
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
1/16

Understanding Kerberos v5 authentication protocol

Fabrice KAH
GIAC Security Essentials Certification (GSEC)

Practical v1.4b Option #1
November 2003

Abstract

Today more then ever, secure communication is a must. Most companies now use a
network infrastructure to conduct their business, whether internally (intranet model) or
externally to reach partners or customers (extranet/Internet models).
While it is utopian to consider today’s networks as being safe, there are solutions to
make them more secure and use them with a bit of trust. The key aspects to securing
communications over a distributed environment are authentication, integrity,
confidentiality and authorization.
Kerberos is a network protocol that addresses the authentication part. We will discuss in
the following document of the principle of Kerberos, its functionalities, but also the
integration of this protocol in today’s applications.
This guide is intended to give a general knowledge in order to understand Kerberos,
and to know what can be done with it; it is not a technical guide.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
2/16

Introduction

Kerberos gets its name from Greek mythology. Cerberus, also known as Kerberos, was
a three headed beast that guarded the Underworld and kept the living from entering the
world of the dead. Kerberos protocol design began in the late 1980s at the
Massachusetts Institute of Technology (MIT), as part of project Athena. It is a secure
authentication mechanism designed for distributed severs, which assumes the network
is unsafe. It enables a client and a server to mutually authenticate before establishing a
connection. The first public release was Kerberos version 4, which lead to the actual
version (v5) in 1993 after a wide public review. It followed the IETF standard process
and its specifications are defined in Internet RFC 1510 [1]. Originally designed for UNIX,
it is now available for all major operating systems, freely from MIT or also through
commercial versions. We will discuss about these later in this document.

Benefits of using Kerberos

What is easier today than to catch credentials over a network? Try to run a sniffer in
your environment and you will see. You will certainly get a login/password combination
within a few minutes. This could lead to an unauthorized use of your network services
and would certainly compromise all data present in your environment; even protected
confidential data, as most users are using only one password for every application.
Authentication is critical to security. Too many applications use a weak authentication
mechanism, like clear text passwords or, even worse, rely on the “honesty” of client
applications, known as authentication by assertion: for example Berkeley’s “r” services
rlogin, rshell, rexec…

However, it is not the primary role of an application to manage security. Consider a mail
server: its role is to deliver email messages over the network to the appropriate
recipients, but not to verify the user’s identity! This is where Kerberos comes in. It has
the advantage to manage secure authentication from a central location, and for many
applications. For each application that requires this service, it is a reliable, simple and
easy to manage solution to use Kerberos. Furthermore, it unloads application servers
from this time consuming authentication task and allows concentrating on their primary
function.

Kerberos protocol

Encryption

By default, assume information available to anyone else other than the intended
recipients is prone to be compromised. It is the case for all data sent over the network, it
can be tampered, viewed, modified. Kerberos provides cryptographic authentication
through a combination of secret key and strong encryption. This ensures message
integrity and data confidentiality. Think of a secret key as a password shared between
the client and the authentication server. The encryption is performed through symmetric
keys, using DES (Data Encryption Standard) or triple DES. Now there is support for
AES (Advanced Encryption Standard) [2], although not implemented everywhere yet.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
3/16

Plaintext Plaintextcyphertext

Kerberos is meant to provide authentication for interactive services like telnet, ftp or pop
… where the user is prompted for a password and must login in real time. Symmetric
key encryption allows real time authentication because it is a fast mechanism, the same
key is used to encrypt and to decrypt the message.

Fig 1. Symmetric key encryption

The Key Distribution Center

Kerberos protocol is used to authenticate “principals”. A principal can be a simple user,
an application server or any other network entity that needs to be authenticated.
Three parties are involved in the authentication process:

1) the client -or principal-
2) the server -or verifier-
3) the Kerberos server, called KDC (Key Distribution Center).

Let’s consider a client that wants to connect to an application server using Kerberos.
The KDC is trusted by both parties, and shares a secret key with each of them. Prior to
any negotiation, secret keys or passwords from each principal have to be entered in the
KDC. Encrypted in a local database of the KDC, this key is used to prove the principal’s
identity, and to establish an encrypted session between the KDC and the principal.
In exchange, the KDC will deliver a Ticket, required by the application server (verifier) to
validate the principal’s identity.

As we just saw, the KDC has two roles: the Authentication Service (AS) and the Ticket
Granting Service (TGS). The Authentication Service exchange is done only once
between a principal and the KDC. The KDC then delivers a Ticket Granting Ticket
(TGT) through the TGS, that the client will use to obtain additional tickets. If the client
wants to connect to multiple application servers, it will authenticate only once to the
KDC. Then it will use the TGT he obtained to request further tickets to each application
server, through the ticket granting service.

Same encryption / decryption key

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
4/16

The Authentication Service

The first role of the KDC is the Authentication Service. The client (principal) initially
requests a ticket to the KDC by giving its name, an expiration time until when the
authentication will remain valid, the service required (tgs) and some other information,
not mentioned here for clarity.

The KDC, if it finds the principal in its database, replies with two items:

- a client ticket containing a session key SA,KDC, the expiration time
and its tgs service name, all encrypted with the secret key of the
principal KA. The expiration time, typically a business day or eight hours,
gives a time period during which the ticket will be valid.

- a granting ticket containing a session key SA,KDC, the expiration
time and the client’s name, all encrypted with the secret key of the KDC
KKDC. This is what is known as the Ticket Granting Ticket. The principal,
unable to decrypt the TGT, will use it later to request tickets to other
services. As it is encrypted, the client can’t read the data inside. If he
tries to modify it, the KDC will not be able to decrypt it and it will be
rejected.

Note that no password has been sent over the network in clear text. The password KA is
used locally by the KDC to encrypt the ticket and locally by the principal to decrypt it
(remember the symmetric key: same key is used to encrypt and to decrypt a message).
The principal and the KDC now share a session key SA,KDC, created dynamically by the
KDC, that they can use to encrypt their communications. The principal will prove its
identity to the KDC by using this key, since he is the only one who can decrypt the
preceding ticket.

Fig 2. Authentication service. Ref [4]

1. AS_REQ – {client name, expiration time, tgs service name, …}
2. AS_REP – { SA,KDC, expiration time , tgs service name, …}. KA

+ { SA,KDC, expiration time , client name, …}. KKDC.

KDC

Authentication
Server

User

1

2

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
5/16

The Ticket Granting Service

The second role of the KDC is to distribute tickets, it is called the Ticket Granting
Service. Once authenticated, the client that requests a particular application like telnet
or ftp first asks the KDC. It doesn’t query the application server directly. This request to
the KDC contains several fields:

- an authenticator composed of : a timestamp and a checksum
encrypted with the session key SA,KDC obtained earlier, shared between
the client and the KDC. This proves the client’s identity since he is the
only one to know this session key. The checksum proves the message
wasn’t modified while transiting. The timestamp assures the message is
recent, and is used to prevent “replay” attacks, since anyone could
intercept the data over the network and use it later. Typically, the KDC
must reply within five minutes for the message to be accepted. This is
why it is important to have a good time synchronisation across your
network when implementing Kerberos authentication. Consider using a
protocol such as NTP (Network Time Protocol) to keep it accurate.

- the Ticket Granting Ticket received during the authentication
exchange with the KDC. It is used by the KDC to check the client’s
name. If the client name present in the TGT doesn’t match with the
associated session key, this means the client has been impersonated,
and the KDC is unable to decrypt the authenticator. Also, the KDC
verifies the validity of the ticket by checking the expiration time of the
authentication.

- the application service name to which the client wants to establish
a connection.

- an expiration time for the Ticket Granting Ticket.

The KDC replies to the client (principal) with two tickets:

- the client ticket containing a new session key SA,B that the client
and the application server will use to verify each other’s identity and to
encrypt their sessions. The ticket also encloses the application service
name, and the expiration time of the new ticket. All these items being
encrypted with the key SA,KDC shared between the KDC and the client,
only known to the client.

- the server ticket containing the same session key SA, B as above,
the client’s name and the expiration time of the ticket. The server ticket
being encrypted with the application server’s secret key KB, only known
to the server.

It is then the responsibility of the client to forward this server ticket to the application
server.

So, in order for the client to request access to the application server, it must first decrypt
the client ticket and extract the session key SA,B. Once extracted, the client uses this key
to encrypt his authenticator, composed of a timestamp and a checksum. So the client
sends this encrypted authenticator and the server ticket to the application server. Note
that the application server does not have the session key SA,B yet. It will get it only if it is

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
6/16

able to decrypt the ticket accompanying the authenticator, which is the server ticket. It
was sent by the KDC to the client, encrypted with the application server secret key KB,
and is now forwarded by the client to the application server. As it is encrypted, no one
except the application server is able to see what this ticket contains, not even the client.
This is how the application server receives the session key SA,B to verify the client’s
identity and to share with it. It also verifies the validity of the ticket by checking the
expiration time enclosed in the server ticket.

Optionally, the application sever replies to the client with a timestamp encrypted with
their session key SA,B. This is how the client verifies and validates the identity of the
server; since the client and the server are the only one to know this session key. Again,
the timestamp is used to prove the message is recent, and that it is not an old packet
being resent.

Fig 3. Ticket Granting Service. Ref [4]

3. TGS_REQ – {timestamp, checksum, …}.SA,KDC
+ { SA,KDC, expiration time , client name, …}. KKDC.

+ application service name
+ expiration time

4. TGS_REP – {SA,B , application service name, expiration time, …}. SA,KDC
+ {SA,B , client name, expiration time, …}. KB

5. AP_REQ – {timestamp, checksum, …}.SA,B
+ {SA,B , client name, expiration time, …}. K B

6. AP_REP – {timestamp}.SA,B

Summary

So to resume, we have:

A client possessing
- his secret key KA to share with the KDC, used to extract the

session key SA,KDC.
- the session key SA,KDC.

To request further tickets to the KDC
- the TGT
- the session key SA,B to prove its identity to the application server

and to exchange encrypted messages.

KDC

User

Ticket Granting
Service

3

4

Service

Application server
5

6

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
7/16

A server possessing
- his secret key KB to share with the KDC, used to extract the

session key SA,B.
- the session key SA,B to prove its identity to the client and to

exchange encrypted messages.

Fig 4. Kerberos authentication. Ref [4]

There is now mutual trust between the client and the application server: they are
authenticated.

Realms

Much like the Microsoft Windows domains, Kerberos has the ability to divide the
network in groups or “realms”. There is at least one KDC by realm, and optional slave
KDCs. This separation is made to avoid too many requests being sent to a single KDC,
which would become a bottleneck for the authentication service and thus for the whole
network. A realm name is typically mapped to the Domain Name of the network (DNS),
or to sub-domain names, although this is not mandatory. Kerberos refers to principals
(item, user or service, which needs to be authenticated) and realms under a common
notation:

principal/instance@REALM.COM

where the instance is an optional entry for the principal in the KDC’s database. Note
that the realm is commonly written in capital letters to differentiate the Domain Name
from the Kerberos realm. A principal located in one realm can contact a server located
in another realm using the cross-realm authentication capability of Kerberos v5:

1. The client first asks his local KDC for a Ticket Granting Ticket for the remote
Kerberos KDC, just as it would do it the request any other service. The remote
KDC being the KDC of the realm, which the application server belongs to.

2. Then, the client forwards the TGT it obtained to the remote KDC, requesting a
ticket to access an application server in this remote realm.

3. Finally, the client sends its authenticator and ticket to the application server in the
remote realm, and connects to it.

Naturally, network connectivity is required between the client and all KDCs, and
between the client and the application server. This is a very short description summary

KDC

Authentication
Server

User

Ticket Granting
Service

1

2

3

4

Service

Application server
5

6

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
8/16

of cross realm authentication, as in reality, it is much more complex. Generally, a KDC
will share an inter-realm key with its hierarchical KDC, based on the name of the realm.
For example LOC1.VOILA.COM will share an inter-realm key with VOILA.COM … and
so on. Direct links can also be created to be more effective, which means
LOC1.VOILA.COM can share an inter-realm key directly with LOC2.VOILA.COM
without having to make a request to VOILA.COM. It can also share a direct inter-realm
key with SANS.ORG, which will greatly improve the authentication process.

Fig 5. Inter-realm keys

In order for a principal to reach the local KDC (the KDC that belongs to his realm), there
are two different methods. The first one is through a configuration file on the client
device, where the realm name is mapped to the IP address or hostname of the KDC.
This is the method used by default.

[realms]
 LOC1.VOILA.COM = {
 kdc = toto.loc1.voila.com:88
 admin_server = toto.loc1.voila.com:749
 default_domain = loc1.voila.com
 }

The second method, available with Kerberos v5, is to configure the Domain Name
Server with the required information. A special TXT record in the DNS configuration file,
beginning with “_kerberos”, will indicate the name of the realm. Additionally, a special
SRV record also beginning with “_kerberos” will mention the hostname of the KDC and
TCP/UDP port numbers to use. It is recommended to add an alias with the name of
“kerberos” for the KDC, using the CNAME record.

$ORIGIN loc1.voila.com.
_kerberos TXT " LOC1.VOILA.COM"
kerberos CNAME toto
_kerberos._udp SRV 0 0 88 toto
_kerberos-master._udp SRV 0 0 88 toto
_kerberos-adm._tcp SRV 0 0 749 toto
_kpasswd._udp SRV 0 0 464 toto

Kerberos connectivity

As we saw through the configuration files, Kerberos uses several TCP and UDP ports
for its communications. Network connectivity needs to be set up correctly for the KDC to
be able to deliver tickets, and for administration purposes. In particular, firewalls need to
be configured according to your environment, to allow Kerberos traffic. It is
recommended to define one rule per TCP/UDP port allowed through for clear and
granular management, but also for logging purposes.

The ports that Kerberos v5 needs are:

LOC2.VOILA.COM LOC1.VOILA.COM

VOILA.COM
SANS.ORG

Hierarchical inter-realm keys Direct inter-realm key

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
9/16

- UDP port 88, between the KDC and the principal. Used for initial
ticket request. Being connectionless, UDP is well suited for small
messages. However, as we will see later, Microsoft uses a special field
in the Kerberos protocol for authorization. This field containing much
data enclosed, TCP transport protocol is used instead of UDP by
Microsoft. MIT also allows the use of TCP connections for compatibility
with Microsoft.

- TCP port 749, to the KDC. Used to change passwords on UNIX
systems, and for administration purposes.

- UDP/TCP port 464, to the KDC. Used to change passwords on
Microsoft systems.

Then, each service using Kerberos authentication requires its own ports. Here are a few
examples of communication ports between a client and a server using Kerberos:

21 / TCP ftp Kerberos ftp (like regular ftp)
23 / TCP telnet Kerberos telnet (like regular telnet)
543 / TCP Klogin Kerberos login
544 / TCP Kshell Kerberos remote shell
545 / TCP Ekshell Encrypted kshell
1109 / TCP Kpop Kerberos POP
2053 / TCP Knetd Kerberos de-multiplexer
2105 / TCP Eklogin Encrypted klogin

…

Flags

To increase the functionalities of the authentication protocol itself, Kerberos includes
several flags used to simplify its usage and make it more powerful and transparent.

- pre-authentication tickets: this flag is set when a principal gives
more information than traditional password to the KDC to prove its
identity. This could be biometric authentication for example, or the use of
a smart card. It that case, we are sure the client authenticating is who he
claims to be, even if his password has been compromised.

- renewable ticket: applications that need to authenticate again
after the ticket expiration time (typically eight hours), can ask for a ticket
to be renewed instead of requesting for a new one.

- proxy tickets: applications can request a ticket for another
application or on behalf of a user. This is very useful, and particularly in
Windows 2000 environment, where system services often need to act on
behalf of a user. This could also be a web service requesting access for
a database server.

- forwarded tickets: applications or users can request a new ticket
to the KDC, based on a previously obtained ticket with the forwardable
flag set. This option of the Kerberos protocol is what makes it possible to
implement single-sign-on (SSO) using Kerberos. Based on the
obtainment of a single ticket, a user could request access to all services

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
10/16

across the network, without having to re-authenticate. It is one of the
greatest improvement Kerberos can add to your network, because it
means

Ø more transparency to the user, the user logs in only once,
has only one password to remember.

Ø simplified administration, there is one central location for
administrating users.

Kerberos integration

At its beginning, Kerberos was mostly used in Universities, Colleges and in financial
organisations. Since its integration as default authentication mechanism in Microsoft
Windows 2000, it has become more popular.

1) First, of course, because Microsoft had decided to use it. Many people
were curious about it and took a closer look at Kerberos.

2) Then, as network environments were evolving, hacking tools becoming
more and more popular and easy to use, security took a higher place in
network administration. Many organisations were willing to add secure
authentication to their environment, and Kerberos made this possible.

3) Finally, with its 20 years of existence, Kerberos protocol has come to a
robust, flexible package, that can easily be integrated into any application
server or client.

The GSSAPI

This integration is often performed through an API: the GSSAPI (Generic Security
Services Application Program Interface). This is an abstraction layer above Kerberos 5
defined in RFC 1964 [14], used by applications to provide security services. Standard
across all UNIX platforms, it is used as a link between an application and, in our case,
Kerberos. Similar to the GSSAPI, the SSPI (Security Support Provider Interface) was
developed by Microsoft fro Windows 2000 and above. Fortunately the GSSAPI and the
SSPI are fully compatible.

GSSAPI / SSPI

UNIX Client

GSSAPI

Kerberos

UNIX Server

Kerberos

Windows Client

SSPI

GSSAPI

Kerberos

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
11/16

“Kerberized” applications

Provided these additional layers, any application can be “kerberized”, i.e. turned into a
Kerberos aware application. Today, this is not a standard yet, but more of an additional
module used to patch the rough application. However, you will see that many clients
and servers take advantage of it. As a distributed authentication mechanism, both the
client and the server have to be kerberized.

Here is a non exhaustive list of applications actually offering Kerberos authentication,
whether natively, through compilation options, or with an additional module or plugin:

- standard remote connection servers, telnet, ftp, rlogin, rshell… are
available:

o Redhat 9 packages: URL: http://www.redhat.com (27 Nov. 2003).
krb5-workstation-1.2.7-10.i386.rpm
krb5-server-1.2.7-10.i386.rpm

o Debian packages: URL: http://www.debian.org (27 Nov. 2003).
krb5-clients - Secure replacements for ftp, telnet and rsh using MIT Kerberos
krb5-ftpd - Secure FTP server supporting MIT Kerberos
krb5-rsh-server - Secure replacements for rshd and rlogind using MIT Kerberos
krb5-telnetd - Secure telnet server supporting MIT Kerberos

o Sun: URL: http://wwws.sun.com/software/security/kerberos/ (27 Nov. 2003).
SEAM Kerberized telnet, rcp, rsh, ftp, rlogin

o MIT offers clients and servers for all platforms Windows, Irix, Solaris,
Macintosh, Linux: URL: http://web.mit.edu/kerberos/dist/index.html (27 Nov.
2003).

o Connectivity Kerberos: URL: http://www.hummingbird.com/ (27 Nov. 2003).
o Nifty Telnet: URL: http://andrew2.andrew.cmu.edu/dist/niftytelnet.html (27

Nov. 2003).
o KFTP: URL: http://andrew2.andrew.cmu.edu/dist/kftp.html (27 Nov. 2003).
o Better Telnet: URL: http://www.cstone.net/~rbraun/mac/telnet/kerberos.html

(27 Nov. 2003).
o TN3270: URL: ftp://ftp.brown.edu/pub/mac/tn3270/ (27 Nov. 2003).
o Datacomet: URL: http://www.databeast.com/ (27 Nov. 2003).
o Reflection Secure: URL: http://www.wrq.com (27 Nov. 2003).
o Yet Another FTP Client (yafc): URL: http://sourceforge.net/projects/yafc/ (27

Nov. 2003).
o FileZilla: URL: http://sourceforge.net/projects/filezilla/ (27 Nov. 2003).
o …

- email clients and servers:
o Eudora: URL: http://www.eudora.com/ (27 Nov. 2003).
o Pine: URL: http://www.washington.edu/pine/ (27 Nov. 2003).
o UW IMAP: URL: http://www.washington.edu/imap/ (27 Nov. 2003).
o Microsoft Outlook: URL: www.microsoft.com/office/outlook/default.asp (27

Nov. 2003).

- SSH secure shell:
o SSH: URL: http://www.ssh.com (27 Nov. 2003).
o OpenSSH: URL: http://www.openssh.com/ (27 Nov. 2003).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
12/16

- PAM (Pluggable Authentication Module):
o pam_krb5: URL: http://sourceforge.net/projects/pam-krb5/ (27 Nov. 2003).
o Debian package: libpam-heimdal - PAM module for Heimdal Kerberos 5

libpam-krb5 - PAM module for MIT Kerberos
o RedHat package: pam_krb5-1.60-1.i386.rpm
o HP: URL:http://www.software.hp.com/portal/swdepot/displayProductInfo.do?

productNumber=J5849AA (27 Nov. 2003).
o Kerberos 5 PAM: URL: http://www.fcusack.com/ (27 Nov. 2003).
o Kerberos 5 PAM: URL: http://is.rice.edu/~wymanm/projects/ (27 Nov. 2003).

- NFS (Network File System):
o SEAM Kerberized NFS: URL:http://wwws.sun.com/software/security/kerberos/

(27 Nov. 2003).
o NFS: URL: http://sourceforge.net/projects/nfs/ (27 Nov. 2003).

- AFS (Andrew File System):
o CSL AFS/Kerberos: URL: http://www.cs.wisc.edu/csl/doc/info/nt-

software/afsclient (27 Nov. 2003).
o Arla: URL: http://www.stacken.kth.se/projekt/arla/ (27 Nov. 2003).
o OpenAFS : URL: http://www.openafs.org/doc/index.htm (27 Nov. 2003).

- DCE (Distributed Computing Environment):
o Open Group: URL: http://www.opengroup.org/dce/ (27 Nov. 2003).
o Entegrity: URL: http://www2.entegrity.com/products/dce/prod_eval.shtml (27

Nov. 2003).

- Web authentication:
o Mozilla has a Kerberos plugin: URL: http://www.mozilla.org (27 Nov. 2003).
o Apache also has a plugin: URL: http://www.apache.org/ (27 Nov. 2003).
o Microsoft IIS and IE: URL: www.microsoft.com/iis (27 Nov. 2003).

- Database applications:
o Oracle: URL: http://www.oracle.com/ (27 Nov. 2003).
o DB2: URL: http://www-3.ibm.com/software/data/db2/ (27 Nov. 2003).
o MySQL: URL: http://www.mysql.com/ (27 Nov. 2003).

- WiFi wireless technologies:
o Symbol uses Kerberos as its standard security mechanism: URL:

http://www.symbol.com/ (27 Nov. 2003).

- Java:
o Java Secure Socket Extension (JSSE) now includes Kerberos support. URL:

http://java.sun.com/j2se/ (27 Nov. 2003).

- and many more…

Kerberos implementations

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
13/16

The Kerberos implementation we talked the most about in this document is the one from
the Massachusetts Institute of Technology. Other organizations and commercial
vendors have created their own implementations.

- Cygnus solutions developed KerbNet. The latest version was v1.2,
but it doesn’t seem to be maintained anymore. It used to be URL:
http://www.cygnus.com/ (27 Nov. 2003).

- OpenVision created the reference implementation of the GSSAPI for
Kerberos Version 5. URL: http://www.ov.com/ (27 Nov. 2003).

- Cisco has integrated the client portion of Kerberos in its IOS.

- Cybersafe developed the first commercial version of Kerberos. URL:
http://www.cybersafe.ltd.uk/products.htm (27 Nov. 2003).

- The Center for Parallel Computers in Sweden has a free Kerberos
solution called Heimdal. URL: http://www.pdc.kth.se/heimdal (27 Nov.
2003). Current release is v0.6.

- Sun corporation developed SEAM (Sun Enterprise Authentication
Mechanism). URL: http://wwws.sun.com/software/security/kerberos/ (27
Nov. 2003). Current release is version 1.0.1 for Solaris 8.

- GNU has a -still incomplete- free implementation of Kerberos called
Shishi. URL: http://www.gnu.org/software/shishi/ (27 Nov. 2003). Current
release is version 0.0.8.

- Microsoft implementation of Kerberos.
URL: http://www.microsoft.com/technet/security/news/kerb2000.asp
(27 Nov. 2003).

- MIT implementation. URL: http://web.mit.edu/kerberos/www/ (27 Nov.
2003). Current release is v1.3.1 for UNIX, v2.5 for Windows, and v5 for
Macintosh.

Kerberos, a good base for single sign-on

As you can see, Kerberos is present and supported in many applications today. With its
wide deployment and by fully enabling ticket forwarding, Kerberos has become a real
enabler for single sign-on (SSO) solutions. While it still requires extra measures to put in
place, Kerberos can be set up as a strong base to allow users to login only once in the
network and access transparently all applications available.
Microsoft has started to use Kerberos, and its forwarding tickets capability, allowing
authenticated users to access printing services, CIFS/SMB, LDAP, IPSec, QoS
management, etc…transparently, although Microsoft has slightly enhanced the
specifications of Kerberos. They have used a previously unused field for authorization,
which is critical for single sign-on user management. Developed aside from Kerberos
RFC 1510, they created a proprietary authorization field, which enables a Windows
KDC (often a Domain Controller) combined with LDAP (Lightweight Directory Access
Protocol) to manage all access controls from a central location. They made single sign-
on possible with authentication and authorization, granular enough to separate user

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
14/16

rights, depending on the service they require. Now, Microsoft has publicly released this
code allowing authorization, but there is no standard, as they use information specific to
Windows architecture. MIT and other Kerberos implementations don’t support
authorization yet.

But there is another way to add authorization to Kerberos. The current release of Java
Standard Edition (J2SE) implements a service called JAAS Java Authentication and
Authorization Service which, combined with Java GSSAPI, can provide a good way to
control user login. Although it is not directly included in the Kerberos protocol, this
authorization mechanism works and can be quit powerful. JAAS is based on PAM
(Pluggable Authentication Module) and is independent from the underlying security
layer, Kerberos in our case. Here is a good paper explaining the use of Kerberos in
Java [3].

Limitations of Kerberos

A last point on the limitations of Kerberos protocol:

Although it provides strong encryption over the network, it cannot prevent password
guessing attacks. A weak password is always a risk, even though it is not transmitted in
clear over the network. It is advised to use a “passphrase”, as opposed to a password.

As we saw, Kerberos provides secure authentication. Authorization and accounting are
not part of the protocol specifications. Even if Microsoft uses its own authorization field,
still an additional layer has to be added to provide a strong, complete, centralized
authentication protocol.

If both Kerberos and non-Kerberos applications reside on the network, administrators
should be careful not to allow users to authenticate using their Kerberos password for
other applications. The deployment of a strong encryption authentication mechanism
would become useless.

Each network service needs to be adapted to Kerberos. Often, an additional module,
plugin, or code modification is required to have a kerberized application. It has not
become a standard yet.

Kerberos needs a fully time synchronized network, tickets being time based. If it is not
the case, authentication becomes impossible and network services unavailable.

Kerberos bases its security on a single point of failure, the KDC. If the KDC is
compromised, then your entire network is. If the KDC is unavailable, your network is
also unavailable. The scalability is an important point to consider. Also, the KDC must
be a dedicated, secured, protected server configured with minimal access.

Like any other application, Kerberos has its vulnerabilities. Buffer overrun, Denial Of
Service, etc… are also affecting Kerberos. Kerberos administrator has to pay attention
to new vulnerabilities and related patches to be applied.

Conclusion

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
15/16

Providing additional security to a network environment is always a good thing.
Authentication has long been left apart from security. Administrators used to focus on
first protecting their perimeter by implementing firewalls, forgetting the internal network
or considering it was secured enough, since it was separated from outside. It took a
long time for Kerberos to be recognized and used by IT professionals. Its use as default
authentication protocol in Windows 2000 has contributed to this recognition.
Although it requires a complete integration in the network architecture to be efficient,
Kerberos provides a secure and simple method to administer authentication
mechanism. With its deployment in most popular applications, it can now be set up as a
base for single sign-on for all infrastructures.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
16/16

References

1. Kohl, J. Neuman, C. “The Kerberos Network Authentication Service (V5)”.
September 1993. URL: http://www.ietf.org/rfc/rfc1510.txt (27 Nov. 2003).

2. Chown, P. « Advanced Encryption Standard (AES) ». June 2002. URL:
http://www.ietf.org/rfc/rfc3268.txt (27 Nov. 2003).

3. Upadhyay, M. Marti, R. “Single Sign-on Using Kerberos in Java”. May 2001.
URL: http://java.sun.com/j2se/1.4.2/docs/guide/security/jgss/single-signon.html
(27 Nov. 2003).

4. “Kerberos: The Network Authentication Protocol”. URL:
http://web.mit.edu/kerberos/www/ (27 Nov. 2003).

5. Kohl, J. Neuman, C, Ts’o, T. “The Evolution of the Kerberos Authentication
Service”. 1994. URL: ftp://athena-dist.mit.edu/pub/kerberos/doc/krb_evol.lpt (27
Nov. 2003).

6. “Windows 2000 Kerberos Authentication”. July 1999. URL:
http://www.microsoft.com/windows2000/techinfo/howitworks/security/kerberos.as
p (27 Nov. 2003).

7. Viard, R. “Kerberos”. May 2001. URL: http://www.easter-
eggs.org/article_105_Kerberos.html (27 Nov. 2003).

8. “Kerberos FAQ”. V2.0. Aug. 2000. URL: http://www.faqs.org/faqs/kerberos-
faq/general/ (27 Nov. 2003).

9. Backman, D. “Kerberos Network Design Manual”. URL:
http://www.networkcomputing.com/netdesign/kerb1.html (27 Nov. 2003).

10. “Kerberos V5 Installation Guide”. v1.2. Jan. 2002. URL :
http://www.lns.cornell.edu/public/COMP/krb5/install/install_toc.html (27 Nov.
2003).

11. Conry-Murray, A. “Kerberos: Computer Security's Hellhound”. May 2001. URL:
http://www.networkmagazine.com/article/NMG20010620S0008 (27 Nov. 2003).

12. Garman, J. “Single Sign-on for Your Web Applications with Apache and
Kerberos”. Nov. 2003. URL:
http://www.onlamp.com/pub/a/onlamp/2003/09/11/kerberos.html (27 Nov. 2003).

13. Smith, D. “Implementing Kerberos”. Dec. 2001. URL :
http://www.samag.com/documents/s=1769/sam0112d/0112d.htm (27 Nov. 2003).

14. Linn, J. “The Kerberos Version 5 GSS-API Mechanism ». June 1996. URL:
http://www.ietf.org/rfc/rfc1964.txt (27 Nov. 2003).

