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 Anomaly Detection in High-Performance Applications 
Running on Linux Clusters 

 
Abstract 
Linux clusters have become widely used computational resources in security 
conscious environments. In these systems, MPI (Message Passing Interface) is a 
standard programming technique used to implement complex scientific programs, 
which often run for long periods of time with large amounts of sensitive data. As 
these programs are being executed, a number of different types of irregularities can 
occur, including those that result from user misbehavior, intrusions, corrupted data, 
deadlocks or failure of cluster components. We present a method for automatically 
detecting such irregularities based on the identification of anomalies in the behavior 
of MPI programs. The behavior is learned from the library function calls issued by 
the program in each node of the Linux cluster. Two different techniques are used to 
build the models of normal behavior and to detect deviations from normality. A 
prototype system has been built that exhibits a high level of detection with a low 
performance penalty, and it can be installed in every node of the cluster as part of a 
defense-in-depth strategy. 
  
 
1. Introduction  

 
Several algorithms have been proposed to implement intrusion detection systems 

(IDS) based on the idea that anomalies in the normal behavior of a system might be 
produced by a set of actions of an intruder or by a system fault. Many of them, use 
system call logs produced by the operating system or a purpose-specific trace tool to 
detect anomalies in a UNIX host. However, as library functions are currently the 
preferred way to access system services, the quality of information produced by 
system calls traces has decreased, i.e. it can be possible to better understand the 
behavior of complex programs by looking at the function calls issued by a process.  

Actual UNIX and Linux systems support collection of information in real time 
from different type of processes, including parallel programs implemented in C with 
Message Passing Interface (MPI) architecture. With such techniques a tool can be 
deployed to restrict the execution of programs by enforcing a security policy on the 
network, memory and file accesses.  

A cluster of workstations is a special environment of interest because generally 
parallel programs running in such a distributed environment execute large and 
periodic tasks, and therefore, we can collect accurate patterns of activity. In contrast, 
in a typical LAN, a given process can perform a wide variety of tasks, and the 
definition of “normal” behavior becomes a hard task. Examples of applications used 
in a wide variety of forms include UNIX shells and sendmail among others. Others 
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interesting aspects of a Linux cluster are related with the fact that each of the 
software and hardware components may have its own vulnerabilities, configuration 
errors can prevent components from working together correctly, and network failure 
and CPU misuse may lead the entire system into abnormal behavior.  
 
1.1  Motivation for High Performance Cluster Monitoring 

High Performance clusters are not new, but their use and employment is 
proliferating as the cost of hardware decreases and processing power and network 
speeds increase.  It is not difficult to imagine a not too distant future where 
specialized clusters are employed in the dashboard of a modern automobile offering 
a drive-by-wire application, the nose cone of an anti-missile missile controlling 
targeting maneuvers, or in the cockpit of a high performance aircraft handling 
various avionics applications.   Such systems will be characterized by a reasonably 
static suite of software applications whose behavior can be characterized and 
monitored.  As with all software, maintenance will be performed over time, which 
has the risk of introducing malicious exploits.  Detecting anomalies and reporting 
them quickly will be an essential requirement in these systems.  Reporting might 
take the form of alerts to a system administrator or even, perhaps, turning on a 
"maintenance required" warning light on a console.    

The techniques reported in the remainder of this paper are showing promise of 
high reliability and low overhead detection.  While we continue to explore these 
techniques as components of an intrusion detection system, it should be apparent that 
there are other related applications. 
 
1.2  Why Anomaly detection in a cluster 

We assume an environment where the application base (MPI programs written in 
C) is well defined, but the user-base may be not. Therefore, patterns of usage are 
expected to emerge, and they can be used to detect irregularities in the execution of 
parallel programs. These irregularities include intrusions, user misbehavior, 
corrupted data, deadlocks and failure of cluster components among others. The 
proposed system is designed as a host-based anomaly detector that can be installed in 
the nodes of the cluster as part of a defense-in-depth strategy. 

Current monitoring systems are able to detect some of those irregularities by 
testing individual services with simple message exchange among the cluster 
components. Other systems provide useful methods for configuration and prevention 
of errors in the system. However, none can find every possible error or 
misconfiguration.  A typical example is testing a telnet service: Determining that the 
telnet port is open does not necessarily ensure that a user can login remotely [15]. 
Furthermore, theory of computation indicates that with the current computing model, 
the problem of determining whether or not a program (a Turing Machine) will halt 
with an input X is not decidable. Therefore, in the general case, we must assume that 
the execution of any program might fail. 

Some of the advantages of deploying a host-based anomaly detection system in a 
cluster are: 
• It can quickly determine when some types of intrusions are taking place. 
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• It provides another layer of security, especially in the case where the user-base is 
no longer controlled. While a grid cluster has to have an authorization and 
authentication policy, the most useful mode of operations is one in which classes of 
users are likely to be acceptable. In this way, special assumptions about users and 
their behaviors over time cannot be made. 
• It provides a qualitative measure of the execution of a job, in an attempt to 
answer the question “is the parallel program being executed correctly’’. 

This paper is organized as follows. Section 2 will introduce related work. The 
architecture of our prototype system is described in section 3. The techniques used to 
model the behavior of MPI applications are introduced in section 4. Experimental 
results demonstrating the effectiveness and performance of our algorithms are 
presented in section 5. Conclusions are described in section 6.  

 
2. Related Work 
 

Verifying a program's behavior by analyzing the processes, methods, tasks or 
calls that a program executes, has been an active field of research. Both static and 
dynamic inspections of algorithms have been proposed, including Java Virtual 
Machine [16], efficient certified code [17], Janus [18] and the execution monitor [19]. 
Forrest and Longstaff [20] reported one of the first research papers on analysis of 
system calls. Other algorithms include the EMERALD system [7] and Somayaji's pH 
[10]. Warrender, Forrest and Pearlmutter [13] performed a comparison of different 
algorithms for solving the problem of anomaly detection of privileged UNIX 
programs using system calls. In previous work, we have successfully applied 
different artificial neural networks and boosting algorithms in the field of intrusion 
detection [2,4]. 

Markov processes are widely used to model systems in terms of state transitions. 
Some detection algorithms that exploit the Markov property implement Hidden 
Markov Models (HMM), Markov chains, and sparse Markov trees. Lane [21] used 
HMMs to profile user identities for the anomaly detection task.  An open problem 
with this profiling technique is the ability to select appropriate model parameters. 
Others experiments performed by Warrender, Forrest and Pearlmutter [13] compared 
the HMM with algorithms such as s-tide and RIPPER. They concluded that the 
Hidden Markov Model exhibited the best performance of the models considered but 
was the most computationally expensive. 

Library interposition is widely used to deploy debuggers and monitoring systems 
in standard UNIX-like operating systems. Examples include the Curry's Shared 
Library Interposer [1], Kuperman and Spafford's data library [22], Jain and Sekar's 
system [23] and the monitoring of function calls for intrusion detection of Jones and 
Lin  [24]. Some of these systems include an automatic generation of source code. 

A number of applications have been implemented to gather data from the 
execution of parallel programs in a cluster of workstation, but none were developed 
with anomaly detection as an objective. Some examples include the automatic 
counter profiler  [8] and the Umpire manager [12]. Massie, Chun and Culler 
developed Ganglia [25], a scalable distributed monitoring system for high-
performance computing systems.  It is able to collect between 28 and 37 different 
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built-in and user-defined metrics ``which capture arbitrary application-specific state" 
[25].  Marzolla [26] implements a performance monitoring systems for a large 
computing cluster. Examples of the metrics used are available space on /tmp, /var 
and /usr, cached memory, available memory and total swap. Finally, Luecke et al. [5] 
improve MPI-CHECK to detect deadlocks in MPI programs written in Fortran using 
a handshake strategy.  

Recent work in the field of cluster monitoring has shown that it is possible to 
efficiently combine the output of several sensors in the cluster and present an overall 
status to the system administrator. However, because of the large amount of 
information generated, the wide variety of sensors used, and the complex behavior of 
the parallel applications being executed in the cluster, it is difficult to determine if a 
parallel program is behaving as expected or not. Our research addresses this problem.  
 
3. System Architecture 
 

Our goal is to demonstrate that detection of anomalies during the execution of 
MPI applications can be conducted in (near) real-time with high accuracy and low 
false alarm rates. To achieve this goal, a prototype system called MPIguard has been 
implemented and its effectiveness has been demonstrated.  

We agree with Buyya [15]: ``The network is just a system component, even if a 
critical one, but not the sole subject of monitoring in itself.'' The development of 
high-speed network technologies is changing the original TCP/IP based network 
philosophy. Myrinet, Gigabit Ethernet and Infiniband, for example, are widely used 
to build cluster systems, providing more than 1Gb/s bandwidth (in contrast with the 
10Mb/s or 100Mb/s of the traditional technologies).  To obtain such a high 
bandwidth, an OS kernel bypass method is used to copy data directly from the user 
space memory to the buffer in the physical device by using direct memory access 
(DMA).  We believe that a traditional network based detection system does not fit 
well in a cluster environment, because generally detection is conducted by analyzing 
TCP/IP streams, and thus, only a portion of the real traffic on a high-speed cluster is 
being monitored. Additionally, in a fully saturated network traditional detection 
systems cannot handle the amount of information generated in a cluster environment 
and both the accuracy and the performance may degrade. 
       Standard technologies for monitoring nodes in the cluster create statistical 
behavior models based on the output of different sensors spread over the entire 
cluster system, measuring quantities such as network latency, CPU time, memory 
usage, etc. This information is quite useful for determining the overall status of the 
cluster, but it can be misleading when it is used to monitor a particular parallel 
application. For instance, the execution of a parallel program with different input 
data and parameters will result in very skewed values for CPU usage times, thus 
summarizing this feature using mean and variance would not be appropriate.  

This problem is even more difficult to address when the application makes use of 
randomized algorithms.  Since most of the sensors used in current monitoring 
systems are time-driven, (a snapshot of the sensor is taken at a given time period), 
creating a useful  model of the sensor  for a parallel application can be a difficult task.  
For these reasons, we have chosen an event-driven system, where specific sensors 
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collect information every time an event is generated. In our research, this event 
corresponds to a library function call issued by the parallel application. 

A software application issues calls to the operating system to perform a wide 
variety of functions such as I/O access, memory requests, and network management. 
However, many application programmer interfaces (APIs) do not make use of 
system calls, mainly for performance reasons or because no privileged resources 
need to be manipulated. A typical example is the set of functions such as cos, sin or 
tan from the standard mathematical library of C. 

Linux provides a large collection of mechanisms to trap system and function 
calls from any process in user-mode. For instance, in order to monitor kernel calls, 
the OS provides the tools strace, trace and truss, but these tools only record kernel 
level functions and the trap mechanism produces too much overhead [1]. However, 
another method that has been widely used for implementing performance and 
monitoring tools is library interposition. 

The link editor (ld) in a Linux operating system builds dynamically linked 
executables by default. The compiler builds incomplete executables and the link 
editor allows the incorporation of different objects in real time. The communication 
between the main program and the objects is done by shared memory operations. 
Such (shared) objects are called dynamic libraries: “A dynamic library consists of a 
set of variables and functions which are compiled and linked together with the 
assumption that they will be shared by multiple processes simultaneously and not 
redundantly copied into each application” [26]. 

In the Linux system, the link editor uses the LD_PRELOAD environment 
variable to search for the user’s dynamic libraries. Using this feature, the operating 
system gives the user the option of interposing a new library. Interposition is “the 
process of placing a new or different library function between the application and its 
reference to a library function” [26]. Thus, the library interposition technique allows 
interception of the function calls without the modification or recompilation of the 
dynamically linked target program. By default, C compilers in Linux use dynamic 
linking.  

 

 
Figure 2 Example of an MPIguard’s configuration file  

 
MPIguard automatically generates the source code needed to gather information 

of any C function from dynamically linked programs. Figure 1 shows the template 
used. The system administrator interacts with the tool indicating which functions and 
parameters will be analyzed, but he/she does not need to modify any source code. 
Basically, a configuration file is used to describe the type, the name and the 
parameters of the functions (See Figure 2). Code is an internal code for each function 
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(this value is stored on disk instead of the real name of the function) and Parameter 
to store in disk is the argument (an integer that generally corresponds to some 
buffer’s size) that will be written in the log file. A value of -1 indicates that the 
function’s parameter is not important for the user or the function has no parameters. 
In the experiments presented in this paper, such buffer size is not used. However, we 
expect to analyze function call arguments in our future research work. 

 
It is important to observe that we are creating our own profiling tool. This simple 

tool is, by itself, a value source of information for any other IDS or monitoring 
systems, since it can be personalized to collect data at different levels from a wide 
variety of libraries.  

 
__FUNCTYPE __MPIAPI_C __FUNCREALNAME (__FUNCPARAM) 
{ 
        typedef __FUNCTYPE(*function_type) (__FUNCPARAM); 
        static function_type function=NULL; 
        static char* function_name=__FUNCNAMESTRING; 
 
        __TYPERETVAL __DEFINERETVAL 
  
        if (!function){ 
                __HANDLEMPILIBRARY 
                __OPENMPILIBRARY 
                function = (function_type) dlsym(__HANDLER,function_name); 
                __CLOSEMPILIBRARY 
        } 
  
        if ((!ThisLibraryCall) && (DoProfile)){ 
                ThisLibraryCall=TRUE; 
                //execute the funtion and then profile 
                __ASSIGNRETVAL ((*function)(__FUNCNOTYPEPARAM)); 
                PROFILE(__FUNCID, 
                        __FUNCTOLOGPARAM); 
                ThisLibraryCall=FALSE; 
        } 
        else //do not profile, only execute 
                __ASSIGNRETVAL ((*function)(__FUNCNOTYPEPARAM)); 
  
        __RETURNRETVAL 
} 

 
Figure 1 Template used by MPIguard to collect any C function 

 
With our framework, the monitoring of programs is a two-stage process. First, 

we obtain samples of the behavior of the application that are used to create a profile. 
Second, we compare the behavior of the application with this profile in real-time for 
each one of the nodes. In the first stage, we collect the function call traces from all 
the compute nodes in a central database and train the detection algorithms. This 
subsystem is called the Profiler.  Although this stage incurs substantial 
communication and computational costs, it is assumed to be an off-line process. 
Even more, we assume that the profile of an application seldom changes, and 
therefore the overhead caused by data collection and training can be ignored. During 
the second phase (the Analyzer), the profile is loaded in memory and a detection 
algorithm is executed in real-time for each of the nodes where the parallel 
application is being executed. 
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Figure 3 shows the architecture used for monitoring system calls from libc and 
libmpipro (MPI’s dynamic library).  The calls collected by the interposition library 
are sent via shared memory either to the Profiler (writing the information to disk) or 
to the Analyzer (detecting anomalies in real-time).  

 
Figure 3 Architecture used to monitor function calls 

 
4. Detection Techniques 

 
We have used two methods to model normal behavior: exact sequence matching, 

and Hidden Markov Models (HMM).  We have chosen exact sequence matching as 
an example of a simple deterministic algorithm and Hidden Markov Models as an 
example of sequence modeling.  
 
4.1 Sequence matching 

We use a sliding window to divide a trace (a sequence of calls from one run of a 
program) into a set of small sub-sequences. For example, suppose we had a normal 
trace consisting of the following sequence of calls 

 
execve, brk, open, fstat, mmap, close, open, mmap, munmap 

and we have defined a window size of 4. We slide this window across the sequence, 
and for each call we encounter, we record the calls that precede it at different 
positions within the window, numbering the calls from 0 to (window_size – 1), with 
0 being the current system call.  The trace above yields the following instances: 

position 3 position 2 position 1 current 
   execve 
  execve brk 
 execve brk open 
execve brk  open fstat 
brk  open fstat mmap 
open fstat mmap close 
fstat mmap close open 
mmap close open mmap 
close open mmap munmap 
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This database is stored as a sorted tree to perform efficient comparisons and 
correspond to the profile of a given MPI program. The detection of anomalies is 
straightforward:  If a sequence gathered from the function call trace of a new 
instance of an MPI program cannot be found in the tree, an alarm is issued. 
 
4.2 Hidden Markov Model (HMM) 

Hidden Markov Models (HMM) are used for modeling sequences of events and 
are widely used for speech recognition and DNA sequencing. These models have the 
ability to capture patterns from sequences of events. A Hidden Markov Model is a 
doubly stochastic process, where the states represent an unobservable condition of 
the system. For each state, there exist two probabilities: the probability of generating 
any of the observable system outputs, and the probability of transition to the next 
state [13]. The elements of an HMM are as follows [9]: 
1. N, the number of states, 
2. M, the number of distinct observation symbols per state (the alphabet size), 
3. A, the state transition probability distribution, 
4. B, the observation symbols probability distribution, and 
5. π , the initial state distribution. 
For convenience, an HMM model can be expressed as: 

),,( πλ BA=  
The Baum-Welch algorithm is generally used to train the transition and symbol 

probabilities of an HMM. The detail description of the algorithm can be found in [9]. 
In order to train the HMM with the Baum-Welch algorithm, we should specify the 
observation sequence O (the trace containing the function calls from the normal 
execution of the parallel program). With an optimal model λ , we can assume that 
the probabilities A and B generalize the normal behavior of the process. 
 

Figure 4 shows an example of an ergodic HMM with two states and 3 possible 
symbols.   In this model, the symbol c (e.g. the system call close) has a probability of 
being generated in the first state of 0.6, whereas it has a probability of 0.1 in the 
second state.  Also, the probability of transition between state 1 and state 2 is very 
high, 0.9.  

 
Figure 4 Example of a trained HMM model 

 
In order to detect anomalies, we developed an algorithm that traverse all the 

possible transitions and emission symbols for each state. When such a probability is 
very low for a new stream of calls, the call is flagged as anomalous.   A formal 
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definition of this algorithm is presented below. Given a new observation O , that 
corresponds to the trace of an unseen instance of the program, and using the model 
λ  learned from normal instances of the application. 
For each observation tO : 

• For each state Si (if the state can be reached from the previous one, i.e., if the probability of 
moving to the current state is greater than some user threshold θ  ). 

- If the probability of producing the symbol 
tO  in the current state ),( tOiB  is less than θ  

then the function call in the trace is labeled as anomalous. 

• If tO  could not be produced by any state (i.e. the function call in the trace was tagged as 
anomalous in each state S i) then the counter of anomalies C is increased. 
 

Although there is no mathematical basis for using the same threshold θ to test 
both the probability of moving to the current state Si and the probability of producing 

a symbol tO  in the current state, we wanted to include the smallest number of 
parameters possible for the anomaly detection task with the HMM. 

Finally, it is important to observe that the detection algorithms for both the 
exact sequence matching and the HMM can be performed online. 
 
5. Experimental Results 
 
5.1 Approach 

As we mentioned before, we focus our research on parallel programs based on 
the Message Passing Interface (MPI) protocol because it is a current popular 
standard. Our goal is to demonstrate that detection of anomalies of MPI applications 
can be conducted in (near) real-time with high accuracy and low false positive rates. 
To achieve this goal we have followed the methodology presented below: 
• Define the level of profiling:  library function calls issued by an MPI program; 
• Implement two parallel applications, one performing primarily local computations 
and the other performing extensive message passing; 
• Inject ``cluster anomalies'' able to produce several types of anomalies in the cluster, 
simulating suspicious behavior of the MPI application; 
• Collect information in real-time from the two parallel applications and the 
anomalies in order to create a data set containing both normal and anomalous 
behaviors; 
• Perform a comparison of different data models using the data set, and identify the 
advantages and drawback of the methods; 
• Conduct experiments with well-know benchmarks to test our system performance; 
and, 
• Provide analysis of the results in relation to our stated goals. 
 
5.2 Datasets 

In order to test the effectiveness of our detection algorithms and system 
architecture, we created a dataset containing both normal and anomalous traces of 
two well-known parallel programs, in an attempt to recreate large-scaled simulations 
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and scientific programming.  The first program, LU-Factorization is an 
implementation of the factoring method used for solving systems of linear equations. 
The second program, called LLCbench2 executes MPBench benchmarks [6]. Each 
benchmark is selected based on a normally distributed random number generator, 
with the means and the standard deviation computed experimentally to execute 
broadcast MPI functions quite often, and to execute point-to-point routings only a 
few times. 

LLCbench2 is an example of an application that generates several messages 
among the processors with few local computations, whereas LU-factorization is an 
example of parallel applications that perform extensive computations with limited 
message passing. It is important to observe that the communication patterns of LU-
factorization are more complex than LLCbench2. 

Because non-simulated anomalous data from high-performance parallel 
applications is not available at the moment we wrote this document, we implemented 
several methods to generate anomalous behavior in MPI applications.  An overview 
of the attacks is given in Table I, and an extended description of the techniques used 
can be found in our previous work [11]. We generated more than 500 anomalous 
instances of LU-Factorization and more that 350 anomalous instances of LLCbench2 
in a cluster with 4 nodes.  We also generated more than 200 normal instances of each 
application. An example of the daemon attack –stealing of resources using a daemon 
process- for an MPI program can be seen in Appendix A (Taken from Torres et al. 
[11]). These attacks are implemented directly on MPI programs or by using library 
interposition. In our current research work, we are also injecting faults in the NIC 
(Network Interface Card) and high-performance network libraries.  It is very 
important to observe that both applications do use random number generators in 
certain steps of the algorithms, so we do not expect to generate two exact traces for 
same program.  In practice, commercial and scientific parallel applications also make 
use of stochastic algorithms. The inclusion of random traces as part of our normal 
behavior is perhaps one of the most important characteristics of our dataset, and one 
of the reasons why the anomaly detection problem in this kind of applications is 
much more complicated than the analysis of standard privileged programs such as 
sendmail or ftp. 

 
TABLE 1 Description of the “attacks” implemented to generate anomalies 

NAME TECHNIQUE PURPOSE DESCRIPTION 
DaemonCopy Trojan-horse Steal resources A daemon process is created just 

before the program ends. Appends 
data to a temporal file 

DaemonComputation Trojan-horse Steal resources and 
gather information 

Math operations at the end of the 
program, CPU exhaustion. 

NoDaemonComputation Trojan-horse Steal resources Random math operations. CPU 
exhaustion. 

CopyFile Interposition library Gather information Content of files is copied to 
unauthorized locations. 

ModifyMPI Interposition library Denial of service Behavior of MPI function is changed 
 
5.3 Hardware and Software Environment 

The traces were collected on a Linux cluster containing one head node (able to 
compile and launch the parallel programs) and eight compute nodes.   The head node 
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is a four CPU SMP computer and the other nodes are dual CPU SMP computers. 
These machines are fully connected with Ethernet and Giganet (high-speed) switches. 
The operating system installed on each node is RedHat 7.1 Linux, kernel 2.4.2, and 
the MPI environment used in all experiments was MPI/Pro 1.5. 
 
5.4 Experiments 

The first experiments were conducted to test the ability of our methods to detect  
the attacks described in the previous sections.   Figure 5 shows the accuracy 
(percentage of anomalous traces correctly classified by the detector) for each AI 
technique when monitoring LLCbench2. An alarm is issued when the sequence of 
calls deviates from the profile in any of the 4 nodes where the program is being 
executed.  The accuracy of the detection for LU-Factorization is shown in Figure 6.  
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Figure 5 Detection of anomalies for LLCbench2 
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Figure 6 Detection of anomalies for LU-Factorization 

 
One of the major conclusions of our experiments is that the exact sequence 

matching cannot be used to monitor applications such as LU-factorization, due to the 
complexity of the algorithms and the diversity of calls being generated.  As 
mentioned before, LU-Factorization is a complex scientific program, whereas 
LLCbench2 is a naïve benchmark. Although other researchers have reported that 
sequence matching is an effective method for detecting attacks on UNIX privileged 
programs [13], this method performed poorly in the detection of anomalies of a 
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scientific application. In contrast, the overall detection rates for the Hidden Markov 
Model were greater than 90%, with the exception of the attack called “ModifyMPI”. 
In this attack, the behavior of some MPI function is changed randomly, and therefore, 
it is not an easy task to define whether or not the program being executed contains 
anomalies or not. Our detection system using the HMM generates 0% of false alarm 
rate, i.e. all normal traces were classified correctly as normal behavior. This is an 
encouraging result, since one of the biggest critics to anomaly detection systems is 
the large number of false positives generated. 

Some interesting conclusions can be drawn from these experiments: 
• Some anomalies cannot be detected by using function call traces.  It might be 
interesting to combine the information produced by these traces and the streams 
produced by typical performance monitoring systems, e.g. CPU usage and memory 
consumption. 
• The exact sequence-matching algorithm generates too many false positives (this 
can be seen when the detection algorithm is executed using normal data). As an 
example, for LU-factorization with system calls the sequence matching algorithm 
generates 1,987 anomalies.  
• The above statement indicates that we need to specify some user threshold to be 
able to differentiate between normal and anomalous behavior.  We have chosen this 
threshold empirically based upon the maximum number of false positives generated 
for both programs and both types of calls with normal behavior. Therefore, the 
threshold of LU-factorization for the sequence matching algorithm is 1,987, for the 
HMM is 0. It is very important to observe that we are defining this threshold to be 
able to compare the accuracy of our algorithms, but we believe that indicating 
whether or not a sequence of calls is anomalous based upon a threshold can be 
misleading. Instead, a measure of similarity of the behavior of the parallel 
application with the normal trace can be given to the system administrator 

Since the prototype system conducts a real-time detection, we also conducted 
experiments to determine the performance penalty produced by the monitoring of 
calls using the HMM. We executed two well-known benchmarks, MPBench and 
NAS-IS [14].  Table 2 presents an average of the running time of 50 instances of the 
NAS parallel computational benchmark (using 4 nodes) when the detection 
algorithms are executed in real-time. The overhead created by the HMM is 3.97%. 

TABLE 2 Overhead Analysis of NAS-IS (Seconds)   

 Mean (50 runs) Standard Deviation 
Without monitoring 30.647 2.647 

With monitoring 31.863 3.154 
A similar result is encountered when executing the MPBench-Latency 

benchmark. In Figure 7, a comparison of the latency with respect to the function 
MPI_Send (send a message to one node) is presented. 

 
6. CONCLUSIONS  

 
We have described our effort to provide a lightweight anomaly detector of high 

performance parallel programs, and we have demonstrated that function calls can be 
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used to verify the correct execution of an MPI application in a cluster of Linux 
workstations. As a result of our experiments, we conclude that detection Hidden 
Markov Models results in high accuracy and 0% false positive rate. However, 
traditional sequence matching algorithms perform poorly, due to the complexity of 
the parallel programs. 
 

 
Figure 7. Comparison of MPI_Send latency with MPBench 
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Appendix A 
Daemon Process Attack (Taken from Torres et. al [11]) 

#include <stdlib.h> 
#include <unistd.h> 
#include <signal.h> 
#include <fcntl.h> 
#include <errno.h> 
#include <stdio.h> 
#define SIZE__ 1000 
 
void main(){ 
 int pid; 
 void *pointerMemory; 
 /* The first Child fork */ 
 pid = fork(); 
 if (pid < 0) { 
  exit(1); /* error encountered, no child has been created!*/ 
 } 
 if (pid != 0) { 
  exit(0); /* this is the parent, and hence should be terminated*/ 
 } 
 /* make the process a group leader, session leader, and lose control tty */ 
 setsid();  
 /* close STDOUT, STDIN, STDERR */ 
 close(STDIN_FILENO); 
 close(STDOUT_FILENO); 
 close(STDERR_FILENO); 
 /* close STDOUT, STDIN, STDERR */ 
 /* ignore SIGHUP that will be sent to a child of the process */ 
 signal(SIGHUP, SIG_IGN);  
 umask(0); /* lose file creation mode mask inherited by parent */ 
 chdir("/"); /* change to working dir */ 
 pid = fork(); 
 if (pid < 0) { 
  exit(1); /* fork() failed, no child process was created! */ 
 } 
 if (pid != 0) { 
  exit(0); /* this is the parent, hence should exit */ 
 } 
 /* this is the child process of the child process of the actual calling process */ 
 /* and can safely be called a grandchild of the original process */  
 signal(SIGPIPE, SIG_IGN);  
 /* ignore SIGPIPE, for reading, writing to non-opened pipes 
 every program using pipes should ignore this signal for  
 being on the safe side */ 
 /* this is the main daemon process, also the grand child process */ 
 while(1){ 
  sleep(DURATION_SEC); 
 PointerMemory=(char*)malloc(SIZE__); 
 } 
} 
 


