and

priorities. The software security assets defined in Section 2.4 serve as a measurable

criterion for such a tailoring exercise. If the process is contextually relevant then the

organization’s software security assets will mature collectively and in tandem with one

another as envisioned by Jacobson (2013).

Unfortunately, popular software development processes do not secure the underlying

building blocks of a software engineering endeavor very well. The building blocks for

three software development processes are illustrated in Figure 7 below.

Figure 7: Mapping various methodologies onto the building blocks of secure software
engineering. Areas that are covered somewhat by a process but not intently are encircled
with dotted lines.

GIAC GSEC Gold Paper! 28!
!

Michael!Matthee:!michael.h.matthee@gmail.com! ! !

According to Jacobson (2012) the SCRUM methodology only addresses four out of the

seven software engineering building blocks of Section 2.4. The four areas that are

covered are the requirements that are defined, the software system that is built, and the

team that conducts the work. These asset areas are marked with red circles in Figure 9.

The defensive posture of these assets is critical to the formation of secure software

constructs. Supporting practices such as the way of working (which includes static and

dynamic analysis, code inspections and continuous integration) is crucial to developing

secure code. Ironically, although such practices are often perceived to be reminiscent of

an “Agile” process, neither the Agile manifesto (agilemanifesto, 2014) nor the official

SCRUM guide (Scrum.org, 2014) mentions or encourages the use of supporting

production processes such as continuous integration or code reviews. Nevertheless, a

strict and rigid implementation of the SCRUM methodology cannot guarantee the

delivery of secure software, because its set of practices fail to focus on all the essential

building blocks of a software engineering endeavor.

The Microsoft SSDL methodology relies heavily upon threat modeling. According to the

Information Resources Management Association (2013), this may be due to the fact that a

large percentage of flaws in Microsoft’s software have been design related in the past.

The methodology secures the software system through the promotion of a secure

architecture and software design. It also addresses some aspects of the team aspect by

mandating that members undergo core training in secure development practices,

assigning team roles and responsibilities. The requirements, opportunities and

stakeholder aspects are addressed, although mostly from a vulnerability and threats

perspective. The way of working aspect is covered by the use of static and dynamic code

analysis as well as an optional manual code review. Altogether, the Microsoft SSDL

process secures every essential building block, albeit at a lower intensity for some.

However, the threat analysis within the opportunity and stakeholder domains could be

made more explicit in this process. Such a clarification would allow management to track

the progress toward maturity with greater clarity. According to Erwin, Magnuson,

Parsons, & Tadjdeh (2014) people and relationships are central to security. Instead of

GIAC GSEC Gold Paper! 29!
!

Michael!Matthee:!michael.h.matthee@gmail.com! ! !

merely detecting threats within the opportunity and stakeholder domains, fostering

greater levels of trust and collaboration in these relationships would be more proactive.

Similar to Microsoft’s secure process the OWASP CLASP methodology also covers most

areas from a threat and vulnerability perspective. It has a strong focus on team roles and

responsibilities. It also has a good focus on requirements and coding guidelines on the

work that is produced. However, very little is mentioned concerning the way of working.

The way of working involves concerns such as the security of the code repository, the

selected code editors and tools, continuous integration as well as branching and merging

policies.

The software development processes analyzed above (two of which claim to focus

intently on the delivery of secure software) reveal areas for improvement. This questions

their appropriateness and efficacy as potential silver bullets in the software industry. It

would be more sensible to conclude that the delivery of secure software can only be

achieved through the amalgamation of selected principles and practices that are tailored

for a particular environment and its priorities.

2.6. Tailor and manage your own secure process

Metrics are cornerstone to effective management. Harrington (1991) puts it succinctly:

“If you cannot measure it, you cannot control it. If you cannot control it, you cannot

manage it. If you cannot manage it, you cannot improve it.”

The critical information assets of a software product can only be secured if they are

measured accurately and matured appropriately. Accurate measurements are attained

from a suitable metric system and capturing one’s progress continuously. The software

security framework developed previously can be used as a metric system. The maturation

process is achieved through the application of security controls and tasks, bearing in mind

the implications of enforcement style and methods for exercising such controls. Decisions

frame how and when these controls are applied. These decisions not only impact the

resulting quality and security of the software products being produced, but also the entire

working environment. A system of systems engineering perspective of such decisions is

GIAC GSEC Gold Paper! 30!
!

Michael!Matthee:!michael.h.matthee@gmail.com! ! !

depicted in Figure 8. In this perspective, decisions are categorized into eight levels of

abstraction, ranging from the visionary and strategic to the more tangible and concrete.

Figure 8: A system of systems perspective on an organization. The color blue is used to
depict a slower, more strategic, decision making process (low frequency), while the color
red is used to indicate a more rapid decision making process (high frequency). While
strategic decisions may take a long-term view, day-to-day operational decisions would
occur in rapid succession as the need arise.

Decisions are enacted through a set of controls. Quality controls (including security

controls) can be enforced in two ways. They can either be enforced using well-defined

plans and formalized ways of working (controlled quality), or using crafted quality that is

highly adaptive, responsive and lends more freedom to tactical improvisations (Myburgh,

2009).

Decisions at the top of the hierarchy are strategic in nature. Such decisions would

typically involve senior executives of the organization. A control quality approach would

be better suited for these decisions, as long-term planning and strategic intent is

emphasized. In contrast, decisions at the bottom level require rapid response and action

from employees. A mixture of control quality and crafted quality would be better suited

since quick turnaround times are emphasized.

GIAC GSEC Gold Paper! 31!
!

Michael!Matthee:!michael.h.matthee@gmail.com! ! !

For example, assume that a traditional mail-based post office is to be secured and

defended from cyber-attack. In light of the predominance of e-mail and the emergence of

Internet cafés, the post office may advocate that more technology should be introduced

within its service offering. From a system-of-systems perspective, the enterprise (see

Level 8 in Figure 8) would designate the post office as a business. Variables that would

influence business decisions on this level include market base (or customers), profit,

turnover, intellectual property and asset specificity (for example, geographical location,

specialist practitioners, patents and confidential research for strategic purposes). In turn,

the post office, as an enterprise, cannot exist without a number of strategic units of

capability (indicated as Level 7 in Figure 8). Strategic capabilities allow the post office to

differentiate itself from its competitors both in the short and long term. One such

capability may be the use of information technology infrastructure to establish an

integrated e-business service; thus providing a hybrid service between a physical post and

a digital world. To accomplish this, various business systems (marked as Level 6 in

Figure 8) are needed to establish and further operate the e-business as a unit. One such

unit may be electronic messaging, such as fax, email and hybrid mail. In turn, the product

system (see Level 5 in Figure 8) details how management, policies and procedures,

facilities and employees would enable electronic messaging to take place. A product

system may contain a number of Level 4 based products, such as a router, server,

firewall, intrusion detection system, intrusion prevention system and/or a printer. A

firewall consists of a number of Level 3 based product sub-systems (such as a network

monitor), which in turn would comprise a number of Level 2 software components (such

as software packages or libraries) and the Level 1 processes or materials that created

them.

The higher-level decisions are more influential and take a longer time to realize. These

decisions form the company's overall vision, strategy and policies. For example, deciding

to move an organization over to IPv6 is a big decision that requires many changes,

updates and testing. Such a decision is strategic and consumes a considerable amount of

time and resources to implement correctly. Referring to the software delivery building

blocks of Section 2.4, this decision would involve a change in the organization’s way of

GIAC GSEC Gold Paper! 32!
!

Michael!Matthee:!michael.h.matthee@gmail.com! ! !

working. An incorrect or an incomplete implementation of IPv6 could expose the

organization to unnecessary risk. In turn, an exploit in this area could compromise

software products that are produced for customers as well as any software products that

are consumed internally. Likewise, envisioning a new software product as a strategic

decision for the company will affect its long-term profitability. From Section 2.4, this

decision would involve the opportunity, stakeholder and team assets. During this stage,

initial proposals and designs are drawn up. A compromise during this stage of the project

endeavor would have long-term consequences and require a greater amount of control

quality to ensure its success. Another example where the discipline of a controlled quality

approach is more appropriate is when forming a new disaster recovery plan. Such a plan

requires meticulous planning which should not be developed spontaneously in the spur of

the moment.

Lower levels within the system-of-systems view demand a more rapid and quick

decision-making process. These decisions are more inclined to daily operations. One

example would be the investigation of an incident alert flagged by an intrusion detection

system. The investigation is performed by a technically inclined individual, lower down

in the organizational hierarchy. In order to handle the incident effectively quick and rapid

response remediation is required. There is no time to draw up documents or plan

mitigation strategies during the incident handling process. A crafted quality control

would be more appropriate in such a scenario since the specialist skills of the incident

handler are depended upon.

Coincidentally these decisions are inter-related when viewed as a complex adaptive

system. Decisions that are made at a lower tier could affect the decisions that are made at

a higher tier, and vice versa. Myburgh (2014) affirms that varying amounts of both

controlled quality (CoQ) and crafted quality (CrQ) may be necessary to ensure a

successful project outcome. Whereas CrQ is required to apply quick and flexible decision

making processes, CoQ is required when introducing more stringent governance

requirements. The premise, however, is that effective decision-making processes cannot

be attained through rudimentary adoption of a “secure software development process”.

GIAC GSEC Gold Paper! 33!
!

Michael!Matthee:!michael.h.matthee@gmail.com! ! !

Boehm’s (2003) risk-based approach together with the environmental analysis of Section

2.2 forms a good start for establishing a good development atmosphere. However,

thereafter the security framework and metric system of Section 2.4 is required to keep the

development procedure in line with changing circumstances and concerns in the

workplace.

According to (Brotby & Hinson, 2013), metrics and measurements should be driven by

business needs. The ease at which a measurement can be made should not be a

prerogative for selecting a particular metric. Consider for example the attacks stopped by

a firewall. The number of attempted intrusions would be easy to measure; however, it

does very little in maturing and re-aligning the strategic decisions required by senior

management. The metrics outlined in Section 2.4 are quintessential to the formation of

secure software products.

3. Conclusion

In conclusion, security is best enforced in a controlled manner at times, using CoQ, and

empirically using CrQ on other occasions. Care should be taken not to enforce a security

practice or control in abstention of its surrounding environment and the unique situational

circumstances at play. Influential forces that may affect the decision making process and

consequentially deviate the software construction effort from effective practice are:

Economic: Security controls can be applied under strict time constraints in order

to get it done quickly and gain an early time-to-market. To enable quick and rapid

development, a more crafted or dominant-agile development process is likely to

be favored. If a practice is enforced inappropriately then it could result in a self-

directed (SeD) or controlled costs (CoC) quality control that is best avoided. At

the one extreme, an oversupply of time and resources without reasonable time

constraints may result in misappropriated and over-engineered solutions with little

business value; a bearing of self-directed (SeD) quality. At the other extreme,

demanding impervious solutions with insufficient time and resources is likely to

GIAC GSEC Gold Paper! 34!
!

Michael!Matthee:!michael.h.matthee@gmail.com! ! !

produce weak, fragile and vulnerable products. This is a repercussion of

combining tight budgetary controls and managerial oversight with unreasonably

high expectations (a bearing of a CoC enforcement style).

Engineering: The engineering team may end up over-engineering a solution if

they are not managed with deadlines and managerial oversight. This may skew

security controls into the self-directed (SeD) territory, which would reduce

valuable organizational output. Security measures of little to no value for the

organization could be implemented in such situations. At the other extreme, not

giving engineering practitioners room to conduct research and innovate may

hamper their ability to produce software solutions that are relevant and up to date

security-wise.

Political: The intricate nuances of adhering to strict organizational policies may

encourage those with sufficient power to either circumvent or alter applicable

security controls. This may be for the sake of convenience or to be on par with a

larger political objective. This would make security controls ineffective and push

controls into the self-directed domain (if controls are nullified) or controlled costs

territory (if debilitating control mechanisms are strictly enforced while speedy

delivery is demanded). Both of these domains, the controlled costs domain and

the self-directed domain are not sustainable in the end, and may result in

despondent team members, poor security implementations and/or malicious

activity.

!

In!order!to!avoid!such!unwelcome!eventualities,!the!entire!software!construction!
endeavor!is!best!tied!to!a!security!metric!system!as!outlined!in!Section!2.4.!DataK!

driven!decisions!using!an!appropriate!information!security!metrics!system!can!

mitigate!such!deviances.!For!example,!a!business!often!needs!to!balance!application!

security!enhancements!against!new!revenue!generating!features.!The!lack!of!

visibility!within!the!development!environment!makes!such!decisions!difficult,!very!

often!favoring!the!immediate!financial!returns!of!the!latter.!However,!by!making!

GIAC GSEC Gold Paper! 35!
!

Michael!Matthee:!michael.h.matthee@gmail.com! ! !

software!security!assets!visible!and!tangible!allows!management!to!better!quantify!

the!financial!benefits!of!investing!into!security!tools!and!practices.!

!

The!style!of!enforcing!a!particular!practice!should!not!be!downplayed!either.!

Misappropriation!of!security!controls!and!practices!may!steer!an!otherwise!positive!

environment!into!debilitating!bureaucracy,!stifled!creativity,!politicking!or!

disruptive!chaos.!It!is!best!to!enforce!planKdriven!practices!formally!(using!a!
controlled!quality!enforcement!style)!while!standing!back!and!encouraging!the!

quality!of!crafted!and!empirical!practices!informally!(using!a!crafted!quality!

enforcement!style).!At!times,!a!controlled!quality!decision!would!be!appropriate!in!

order!to!gain!longKterm!strategic!value!within!the!business.!Other!times!it!is!best!to!

rely!upon!the!expertise!of!security!specialists!and!grant!them!more!autonomy!to!be!

effective.!Software!security!controls!and!practices!can!now!be!applied!that!are!fit!for!

purpose,!in!the!right!manner,!at!the!right!time!and!under!the!best!of!circumstances.!

!

GIAC GSEC Gold Paper! 36!
!

Michael!Matthee:!michael.h.matthee@gmail.com! ! !

4. References
agilemanifesto.!(2014,!June!3).!Manifesto!for!Agile!Software!Development.!Retrieved!
June!3,!2014,!from!agilemanifesto:!http://agilemanifesto.org/!
!
Atlassian.!(2014,!May!1).!JIRA.!Retrieved!2014,!from!atlassian:!
https://www.atlassian.com/software/jira!
!
Boehm,!B.,!&!Turner,!R.!(2003).!Balancing!Agility!and!Discipline:!A!Guide!for!the!
Perplexed.!AddisonKWesley!Professional.!
!
Brotby,!W.,!&!Hinson,!G.!(2013).!PRAGMATIC!Security!Metrics:!Applying!
Metametrics!to!Information!Security.!Auerbach!Publications.!
!
checkmarx.!(2014,!May!8).!checkmarx.!Retrieved!May!8,!2014,!from!checkmarx:!
http://www.checkmarx.com/!
!
Copeland,!L.!(2014,!May!8).!
Cloud_Event_Polteq_Lee_Copeland_Testing_Trends_and_Innovations.!Retrieved!May!
8,!2014,!from!polteq.com:!http://www.polteq.com/wpK
content/uploads/2012/09/Cloud_Event_Polteq_Lee_Copeland_Testing_Trends_and_
Innovations.pdf!
!
Dictionary.com.!(2014,!May!7).!dictionary.reference.com.!Retrieved!May!7,!2014,!
from!dictionary.reference.com:!http://dictionary.reference.com/!
!
Dyer!Jr.,!G.!W.,!Dyer,!J.!H.,!&!Dyer,!W.!G.!(2013).!Team!Building:!Proven!Strategies!for!
Improving!Team!Performance,!5th!Edition.!JosseyKBass.!
!
Erwin,!S.!I.,!Magnuson,!S.,!Parsons,!D.,!&!Tadjdeh,!Y.!(2014,!May!31).!
TopFiveThreatstoNationalSecurityintheComingDecade.!Retrieved!May!31,!2014,!
from!nationaldefensemagazine:!
http://www.nationaldefensemagazine.org/archive/2012/November/Pages/TopFiv
eThreatstoNationalSecurityintheComingDecade.aspx!
!
Gustafson,!D.!A.,!Melton,!A.!C.,!Chen,!Y.!C.,!Baker,!A.!L.,!&!Bieman,!J.!M.!(1988).!The!
software!process!model.!Computer!Software!and!Applications!Conference!(pp.!3K9).!
Chicago:!IEEE.!
!
Harrington,!H.!J.!(1991).!Business!process!improvement:!The!breakthrough!strategy!
for!total!quality,!productivity,!and!competitiveness.!McGrawKHill.!
!
Information!Resources!Management!Association.!(2013).!Software!Design!and!
Development.!In!J.!Fonseca,!&!M.!Vieira,!A!Survey!on!Secure!Software!Development!
Lifecycles.!Portugal:!IGI!Global.!
!

GIAC GSEC Gold Paper! 37!
!

Michael!Matthee:!michael.h.matthee@gmail.com! ! !

ISO/IEC!27001.!(2013).!Information!security!management.!Geneva:!ISO/IEC.!
!
ISO/IEC!27034.!(2014).!Information!technology!—!Security!techniques!—!
Application!security.!Geneva:!ISO/IEC!27034.!
!
Jacobson,!I.!(2012).!Refounding!software!engineering:!The!Semat!initiative!(Invited!
presentation).!Software!Engineering!(ICSE),!2012!34th!International!Conference!on.!
IEEE.!
!
Jacobson,!I.,!Ng,!P.KW.,!McMahon,!P.!E.,!Spence,!I.,!&!Lidman,!S.!(2013).!The!Essence!of!
Software!Engineering:!Applying!the!SEMAT!Kernel.!AddisonKWesley!Professional.!
!
Merkow,!M.!S.,!&!Breithaupt,!J.!(2014).!Information!Security:!Principles!and!
Practices,!Second!Edition.!Pearson!Certification.!
!
Merkow,!M.,!&!Raghavan,!L.!(2010).!Secure!and!Resilient!Software!Development.!
Auerbach!Publications.!
!
Microsoft.!(2010).!Microsoft!Security!Development!Lifecycle.!Simplified!
Implementation!of!the!Microsoft!SDL!.!Microsoft.!
!
Myburgh,!B.!(2009,!January!21).!Towards!Understanding!The!Relationship!Between!
Process!Capability!And!Enterprise!Flexibility.!Insyte!Information!Systems!
Engineering!.!
!
Myburgh,!B.!(2010).!Can!project!management!survive!in!the!information!age!?!Insyte!
Information!Systems!Engineering.!
!
Myburgh,!B.!(2014).!Situational!Software!Engineering.!Federated!Conference!on!
Computer!Science!and!Information!Systems!,!2,!841–850.!
!
Noopur,!D.!(2014,!June!3).!secureKsoftwareKdevelopmentKlifeKcycleKprocesses.!(D.!o.!
Security,!Producer)!Retrieved!June!3,!2014,!from!buildsecurityin.usKcert.gov:!
https://buildsecurityin.usKcert.gov/articles/knowledge/sdlcKprocess/secureK
softwareKdevelopmentKlifeKcycleKprocesses#agile!
!
OpenSSL.!(2014,!May!24).!about.!Retrieved!May!24,!2014,!from!openssl.org:!
http://www.openssl.org/about/!
!
SANS.!(2014,!May!8).!closingKbookKheartbleedKavoidingKfutureKsadKstoriesK98210.!
Retrieved!May!8,!2014,!from!www.sans.org/webcasts:!
https://www.sans.org/webcasts/closingKbookKheartbleedKavoidingKfutureKsadK
storiesK98210/success!
!
SANS.!(2014,!May!8).!criticalKsecurityKcontrols.!Retrieved!May!8,!2014,!from!
sans.org:!http://www.sans.org/criticalKsecurityKcontrols/!

GIAC GSEC Gold Paper! 38!
!

Michael!Matthee:!michael.h.matthee@gmail.com! ! !

!
Scacchi,!W.!(2001).!Process!Models!in!Software!Engineering.!In!J.!J.!Marciniak,!
Encyclopedia!of!Software!Engineering,!2nd!Edition.!New!York:!WileyKInterscience.!
!
Schneier,!B.!(2013).!Carry!On:!Sound!Advice!from!Schneier!on!Security.!In!B.!
Schneier,!Carry!On:!Sound!Advice!from!Schneier!on!Security.!John!Wiley!&!Sons.!
!
Scrum.org.!(2014,!May!5).!SCRUM.!Retrieved!May!5,!2014,!from!
https://www.scrum.org/!
!
smartbear.!(2014,!May!8).!soapui.!Retrieved!May!8,!2014,!from!soapui:!
http://www.soapui.org/!
!
sonarsource.!(2014,!May!8).!sonarsource.!Retrieved!May!8,!2014,!from!sonarsource:!
http://www.sonarsource.com/!
!
Vinod,!V.,!Anoop,!M.,!Firosh,!U.,!Sachin,!S.,!Sangit,!P.,!&!Siddharth,!A.!(2008).!
Application!Security!in!the!ISO27001!Environment.!IT!Governance!Ltd.!
!
Vliet,!H.!v.!(2008).!Software!Engineering:!Principles!and!Practice.!John!Wiley!&!Sons.!
!
Wikipedia.!(2014,!October!16).!http://en.wikipedia.org/wiki/Stuxnet.!Retrieved!
October!17,!2014,!from!http://en.wikipedia.org/wiki/Stuxnet:!
http://en.wikipedia.org/wiki/Stuxnet!
!
Win,!B.!D.,!Scandariato,!R.,!Buyens,!K.,!Grégoire,!J.,!&!Joosen,!W.!(2007,!May!20K26).!
On!the!Secure!Software!Development!Process:!CLASP!and!SDL!Compared.!Software!
Engineering!for!Secure!Systems!.!
!
!

GIAC GSEC Gold Paper! 39!
!

Michael!Matthee:!michael.h.matthee@gmail.com! ! !

5. Glossary

Activity! Defines!one!or!more!kinds!of!work!items!and!gives!
guidance!on!how!to!perform!these.!

Activity!space! A!placeholder!for!something!to!be!done!in!the!software!
engineering!endeavor.!

Alpha! An!element!(an!attribute)!of!a!software!engineering!
endeavor,!which!has!a!state!relevant!to!assess!the!
progress!and!health!of!the!endeavor.!Aspiration!Led!
Progress!and!Health!Attribute!is!the!mnemonic.!

CLASP The!Comprehensive,!Lightweight!Application!Security!
Process!is!a!software!development!process!that!instills!
security!practices!during!an!application!development!
endeavor.!!

Controlled!costs! Application!of!a!strictly!enforced!formal!management!
style!on!tasks!that!are!unclear!or!empirical!in!nature.!!

Controlled!quality! Enforcing!the!security!and!quality!of!wellKdefined!and!
systematic!software!construction!through!formal!
management!methods.!!

Crafted!quality! Encouraging!the!security!and!quality!of!empirical,
experimental and innovative software artifacts using an
informal management style. !

ISO27001 The!ISO27001!standard!is!a!systematic!approach!to!
managing!sensitive!company!information!(including!
software!related!artifacts)!so!that!it!remains!secure.!

ISO27034 The!ISO27034!standard!provides!guidance!on!the!
specification,!design,!selection!and!implementation!of!
information!security!within!software!applications.!!

Method! A!composition!of!practices!that!describes!a!team’s!way!
of!working.!

Practice! A!repeatable!approach!to!doing!something!with!a!
specific!purpose!in!mind!(to!address!a!specific!
challenge).!

SelfKdirected!quality! Application!of!a!loosely!defined!informal!management!
style!on!tasks!that!are!systematic!and!well!defined!in!
nature.! Delegating the responsibility of task management
and completion to individual subordinates.!

TDD! TestKdriven!development!is!a!development!practice!
where!a!small!test!case!(or!unit!test)!is!written!before!
the!code!is!implemented.!This!increases!code!reliability,!
malleability!and!instills!good!software!design!
structures.!

GIAC GSEC Gold Paper! 40!
!

Michael!Matthee:!michael.h.matthee@gmail.com! ! !

XP Extreme!programming!is!a!lightweight!software!
development!methodology!that!favors!frequent!releases!
and!short!development!cycles,!programming!in!pairs!
and!is!characterized!by!the!extensive!use!of!code!
reviews!and!unit!testing.!

