
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 1

Joe Manek
15 December 2003
GSEC Practical Assignment, ver 1.4b Option 1

Securing FTP. Then and now.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 2

Abstract

File Transfer Protocol (FTP) is one of the most highly utilized protocols in computing
today. It’s a protocol that neither the Internet nor most corporate intranets could long do
without. However, for all FTP’s use and ubiquity it remains one of the most under
secured and over exposed capabilities being used today. This paper will provide some
historical perspective of where FTP came from and where it stands today, as well as to
identify some methodologies for controlling and securing FTP in a Unix environment,
from a systems administrator’s perspective. Additionally, several feature enhanced FTP
replacements will be highlighted.

In the beginning

FTP has been around since very early in computing. FTP began as a need to easily and
effectively distribute data and research information between co ntinually increasing
numbers, types and locations of computers making up the Advanced Research Projects
Agency’s Network (ARPANET). The Internet paper “A brief History of the Internet”1
provides a nice perspective of the work done for the Defense Advanced Research
Projects Agency (DARPA), which led to the ARPANET and the need for networking
protocols.

Within the research community the ability to easily and reliably transfer files from host to
host became a key requirement. As the networks grew, so did the difficulty and
complexity of transferring data from one host to another. A File Transfer mechanism
was needed to be able to abstract the underlying differences between different computer
hosts and provide a simple user interface. The 1st Request For Comments (RFC2)
pertaining to this File Transfer Protocol was [RFC-114], introduced in 1971 as a File
Transfer mechanism “between two hosts at M.I.T. the GE645/Multics and a PDP-
10/DM/CG-ITS (and possibly Harvard's PDP-10)”3.

Numerous RFCs have since been published pertaining to FTP and are continuing today. .
A complete and searchable listing of RFCs can be accessed at http://www.faqs.org/rfcs.

Since those early dark-days the File Transfer Protocol has come a long ways. The current
standard Internet standard for FTP is described by [RFC-959] with additional features
defined in subsequent RFCs. Such as:

Ø [RFC-1123], a broad ranging document containing many FTP related

recommendation, clarifications and improvements to [RFC-959]. Of note
amongst the many enhancements is the addition of the PASV command, which

1 http://www.isoc.org/internet/history/brief.shtml
2 http://livinginternet.com/i/ia_rfc_invent.htm
3 http://rfc-114.rfc-list.org/rfc-114.htm (page 1)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 3

allows the client to determine the data port number opened by the server for data
transfer.

Ø [RFC-1579], defines enhancements that allow FTP to work more easily through
firewalls. This RFC suggests a change for an implementation of FTP that would
replace the PORT command with the PASV command, thereby making the data
connection an outbound connection and much easily to implement and co ntrol via
packet filters and firewalls.

Ø [RFC-2228], defines security related enhancements addressing both
confidentiality and integrity. These security extensions and enhancements
provide the ability to negotiate a mutually agreed upon Authentication/Security
Mechanism between the client and the server. This capability not only provides
for the secure transfer of encrypted data but also the ability to authenticate the
client to the server thereby assuring the client machine is who it claims to be.

Ø [RFC-2428], defines extensions for IPv6 and NAT. These extensions provide
several ‘extended’ FTP subcommands that enable and support use on both IPv4
and IPv6 environments.

Ø [RFC-2577], identifies further security considerations when implementing FTP,
such as protecting against a “bounce attack”. A “bounce attack” makes use of the
ability to designate an IP address and port number using the “PORT” command of
FTP. This ability allows FTP to be used to direct an attack to a legitimate service
on a target machine, such as SMTP or NNTP. A ‘forged’ file containing valid
input to the service being attacked could be sent to the service in this way. [RFC-
2755] specifies that the ‘data’ connection of FTP not be allowed to specify or
open any port numbers below 1023 (ports below 1023 are considered well-known
ports). Note: this does not protect well-known ports used above 1023.

Ø [RFC-2773], describes an experimental Encryption implementation using KEA
and SKIPJACK employing the security extensions defined by [RFC-2228].

To secure or not to secure

FTP evolved and matured in the era before the Internet we know today came to be. There
wasn’t a vast worldwide network of interconnected systems, a large number of which
whose owner’s sole purpose it seems is to break into your system and look at, if not steal
or destroy your data. The security characteristics of the early FTP relied mostly upon the
inherent security of the ARPANET itself, and those who used it.

Little attention to security was given in any of the early RFCs pertaining to FTP, past the
admonishment that users protect their passwords from exposure, as indicated by this
excerpt about the PASSword argument from [RFC-959],

The argument field is a Telnet string specifying the user's
password. This command must be immediately preceded by the
user name command, and, for some sites, completes the
user's identification for access control. Since password
information is quite sensitive, it is desirable in general

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 4

to "mask" it or suppress typeout. It appears that the
server has no foolproof way to achieve this. It is
therefore the responsibility of the user-FTP process to
hide the sensitive password information.4

FTP, at [RFC-959] provides no built-in ability for securing or
protecting your data. Here are some of the weaknesses:

Ø User authentication consists of supplying a user account and
password, both of which transit the network in clear-text,
easily obtained with proper tools and or access points.

Ø No authentication of the client other than with the password,
thereby assuming the possessor of this information is authorized

Ø No limit on the number of attempts to connect which lends itself
to password quessing

Ø Difficult to secure with perimeter defenses such a firewall. Due
to the dual-channel nature of FTP it is difficult to secure the
in-bound data channel since the port number is determined at
each transfer. Conceptually one would have to allow all in-
bound high-port numbers in order to provide FTP services.

Ø Limited logging. Logging typically consists of supplying an
operand, such as ‘-d’ or ‘-l’ at startup of the ‘ftpd’ daemon,
which logs each attempt noting the IP address of the client and
possibly the operation (put, get, etc.)

Common techniques for making FTP more secure.

Over time, given FTP’s inherent insecurity system administrators have come up with
ways to strength security aspects and diminish it’s use as a tool for nefarious purposes.
Below are just a few of these techniques.

Anonymous FTP

Most Unix implementations of FTP include ‘anonymous’ FTP, and although slightly
different from Unix to Unix, a ‘man’ on ftpd is usually all that’s needed for setup.

Anonymous FTP typically has the user authenticate using a shared account name of ‘ftp’
or ‘anonymous’ and a non-authenticated password of any valid string, typically the user’s
email address. Some implementations attempt minor validation of this string by looking
for a “@” or something resembling an account name. At first glance, this might seem to
be less secure than FTP requiring both a unique account and a valid password
combination. However, a unique feature of anonymous FTP is the concept of an FTP jail
or fenced sandbox. This jail is implemented with the ‘chroot’ capability of most Unix’s.
‘chroot’ basically defines a directory structure relative to a defined ‘root’, which is
determined by the system admin setting up the anonymous FTP server. This effectively
boxes the FTP user in and eliminates the ability to use FTP to traverse up the directory

4 http://rfc-959.rfc-list.org/rfc-959.htm (page 26)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 5

structure past this relative ‘root’, thus preventing the ‘curious’ user from playing outside
of their sandbox.

Although gaining some level of protection for the rest of the system, anonymous FTP
also has drawbacks. There is no granularity of control. Everyone is user ‘ftp’ or
‘anonymous’. Everyone uses the same directory structure defined by the ‘chroot’
command. Users are typically instructed ahead of time to navigate to a specific
subdirectory or set of subdirectories before placing or retrieving data. These directory
structures and the files contained therein can be hidden from the FTP user’s view using
the following tasks:

Ø Set the permissions for the directory being used to receive files to ‘130’, Octal.

An ‘ls –l’ on the directory name should produce permission of, ‘d--x--wx---‘
Ø Create a new group and make it the default group for the ‘ftp’ account. The ‘ftp’

account should be the only account defined to this group.
Ø Make this group the group-owner of the directory.

When the user authenticates as account ‘ftp’, the user will be placed in the HOME
directory designated for the ‘ftp’ account. Remember, this directory needs to be read-
only to the ‘ftp’ user and associated group so that subdirectories can’t be removed or
renamed. The user still will be able to ‘put’ and ‘get’ files but will not be able to list
them via the ‘ls’ or ‘dir’ commands. A “550 no files found” message will be returned in
response to either of these commands. The ‘cd’ command will still allow the user to
navigate to any subdirectories to which the ‘ftp’ account or it’s group has the proper
access. The name and location of files and directories must be known before they can be
retrieved. This doesn’ t prevent someone from guessing for file names, but it does make it
appreciably more difficult than merely listing them.

Limiting access to FTP only

A restriction of FTP is that the account used must meet the following criteria.

1. The username must be in the password database /etc/passwd and must not have
a null password. The client must provide a password before any file operations
may be performed.

2. The username must not appear in the file /etc/ftpusers, which contains a list of
users who aren't allowed to use of ftp. One username is listed per line. If this file
is missing, anyone on the local system may access ftp.

3. The user must have a standard shell (i.e. one listed in /etc/shells).
4. If the username is anonymous or ftp, an anonymous ftp account must be present

in the password file (user ftp). In this case, the user can log in by giving any
password (by convention, users give the name of the client host).

With out further controls, a user can use the same credentials to authenticate and gain
command-line access even though they are ‘supposed’ to be FTP-only. The following
steps can be taken for restricting access.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 6

Ø Create a separate home directory for each FTP-only user, designated in their

‘/etc/passwd’ entry.
Ø Limit the user’s authority as tightly as possible only to those directories to which

they should have FTP access.
Ø Create a 1-line shell script as follows: “#!/bin/ksh”. with 755 permissions, owned

by ‘root’ and placed in a ‘root’ owned directory, such as ‘/usr/local/bin’.
Ø Add an entry for the full pathname of the 1-line shell script to /etc/shells. This

makes it a valid script that can be used as ‘shell’, a requirement for FTP. It is not
a valid shell for command-line access and as such will merely exit. You can, if
you wish add some logic to put out a nasty-gram to the user, letting them know
this account is for FTP only. Although, silence is usually golden, and typically
more secure.

Ø Make this 1-line shell the default shell for the user.

Be aware that this technique does nothing to prevent the FTP user from using built-in
FTP command such as ‘cd’ to traverse any directory tree to which they have ‘execute’
access, retrieve any files to which they have ‘read’ access and remove or rename files to
which they have ‘write’ access. This technique merely allows you to create FTP
accounts that can’t be used to un-intentionally authenticate command-line access as well.

TCP Wrappers

TCP Wrappers can be used to help authenticate clients to the FTP server by providing a
level of assurance that a client machine’s IP address is not being ‘spoofed’. In order to
accomplish this, Wrappers should be run in ‘PARANOID’ mode. ‘PARANOID‘ mode
takes all in-coming connections and does a ‘reverse DNS lookup’ on all inbound IP
connections. It then takes the ‘hostname’ returned by the lookup and does a ‘forward
DNS lookup’ and compares the two IP addresses. If they aren’t the same the request is
rejected. Even when not ran in PARANOID mode TCP Wrappers can provide additional
levels of logging.

Adding TCP Wrappers to FTP is as simple as;

1. Installing TCP Wrappers. Not necessarily trivial but should be doable on almost
all variants of Unix, new and old.

2. Replace the /etc/inetd.conf entry for FTP with the Wrapper version.
3. Add an ‘ftpd.in’ entry in /etc/hosts.allow to allow specific or ranges of IP

addresses to be allowed to FTP.
4. Place a “PARANIOD” entry in the /etc/hosts.deny, either specifically for ‘ftpd’

service being ran, or with “ALL” for all services.

Be warned that running Wrappers in “PARANOID” mode can deny access to legitimate
users if DNS is not properly configured or working properly. Additionally, DNS itself is
vulnerable to several methods of attack and as such could be compromised or disrupted.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 7

DNS vulnerabilities and their solutions can be easily located at
http://www.cert.org/advisories. An excellent overview of TCP Wrapper function,
installation and configuration can be found in the paper “Wrap a Security Blanket
Around your Computer”5 written by Lee E. Brotzman.

FTP replacements

Many FTP replacements are available via both Open Source and commercially. These
typically offer similar feature and usability enhancements over [RFC-959]. Otherwise
why bother. Right? I’ll highlight the features of a couple of leaders.

WU-FTPD

The clear leader of the Open Source pack is wu-ftpd, available from ftp://ftp.wu-
ftpd.org/pub/wu-ftpd/. wu-ftpd, also known as Wuarchive-ftpd, is replacement ftp
daemon originally developed at the University of Washington by Chris Meyers and
Bryan D. O’Connor. It is now supported by the “Wu-ftpd Development Group”, which
maintains a number of mailing lists, found at http://www.wu-ftpd.org/mailinglists.html.

wu-ftpd is written to the [RFC-959] standard as well as updated by [RFC-1579] and
[RFC-2228]. For those interested in some light reading, a detailed listing and contents of
wu-ftpd related RFCs is accessible at http://www.wu-ftpd.org/rfc/.

wu-ftpd supports 3 types of FTP.

1. anonymous FTP. Your basic anonymous FTP using a user name of ‘ftp’ or
‘anonymous’ against an account name of ‘ftp’. The user is restricted the ‘ftp’
account’s HOME directory via ‘chroot’.

2. real FTP. The normal FTP everyone’s familiar with where a real user
authenticates with a real password.

3. quest FTP. Guest FTP operates the same as ‘anonymous’ FTP in that once a real
user, with a real account, password and HOME directory, authenticate, they are
placed in a ‘chroot’ed jail of their HOME directory. Thereby eliminating the
exposure to the rest of the system to any curious cruising around.
ftp://ftp.fni.com/pub/wu-ftpd/guest-howto/ provides an excellent tutorial for
setting up a guest environment. Be prepared for a little extra work when creating
accounts, because guest FTP accounts require the same amount of Operating
System specific setup for each real user account that anonymous FTP does for the
‘ftp’ user account.

‘ftpaccess’, located in /etc can be used to configure and control wu-ftpd’s behavior. A
myriad of parameters and options allow the administrator to tightly control most aspects
of the FTP server. An explanation of ‘ftpaccess’ and wu-ftpd’s configuration is far

5 http://www.linuxjournal.com/article.php?sid=2180

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 8

beyond the scope of this paper but can be examined further at http://www.wu-
ftpd.org/man/ftpaccess.html.

ProFTPD

ProFTPD, a free FTP server (GPL), available from http://www.proftpd.org/ is also highly
configurable feature-rich offering. Developed from the ground-up as a very modular,
easily extensible alternative to wu-ftpd, ProFTPD offers the same features and
capabilities as wu-ftpd with some notable improvements. Such as:

Ø Per directory ".ftpaccess" configuration similar to Apache's ".htaccess".
Ø Anonymous FTP root directories do not require any specific directory structure,

system binaries or other system files.
Ø Runs as a configurable non-privileged user in stand-alone mode in order to

decrease chances of attacks which might exploit its "root" abilities. Note: This
feature is dependent on the capabilities of the host Unix system.

These features and others are highlighted at http://www.proftpd.org/features.html.

PureFTPd

PureFTPd, a free (BSD) FTP server, available from http://ww.pureftpd.org/, boasts of a
simple ‘no frills’ implementation with a strong emphasis on security, flexibility and
extensibility. Some of PurFTPd’s features are listed below, the remainder can be found
at http://www.pureftpd.org/index.shtml.

Ø All accounts can ‘chroot’ed by default
Ø Supports LDAP authentication and a large number of crypto hashing algorithms,

such as; Plaintext, Crypt, MD5, SMD5, SHA and SSHA.
Ø Ability to throttle bandwidth for both downloads and uploads.
Ø Provides a utility, ‘pure-ftpwho’, that provides real-time reports of who's doing

what on the FTP server, including bandwidth usage. Can be tailored to produce
html, XML or text reports.

Ø One of the most complete implementation of the FTP protocol specification, plus
modern extensions.

Although not as widely used (yet) as the other FTP servers described in this paper, it has
some impressive feature and warrants a close look when deciding on an Open Source
FTP server.

NcFTPd

NcFTPd, a commercial FTP server, available from http://ww.ncftp.com/, has many of the
same features as the non-commercial offerings listed above. It also has one that the
others don’t. Support. Albeit only e-mail and fax support, it’s still more than is typically
provided from the Open Source community. Some additional features are:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 9

Ø Easy installation and setup. Provides a default installation that drops-in with out

much effort.
Ø Built-in ‘compress’ or ‘gzip’ compression and the ability to retrieve directories as

entities, using ‘tar’.
Ø Utilities to easily monitor and log activities on the server, in real -time.
Ø Ability to filter and control file and pathnames, which can be used to prevent un -

printable or ‘.dotfiles’ from being created.
Ø Boasts of several performance enhancements that increase throughput and

decrease resource consumption.
Ø Comes with several optimized client tools

A more complete list of features for NcFTPd can be found at
http://www.ncftp.com/ncftpd/features.html.

SUMMARY

Everyone in computing, whether on the Internet, a corporate Intranet or as a home user,
uses the File Transfer Protocol (FTP). It began as a need for a platform independent
mechanism for transferring data between research hosts at M.I.T. It’s been around since
before Al Gore invented the Internet. It’s also been the object of much updating and
enhancement, in the form of many Requests For Comments (RFC). The RFC describing
the current FTP standard is [RFC-959], although most modern implementations of FTP
have also incorporated more recent RFCs, focusing somewhat on usability, but more so
on security enhancements and extensions.

In today’s target rich environment, with bad guys lurking around every corner, it’s
important to harden your FTP environment. This paper briefly describes and provides
some references and URLs to several possible ways of making your FTP server a little
less of a target. Such as; Implementing “anonymous” FTP where appropriate, restricting
or eliminating cross-protocol use of FTP account authentication and using TCP Wrappers
as a tool to further secure, control and log your FTP server’s activities.

Using an FTP replacement was discussed as a way to provide greatly enhanced control,
monitoring and security characteristics over the standard [RFC-959] implementation.
There are many FTP server replacements available today. A short search on Google will
reveal many to choose from. 3 Open Source and 1 commercial FTP servers were
highlighted as a sampling.

Lastly, do not assume your FTP servers are secure. If you haven’t, take some time and
perform some basic research and determine what you r FTP environment looks like.
Check to see if simple changes will make it more secure. Or, if it’s appropriate, replace
your aging FTP server software with one of the more modern, feature rich and secure
variants available.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 10

References

[RFC-114] A. Bhushan, "A File Transfer Protocol"
 RFC 114, April 1971.
http://rfc-114.rfc-list.org/rfc-114.htm

[RFC-959] J. Postel, "File Transfer Protocol"
 RFC 959, October 1985.
http://rfc-959.rfc-list.org/rfc-959.htm

[RFC-1579] S. Bellovin, "Firewall-Friendly FTP"
 RFC 1579, February 1994.
http://rfc-1579.rfc-list.org/rfc-1579.htm

[RFC-2228] M. Horowitz, S. Lunt, "FTP Security Extensions"
 RFC 2228, October 1997.
http://rfc-2228.rfc-list.org/rfc-2228.htm

 [RFC-2577] M Allman, S Ostermann, "FTP Security Considerations"
 RFC 2577, May 1999.
http://rfc-2257.rfc-list.org/rfc-2257.htm

[RFC-2773] P. Housley, P. Yee, W. Nace, “Encryption using KEA and SKIPJACK”
 RFC 2773, February 2000.
http://rfc-2773.rfc-list.org/rfc-2773.htm

Liener, Barry M., Cerf, Vinton G., Clark, David D. Kahn, Robert E., Klienrock Leonard,
Lynch, Daniel C., Postel Jon, Roberts, Larry G., Wolf, Stephen “A Brief History of the
Internet”
http://www.isoc.org/internet/history/brief.shtml

Chapter 22, “Wrappers and Proxies” of O’REILLY’s “Practical UNIX & Internet
Security” contains a nice summary of Wrapper capab ilities. Available online at
http://www.busan.edu/~nic/networking/puis/ch22_03.htm

Chapter 32, “Section VI – Unix Security: Step -by-Step” of The SANS Institutes’ “SANS
Security Essentials with CISSP CBK Version 2.1”

Brotzman, Lee E., “Wrap a Security Blanket Around Your Computer”
Friday, August 01, 1997. Published in Issue 40 of LINUX Journal
http://www.linuxjournal.com/article.php?sid=2180

