
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Authentication model that uses One Time
Passwords

GSEC Practical assignment
1.4.b option 1

1 december 2003

Alberto Benavente Martínez, Spain

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Authentication Model that uses One Time Passwords
Alberto Benavente Martínez

2

Authentication Model that uses One Time Passwords
Alberto Benavente Martínez

Abstract

The objetive of this paper is to design an authentication model that uses a one-
time password (OTP) mechanism. A simple software application is proposed to
take advantage of some security features. The result is an authentication
arquitecture, closer to a single sign-on, where a user only needs to provide his
credentials once to access a set of systems.

Applications of this model can enhance the manual process of a centralized
password management infrastructure through the use of one-time password
token based on authentication mecanisms.

This solution can be used in an hypothetical real world situation, for example, in
a Customer Support Centre managing UNIX-like servers. Some benefits are:

• low implementation costs and small technical efforts
• improve end user productivity
• avoidance of human intervention.
• time and cost reductions in order to easily meet service level

agreements.
• frustrate some malicious attacks such us “Passive Attacks” and the

“authentication race attack” as a particular case of an “Active Attack”. All
of them will be briefly explained later on.

1 Introduction

The case of study take place within an IT organization with a Customer Support
Center. The objetive is to find a model that reduces efforts and increases
security. This organization gives, among others, userid and password support to
a big number of Unix-like servers. Not only do they provide these services to
customers but also they provide these kind of services to its own workers. They
can be physically spread in more than one location, some of them working in
customer facilities and providing other services such us logical security,
networking support, consultancy, operations and so forth.

A lot of situations require an efficient process for managing passwords. Some
examples are: emergency situations, incidents, operator rotation, employee
dismissal, business needs, job role changes, employees availability, separation
of duties, password lost, etc. The frequency is proportional to the number of
systems and accounts to be managed. In these cases it is important to deal
with password availability and disclosure

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Authentication Model that uses One Time Passwords
Alberto Benavente Martínez

3

Physical locations add complexity, more so if we want to design a simple model.
This one will take into account that some servers are placed in different
networks. It also depends on the customer topology. Some servers are not
necessarily interconnected to each other. It could happen that, for these or
other reasons, temporarily or permanently, some machines could be
unreacheables. All could be important and should be taken into account when
managing servers in a Customer Support Centre. Some of them could be easily
overriden while others will be exceptions. In any case, it seems that password
availability and password deployment is one of the most important issues to
consider.

A simple procedure to change passwords includes: the reception of a
notification through a ‘secure’ path, people processing these notifications,
people ‘sharing’ privileged userids, people entering into systems with privileged
accounts, execution of the command that changes passwords, set passwords
with the appropiate syntax and, finally, send a notification back.

Human errors add risks that can be reduced. Let’s imagine a group of people
assinging passwords during the whole day. The following examples take place:
mistakes when providing the correct password, different password policies
depending on the customer and not necessarily implemented as a default
operating system feature (password complexity), people without a real business
need for knowing the value of passwords, provision of the same password
within different customers in order to save time, password well known among
workmates, etc.

2 Password and pass phrase authentication mechanisms

There is a type of authentication scheme that can be classified as “user to host”
(or user to application). In this case an entity, such us an individual or program,
initiates a request to the authentication program. This is usually done by
entering his credentials and waiting for an answer. Userid and passwords
strings are frequently used to identify and to authenticate these entities (in fact
this method is widely accepted). The authentication program acts as a “server”
requesting credentials and giving a particular criteria validating “clients”, that is,
controlling that an entity is really who he claims to be.

This model sounds fantastic but different implementations will show us different
vulnerabilities. In the case where client and server programs reside in different
machines (open networks), clear text passwords transverse communication
channels, some of them public, some others semipublic or more secure. The
fact is that clear text strings, called passwords or pass-phrases, could be found
out by what are called sniffer tools. In this case an eavesdropper, or individual
doing this malicious activity, will only have to catch it and then provide it again
to the server application, impersonating the real owner.

Thus the problem has to be something to do with the communication channel
and/or some characteristics of the string that validates userid’s credentials. So

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Authentication Model that uses One Time Passwords
Alberto Benavente Martínez

4

the first two things that could be addressed are: either we encipher
communication channels between the server and the client so that a secure
path is established between them, or we change some properties of the
password. The first one still needs a previous exchange of some kind of
information. This could take the shape of a secure exchange of a secret key
that can be shared between these two parts or a public exchange of some kind
of information (that could be associated to a secret on each sides of the
communication). This seems to be the basis of a infrastructure that we could try
to use to make the ‘sniffed’ information illegible. Different implementations
based on secret and public keys algorithms were developed and some products
that are de facto standards, like Kerberos, add stronger authentication and
authorization methods. They take advantage of the best qualities of them.
Different combinations of secret key, public key and hashing are mixed up to
deal with confidenciality, integrity, non-repudiation and, in some cases,
availavility. There is an analogy between IT evolution and these schemes, the
more evolved the more complex.

3 Challenge/Response Scheme

There are two entity authentication methods called synchronous and
asynchronous (e.g. challenge/response). Both of them use an irreversible
mathematic function whose characteristic is that in spite of knowing its output
and its definition it is not posible to calculate its input value. This functions are
used on irreversible cryptographic schemes and are applied to authenticate
entities.

One may think think that choosing these functions can be difficult but it is not.
We only have to choose an appropiate cipher algorithm ‘F’ , then for a given a
clear text ‘Ti’ and a key ‘Kj’ we proceed to cipher ‘T’ with ‘F’ . Doing this we
have a different output Ci for every different input ‘Kj’.

() ℜ∈∀= jjii KKTFC ,
Fig.1

The challenge/response procedure uses this kind of irreversible cipher funtions
to deal with one-time password authentication. One Entity Systrem E.S.
(program, user, process, etc), Fig.1. ID, provides its credentials [1] to the
Authentication Server A.S. The A.S will store all secret keys ‘Kj’ in a local
database. All recognized entities will have an entry in this repository so that,
given the userid string (ID), its secret key is retrieved (steps [2] and [3]). At this
point a random number in generated and is given to E.S. That is called a
Challenge [4]. The same ramdom number is kept internally. This number and
the retrieved secret key will be the inputs to the irreversible cipher Function F
[5’]. At the same time the challenge arrives E.S. and it operates in the same
way taking the proposed challenge and its well known secret key Kj and
inserting them in a similar function F. The output is sent back to A.S as a
response [5]. At this moment the Authentication Server only has to compare its
internal value with the response [6]. If both results are the same, the userid is
authenticated [8], if not another challenge is sent for another attempt[7].

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Authentication Model that uses One Time Passwords
Alberto Benavente Martínez

5

Fig. 2

This model was used in GSM (Global System Telephony) to authenticate
userids. In this case the private key is kept in the end user SIM module and it is
also stored in a remote authentication center that functions as an A.S. This one
provides a 128 bits random challenge which is, in conjuntion with the private
key, ciphered by an irreversible algorithm within the SIM module. The output
value SRES is a 32 bit string that acts as a response ([1]Ribagorda, p10-5).

4. One-Time password algorithm

At this stage we need an algorithm that, independently of the F function, can
provide a valid set of future passwords, all of them generated from an initial
secret and being valid only once.

Let ‘F’ be an irreversible and appropiate function, ‘K’ the secret password and
‘M’ the number of one-time passwords we need. Let M be equal to 100. The
Authentication Server has this information and calculates F(K) as many times
as the number of one-time passwords are required (in this case 100 times).
After that the AS keeps this value. Therefore the first time an entity wishes to be
authenticated it will be given the sequence number 99. The entity will know
what F function to use and, of course, his secret password K. At this point the
entity calculates F(99)(K) (being this superindex the number of times the function
F is applied) and provides its output to the A.S who also calculates F(F(99)(K)) =
F(100)(K). If this value is the same as the one previously stored in the A.S., the
entity will be authenticated. It will also store the new value F(99)(K) and delete
the old value F100(K). So, the next time the same entity requires this service, it
will be given the sequence number decreased by 1. The process can be
repeated up to the limit of generated sequences, 100 in this case. Changing the
K secret in the 101st round will lead another 100 more one-time passwords and
so on ([2]Lamport).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Authentication Model that uses One Time Passwords
Alberto Benavente Martínez

6

5 Passive Attacks vs Active Attacks

A ‘passive attack’ on an authentication system consists of monitoring
information sent between two or more parties without inserting any kind of data.
On the contrary, an ‘active attack’ modifies transmited data in order to be
authenticated or to get authorization .

Traditional authentication technologies based on passwords are victims of
passive attacks because they send them through networks and are potentially
intercepted. One-time password are better authentication mecanisms because
they are vulnerable to active Attacks but not to passive attacks. There is an
active attack called ‘replay attack’ where the given password is intercepted by
an unauthorized entity and then sent to the authentication system.

More complex authentication schemes are neither victims of passive nor active
attacks. This technologies use mutual authentication between two or more
entities. ([3] Haller).

6 The importance of a Challenge

When the authentication entity and the Authentication Server reside at different
locations, information exchanged will travel through a communications network.
Because information does not reside in a single location we are adding an extra
insecure component. Lamport’s algorithm is subject to attacks, one of them are
known as the ‘race attack’. ([4] William, p.104)

Imagine an eavesdropper in between the entity and the granting server that
could read in clear text the information that flows over the network. He also
realises that for a given sequence number, an entity answers each time with a
different response. After analysing the response he learns that it ever has the
same size and is made up of one kind of elements, (e.g.characters). So what he
really needs in order to impersonate the entity, is to provide the next response
before the entity does and to inhibit the correct response from reaching its
destination. This has to happen just before the authentication event. So what
we need is a program that functions as a ‘relay’. While the entity is providing its
response, the program is sequentially keeping one by one these elements and
generating the same response up to the last character. At this moment the
program must also have started as many sessions with the Authentication
Server as many possible characters in the last position. Before the entity can
enter its last character, the relay program sends all possible responses, each
one over a different connection. Then, for sure, one will be correct and
authenticated and the valid entity will be rejected.

This attack is possible because somebody can access the information and can
force the access, it could be prevented by providing a different challenge on
each potential connection. Another possible solution can be a small a PKI
infraestructure where the entity receives the challenge in clear text, proceeds to

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Authentication Model that uses One Time Passwords
Alberto Benavente Martínez

7

sign it with its private key and afterwars send the result back to the A.S. This
one, by using the entitie’s public key, ensures that the returned response
belongs to that entity.

There are commencial products that uses this scheme, for example
OmniGuard/Defender from Axent Technologies (www.axent.com).

7 Hash functions

These funtions take elements of a large Domain and transform them to a
reduced, but still large Image. Given an output value, also known as a
message-digest or hash value, is computationally infeasible to invert, in other
words, to compute the element of the Domain that has generated this output.
This also means that there can be collisions, that is more than one input value
having the same output. Hash funtions are choosen so that two ramdom input
values will have ‘more or less’ the same collision probability.

High performance hash functions were designed for 32 bit machines. One
example is MD4 (Message Digest 4) and its successors: MD5, SHA-1 (Secure
Hash Algorithm) and RIPEMD. MD4 and MD5 takes any number of bits as input
and retrieves a 128 output string while SHA-1 and RIPEMD use160 bits. MD4 is
not recommended in some circumstances because it has suffered a large
number of collisions under specific circumstances. In these cases MD5 is
stronger than MD4 and, moreover, NIST’s SHA is stronger than MD4 and MD5
(against brute force attack). On the other hand the stronger the slower. MD5 is
around 30% slower than MD4 and SHA around 70% slower than MD4. ([5]

Menezes, ch. 9).

8 OPIE One-Time Password System (OTP)

OPIE stands for One-Time Password In Everything and was released by the
U.S. Naval Research Laboratory (NRL) in 1994. This product is based on
S/KEY OTP released by Bell Communications Research (Bellcore) but with
some major enhancements. For example Bellcore’s 1.0 package was designed
with 4.3BSD UNIX system in mind while OPIE covers a bigger spectrum of
UNIX-like operating systems because it ensures portability through POSIX calls.

OPIE protect us only against passive attacks and against some active attacks. It
does not protect us against dictionary attacks directed towards weaknesses of
our secret keys. For this reason it has to be used as one of the multiple
elements of our layered security infrastructure.

OPIE and S/KEY are based on a challenge/response mecanism where the
challenge is made up of a sequence number and a seed. Responses (or one-
time passwords) are not stored within the Authentication Server, only Secret
Keys are kept.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Authentication Model that uses One Time Passwords
Alberto Benavente Martínez

8

One of the improvements from its ancestor is the cryptographic hash function.
S/KEY uses a particular adaptation of the MD4 hash function because it takes a
64 fixed length character string for its input and also returned a 64 bit string
(instead of arbitrary/128 input/output relationship) ([6]Haller). In contrast OPIE
includes a MD5 hash function making brute force cryptanalysis harder and
support MD4 to interoperate with its ancestor([7], [8] Rivest). OPIE also includes a
FTP daemon and modifications of login (opielogin) and su (opiesu) programs in
order for us to be able to choose the authentication scheme between
challenge/response OTP or our traditional passwords.

9 OTP on the Internet

In order to download the source code from the Internet some web sites redirects
us towards the NRL web site, ftp://ftp.nrl.navy.mil/pub/security/opie/opie-
2.3.tar.gz. Unsuccessfully, at the time of the test, it was not be possible to
download the code. Another site also offered us OPIE http://inner.net/opie.
Their OPIE OTP portable source code could be found as well as some other
pieces of software that interoperates with it. Examples of these one are some
multiplatform client response generators, linux PAM module and so forth.([9] SGI)
([10]Berkheimer).

Once downloaded 2.4 distribution package (opie-2.4), a test server with RedHat
7.1 linux was choosen as our future OTP Authentication Server, so we
proceeded to download the file ‘opie-2.4.tar.gz’ to a destination directory. There
we decompressed the package (# tar -zxvf opie-2.4.tar.gz) so that the following
files and directories were placed in the opie-2.4 directory (Fig. 4):

Fig. 3

The first useful resource is the README file. There we found a lot of
information about bugs, fixes, enhancements as well as system requirements.
Recommended system requirements are, literally, the following:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Authentication Model that uses One Time Passwords
Alberto Benavente Martínez

9

• A UNIX-like operating system
• An ANSI C compiler and run-time library
• POSIX.1- and X/Open XPG-compliance (including termios)
• The BSD sockets API
• Approximately five megabytes of free disk space

We can see the following source programs: opieauto, which will be the
‘equivalent’ of /hosts.equiv and contains the list of trusted hosts that bypass
some authentication controls. In this exercise we do not use this facility.
Opieftpd program is the opie’s ftp daemon that will substitute our former ftpd
daemon. Opieinfo is a function that let userids check their current challenge,
sequence number and seed. Opiekey program is the response generator for a
given sequence number and seed. The first time this function is called, it ask
you to enter your secret password. Opielogin and Opiesu programs are OTP
substitutes of the well known login and su. ([11] IETF) ([12] Metz)

10 Customization

OPIE has a configurable installation script ./configure in order to make
installation easier and, as far as possible, to fit the local machine
characteristics. There are some configuration parameters which can be listed
executing the ./configure –help command. In this case we have choosen the
following configuration: ([13]Craig), ([14] Neo).

[root@OPIE_SERVER opie-2.4]# ./configure –help
./configure --prefix=/usr --enable-insecure-override --enable-retype

The first parameter of this command prefix=/usr will place installation files in /usr
file. In particular the following binary files:
/usr/bin/opiekey
/usr/bin/opiepasswd
/usr/bin/opieinfo

The second parameter --enable-insecure-override will try to determin by default
which connections come from a secure source (local console or equivalents)
and which not. This will be the most important configuration step. Some actions,
such us entering our secret pass phrase, should not have to be done using
insecure method.

The third command is the --enable-retype which permit us to enter twice our
secret pass-phrase instead of once each time it is needed.

The autoconfiguration process will check which programs, {login, ftp,su} are in
place in order to replace them:

checking for su... /bin/su
checking for login... /bin/login
checking for ftpd... no
It also checks POSIX portability:

checking for sys/wait.h that is POSIX.1 compatible... yes

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Authentication Model that uses One Time Passwords
Alberto Benavente Martínez

10

11 OPIE Server Installation

Once we have set and finished our configuration requirements we will start the
compilation. Two different compilations are possible, server mode and client
mode. Then we proceed to install the OTP server by executing the appropriate
makefile command. Reviewing compilation results we could check, for example,
that MD5 is used, not only MD4, as well as opie’s program substitutions that
take place during this process.

[root@OPIE_SERVER opie-2.4]# make server-install
Installing OPIE server software...
…
 (8/13) testing opiehash(MD5)... passed
…
Copying OPIE user programs
Changing ownership
Changing file permissions
Installing OPIE system programs...
Copying OPIE login to /bin/login
Changing ownership of /bin/login
Changing file permissions of /bin/login
Copying OPIE su to /bin/su
Changing ownership of /bin/su
Changing file permissions of /bin/su
Making sure OPIE database file exists
Changing permissions of OPIE database file
Changing ownership of OPIE database file
Creating OPIE lock directory
mkdir: cannot create directory `/etc/opielocks': File exists
Installing manual pages
REMEMBER to run opiepasswd on your users inmediately.
[root@OPIE_SERVER opie-2.4]#

At this point we have successfully installed OPIE OTP Authentication Server in
our system. If we had some problems we could execute Make uninstall
command to reserve the installation, that is, a system without OPIE.

12 OPIE client installation

We have just installed the OPIE server. Then what we need is another system
on which to install an OPIE client to generate the appropiate responses. The
same operation as described before but, in this case, we have to execute the
make command with a slight diffencence:

[root@OPIE_Client opie-2.4]# make client-install
make: Nothing to be done for `server'.
....
Installing OPIE client software...
Copying OPIE key-related files
Changing file permissions
Symlinking aliases to opiekey
Installing manual pages
…

OPIE’s clients do not necessarily have to be installed in the same operating
system as the OTP server nor in the same machine. The client side will only
include the logic needed to properly answer server challenges. There is a client
version for 32 bits Windows machines called Winkey32 released by
Technologic (Fig. 4 and Fig. 5). ([15] Gaetz).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Authentication Model that uses One Time Passwords
Alberto Benavente Martínez

11

Fig. 4

 Fig. 5

There are some web pages that also offer JAVA ‘clients’ which calculate
responses to a given challenge (made up of a sequence and a seed) and
entering our secret pass-phrase. That sounds good because no matter
wherever we are we could get our next non-reusable password but, because it
is better not to disclose this important piece of information, another method
should be used. Examples of these clients can be found in the internet. ([16]

Mantakos).

13 OTP Usage

At this stage we have an OPIE Server installed so that we have two possible
authentication methods. The old one, based on userid and password, and the
new one based on challenge/response or challenge/pass- phrase. Next time an
account tries to use an authentication function (login, su or ftp) we can notice
some changes. For example, if we call the login function a prompt line will ask
for selecting between a password or a token.

Let spopie be a system account that has never used challenge/response
mecanism since OPIE Server was installed. Next time spopie, or another,
wanted to login it will be asked to provide his traditional password or the new
otp response password. We can then choose which method to use: the old
method or the new one.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Authentication Model that uses One Time Passwords
Alberto Benavente Martínez

12

[spopie@OPIE_SERVER_]$ login root
otp-md5 492 TO1000 ext
Response or Password:
Last login: Wed Sep 17 09:47:16 on tty1
You have new mail.

If we decided to continue using passwords (/etc/passwd and /etc/shadow) there
is no problem, the substituted opielogin program will act as the old one. On the
other hand, if we decided to take advantage of one-time passwords, we will not
know what to answer to the following question “enter a Response…”. To get the
first response, for each account, we should ‘migrate’ the authentication scheme.
The migration process introduce two programs opiepasswd and opiekey.

In the case where we attempt to remotely login using telnet, for example, we will
be only prompted for a response for a given ramdon challenge. Because this
userid is still using passwords he has to be migrated to the new scheme. spopie
will try to get its first challenge, to do this he uses opiepasswd function, Fig. 7
(used in conjuntion with –c argument will not let us acces from an ‘insecure’
method) :

Fig. 6

In the figure the challenge contains three different parts and it starts with otp-
md4 or otp-md5 this indicates the hash funcion in use. The next parameter is
the sequence number (by default set to 499) and the last one is the seed (or
salt) for this specific challenge. So we are asked to enter a “response” but we
have not generated any response.

We must first choose a private pass-phrase (or private key) that will be stored in
the OPIE server. Due to security matters it is highly recommended to enter this
value locally at system console or through a secure path. In this particular case
we call opiekey function by opening a console in the OPIE server. Arguments
passed to this functions are: –n 5 the number of OTP with its related sequence
number, the sequence number (499) and the seed (TO1279) Fig. 7.

Fig. 7

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Authentication Model that uses One Time Passwords
Alberto Benavente Martínez

13

We are asked to enter our secret pass-phrase twice, which can be up to 127
characters long, and then a new entry for our account is added to /etc/opiekeys
; also in this example the first next five OTPs are shown. Next time spopie tries
to login into the system it will be prompted with the 498th challenge and seed
and the response or pass phrase OTP will be MYRA RITE BORN BABE NIT
GUSH. Now we will proceed to use telnet from a remote machine to access
using this pass phrase:

Red Hat Linux release 7.1 (Seawolf)
Kernel 2.4.20-19.7 on an i686
login: spopie
otp-md5 498 TO6890 ext
Response: MYRA RITE BORN BABE NIT GUSH
Last login: Tue Nov 11 19:27:48 from X.X.X.X

At this point we could migrate all userids of a system from the old password
authentication scheme to the new one. One of the aspects a system
administrator could consider, is the case where all userids in the system lose or
forget their secret passwords so that they could not use opiekey function. In this
case if we are logged on as root, the opiepasswd function let us manage all
userids.

The following sequence also shows that, for different authentication sessions,
different seeds are generated for the same sequence number. This would
prevent a possible ‘race attack’ started with parallel opened sessions as
explained before.

[root@OPIE_SERVER_]# opiepasswd
Adding root:
You need the response from an OTP generator.
New secret pass phrase:
 otp-md5 499 TO7391
 Response: albertobenaventemartinez
 That is not a valid OTP response.

 otp-md5 499 TO7391
 Response: ALBERTOBENAVENTEMARTINEZ
 That is not a valid OTP response.

 otp-md5 499 TO7391
 Response: alberto1benavente
 That is not a valid OTP response.

[root@OPIE_SERVER_]# opiepasswd
Adding root:
You need the response from an OTP generator.
New secret pass phrase:
 otp-md5 499 TO4457
 Response: fhdhhfydsfjfdd

 That is not a valid OTP response.

 otp-md5 499 TO4457
 Response: xxxxxxxxxxxyyyyyyyzzzzzz
 That is not a valid OTP response.

 otp-md5 499 TO4457
 Response:
Secret pass phrase unchanged.
[root@OPIE_SERVER_]# exit

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Authentication Model that uses One Time Passwords
Alberto Benavente Martínez

14

14 Bypassing OTP

Some products permit us bypass OTP challenge/response scheme. Let’s see
for example Webmin software, where we could still change old passwords, that
is modifying /etc/passwd and /etc/shadow entries, although these accounts do
not use the old scheme anymore (Fig. 8).

Fig. 8

15 Uninstalling the product

In addition to executing Make Uninstall command to return to the initial state, we
will also have to restore those programs that were substituted during the
installation phase such us login and su. Once the initial situation is restored we
could proceed to reboot the system to let changes take effect. The commands
to do this are:
rm –f /opt/opie/opie-2.4/opielogin; mv /bin/login.opie.old; chmod 755 /bin/login.opie.old
rm –f /opt/opie/opie-2.4/opiesu; mv /bin/su.opie.old; chmod 755 /bin/su.opie.old

16 OTP de facto standard

Some Web sites speak about OTP as a de facto standard proposing
independent implementations as a standard. ([14] Haller, Metz.) ([17] Haller), ([18]

Newman).

‘Surfing the internet’ we can also check that some well known commercial
firewalls support OTP such as IBM, Checkpoint, Cisco, etc, as well as some
handheld devices.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Authentication Model that uses One Time Passwords
Alberto Benavente Martínez

15

17 Proposed Model: case of study

With some knowledge of the OTP scheme we can return to the initial case of a
big Customer Support Centre. The model which take into account two different
aspects, on one hand it will have to increase efficiency, on the other it should
enhance our former authentication scheme. The objetives are: reduce response
times when providing and reseting passwords and to reduce costs or initiate a
business expansion by accepting more customers.

The model needs a central authentication process that manages all privileges
for all systems. The model needs: a server program interface between OTP
server and client, a user program interface and a secure database that stores
‘credentials’ for each account and for each system; that is, a global mecanism
of password scrow and authentication.

The following figure shows the three elements of this model. One in a public
zone, one at the interface and another in a secure zone. The information is
‘refracted’ from one media to another.

‘PUBLIC’ PATH ‘SECURE’ PATH

 Customer System [5] Response Central Auth. System

Central
 [1] Starts login(system) [2] OTP Challenge? [3] Identification & Autentication

 [4] response(system)

 End User Interface

 Fig 9

[1] The end user program starts the identification and authentication sequence by sending userid
credentials to the target system
[2] The target system sends back a challenge to the user interface.
[3] The user program entity and the Central Authentication system have their own and unique
authentiction mecanism through a secure path.
[4] The Central System has enough information and logic to compute the next OTP response for this
userid for that system
[5] The program entity answers the Customer System with the appropiate response through the ‘public’
network

From the end user point of view the OTP authentication process will be
transparent. He will only have to provide his unique userid, password and
system name to an application, and he will be authenticated in a customer
system. The process will be the same if he wants enter to another system.

The following diagram shows all these hidden events. Here ‘user’ is the end
user and program logic accesing a customer system. ‘Application Interface’
here is the program logic and program interface. ‘Opie client’, ‘Opie Server’ and
‘Application Interface’ are the only elements of the Central Authentication

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Authentication Model that uses One Time Passwords
Alberto Benavente Martínez

16

System. All the events whose labels start with the ‘opie’ are functions defined in
the default OPIE C library. ([19] Daniel, Randall and Craig.)

 User Application Interface Opie Client Opie Server

 LOGIN Userid, password,system

 Fig. 10

This framework reduces the number of passwords to be managed by the
Customer Support Centre. In fact there will be only one password per user
accesing to a lot of systems. This not a single sign-on access control mecanism
but it take some advantages of it. This model saves time because a lot of work
is left to an application that makes password management transparent. It also
enhances the authentication mechanism because it uses non reusable
passwords, moreover, it does not let the user know its values.

In Figure 10 there is a call to a database refferenced as personnel database.
The following figure shows the information stored there for a single user. There
are as many entries as systems the user is authorized to access. In this
example the user is authenticated using its intranet userid and password
(Intranet_Account and Intranet_password fields). Secret Key and OTP userid
are required to centrally reproduce the same scenario that will take place in the
target system. Here the database and the application server are elements of the
central arquitecture and are placed in a secure environment.

OTP Response (System)

OTP Response

 Secret key

 OTP userid

 challenge

 opiecrunch
 opiehash
 opiebtoe

 OTP Response
 opieverify

 0

CHECK Personnel
Database * .
Program Entity
AUTH nOK

OPIE challenge
(OTP userid)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Authentication Model that uses One Time Passwords
Alberto Benavente Martínez

17

Fig. 11

The following figure shows an architecture that uses this model. Let’s take , for
example, a worker at home. He connects his laptop, through PSTN, to his
corporate LAN in order to access to the Centralized Authentication System.
Once he is correctly authenticated he starts a connection to a customer system
through the internet. At this moment a second authentication process takes
place as described before. At the end he is authenticated by the target
customer system. This process can be repeated for all the systems with an
entry in the centralized database (red line in Figure 12).

The proposed model is not, for sure, a complete solution but it could enhance
the authentication process in some circumstances in our layered security
design.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Authentication Model that uses One Time Passwords
Alberto Benavente Martínez

18

18 Proposed Model: architecture

Fig. 12

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Authentication Model that uses One Time Passwords
Alberto Benavente Martínez

19

18 List of References

[1] Ribagorda, Arturo. Seguridad de la Información: Criptografía. Reading: Curso de.
Universidad Carlos III de Madrid. Escuela Politécnica Superior. Chapter 10 “Autenticación de
Entidades”. p10-0, p10-5. 10 April 2000.

[2] Lamport, Leslie. Password authentication with insecure communication. Communications of
the ACM, nov 1971. “the basis for the Bellcore S/KEY system” -Lamport, 1981

[3] Haller, N., Atkinson, R. “On Internet Authentication”.FAQs. RFC 1704. October 1994
URL: http://www.faqs.org/rfcs/rfc1704.html

[4] William R. Cheswick, Steven M. Bellowin Aviel D. Rubin. Firewalls and Internet Security,
Second Edition “Repeling the Wily Hacker”. Reading: Addison Wesley, 2003. p.104, 146-147.

[5] Menezes, J. Alfred. Handbook of Applied Cryptography. Reading: CRC Press. 5th printing.
August 2001. Chapters 9 and 10.

[6] Haller, N. “The S/KEY One-Time Password System”. FAQs. RFC 1760. February 1995.
URL: http://www.faqs.org/rfcs/rfc1760.html

[7] Rivest, R. “The MD4 Message-Digest Algorithm”.FAQs. RFC 1320. April 1992.
URL: http://www.faqs.org/rfcs/rfc1320.html

[8] Rivest, R. “The MD5 Message-Digest Algorithm” FAQs. RFC 1321. April 1992.
URL: http://www.faqs.org/rfcs/rfc1321.html

[9] SGI. “Opie 2.4: description +notes”. SGI Freeware. July 2003
URL: http://freware.sgi.com/Installable/opie-2.4.html

[10] Berkheimer, Andy. "OPIE module for Linux-PAM”. The Linux Kernel Archives. 10 nov 1999.
URL: http://tho.org/~andy/pam-opie.html

[11] IETF Working group “One Time Password Authentication (OTP)”. Internet Engineering Task
Force (IETF). 29 June 1999.
URL: http://www.ietf.org/proceedings/99nov/46th-99nov-ietf-118.html

[12] Metz, Craig. “One Time Passwords in Everything“. The Inner Net.
URL: http://inner.net/opie

[13] Craig, Hunt. TCP/IP Network Administration. Reading: O’REILLY. April 2002
Chapter 12. Network Security.

[14] Neo, “Esempio di implementazione di OPIE”. Open Skills. 28 february 1997. URL:
http://www.openskills.info/view/boxdetail.php?IDbox=617&PHPSESSID=265a9d115a939306d2
cf2d7d68afc413

[15] Gaetz, Owen, Walsh. Basen in “Improving Remote Security with S/Key”. Mc Cormik School
of Engineering and Applied Science. Industrial Engineering and management Sciences.
URL: http://www.iems.northwestern.edu/labs/opie.html
URL: ftp://ftp.iems.nwu.edu/pub/skey/winkey32.exe

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Authentication Model that uses One Time Passwords
Alberto Benavente Martínez

20

[16] Mantakos, Harry. “S/Key Calculator”. Rice University.Ownlet Computing.
URL: http://www.owlnet.rice.edu/skey/

[17] Haller, Metz. “A One-Time Password System” FAQs. RFC 2289. February 1998.
URL: http://www.ietf.org/rfc/rfc2289.txt

[18] Newman, C. “The One-Time-Password SASL Mechanism”. Internet Engineering Task
Force (IETF). October 1998. URL: http://www.ietf.org/rfc/rfc2444.txt

[19] Daniel, Randall, Craig. “One Time Passwords In Everything (OPIE): Experiences with
Building and Using Stronger Authentication”. Chacs of the Naval Research Laboratory. June
1995. URL: http://chacs.nrl.navy.mil/publications/CHACS/1995/1995mcdonald-USENIX.pdf

