
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec


©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

A PROACTIVE APPROACH TO 
INFORMATION SECURITY 

 
Sandeep Gupta 

B.Math. Computer Science and Business Joint Honors, and MCSD 

GSEC Practical 

Version 1.4b 

December 23, 2003 

 

ABSTRACT 
Some software vendors already endeavor to deliver software systems that provide  
Confidentiality, Integrity, and Availability of a customer’s software, hardware, and data 
assets.  However, because of the changing business environment, because of new 
attack hazards, and because of the damages of an insecure system, all software 
vendors cannot assume that they are secure.  Vendors must be proactive and address 
security early in the software development lifecycle (SDLC) by focusing on training, by 
performing risk and threat assessments, and by designing security into the software 
system.  

Each software vendor differs in their implementation of the SDLC.   By integrating both 
the author’s experience and multiple sources of industry thought, this paper presents a 
generalized yet holistic view of integrating security in the SDLC.  This paper serves as a 
springboard for a vendor who has little experience in security, and who is considering 
integrating security in the SDLC to create a more secure software system. 

 

 

 

 

 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

page 2 

Table of Contents 
1 Making the Case for Information Security in the SDLC ......................................3 

1.1 What is a secure software system?...................................................................3 

1.2 Changing business environment .......................................................................3 

1.3 Attacker’s Mindset and a Myriad of Threats ......................................................3 

1.4 Damages...........................................................................................................3 

1.5 The Proactive Approach....................................................................................4 

2 Change Management Leads to Training and Security Sub-Culture...................5 

2.1 Sponsor.............................................................................................................5 

2.2 Change agents..................................................................................................5 

2.3 Change targets..................................................................................................6 

2.4 What is the right training material?....................................................................6 

2.5 Responding to objections ..................................................................................7 

2.6 What about other functional areas?...................................................................7 

2.7 What about the customer? ................................................................................7 

3 The Software Development Lifecycle ...................................................................8 

3.1 Phase 1 - Needs Analysis and the Business Case............................................8 

3.2 Phase 2 - Architecture and Design..................................................................11 

3.3 Phase 3 - Software Coding..............................................................................21 

3.4 Phase 4 - Test and verification........................................................................22 

3.5 Phase 5 - Deployment and Maintenance ........................................................23 

4 Closing Remarks ..................................................................................................24 

5 Glossary ................................................................................................................25 

6 List of References ................................................................................................26 

7 Endnotes ...............................................................................................................29 

 

 

 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 page 3 

1 Making the Case for Information Security in the SDLC 
1.1 What is a secure software system? 

Any software system consists of software, hardware, and data assets and solves a 
business problem.  A secure software system fulfills its purpose and provides 
Confidentiality, Integrity, and Availability (CIA) of assets by resisting and surviving a 
broad range of: 

• Deliberate attacks by internal and external attackers,  

• Accidents,  

• Natural events such as earthquakes and fire, 

• Crashes, faults, and other unplanned downtime, and 

• Errors in the business process or in the data. 

1.2 Changing business environment 

Some software vendors already endeavor to provide secure and reliable systems.  The 
vendor’s software architects spend time designing security into the system.   

On the one hand, the nature of business is moving towards online e-commerce, and 
sensitive personal and corporate information is available on the network.  Businesses 
make corporate data available to employees on laptops or PDAs equipped with wireless 
mobility.  This technology brings about fundamental shifts in the structure of society and 
allows not only personal freedom, but also new professional opportunity. 

On the other hand,  this new environment is inherently hostile giving way to new attack 
targets and threats which carry significant risk.   Many people do not understand or 
recognize this risk.  [Ref 1] 

1.3 Attacker’s Mindset and a Myriad of Threats 

Every system on a network is under attack by intelligent internal and external attackers 
with patience and time.  Experts debate the intent of attackers, but it is safe to say that 
attackers use malicious software worms and trojans [Ref 2], specially crafted data 
packets [Ref 3], and social engineering [Ref 4, 5] simply because it is possible.  
Attackers exploit vulnerabilities in the software system that allow them to either bypass 
established security controls, or to compromise a system by running code that renders 
the system insecure.  Once attackers bypass security, then assets are at risk. 

The security industry places an onus on issuing security badges, deploying firewalls or 
on encrypting secrets.  If the firewall lets the attacker’s traffic through to compromise the 
main web server with a specially crafted TCP/IP packet, then an employee badge, 
cryptography, not even a firewall can protect the assets.   

Other natural or accidental actions or events such as crashes, unintended errors, or 
even an earthquake may also prevent a system from fulfilling its main functions.   

1.4 Damages 

If there is a security incident, both the vendor and the customer dispatch incident 
handling teams to investigate the breach and coordinate recovery procedures.  This 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

page 4 

requires time, money, and effort.  In terms of software development, the resulting 
opportunity costs of 1) reproducing the exploit, 2) creating, testing, and installing a fix, 3) 
contacting customers, and 4) writing documentation, can all make a significant impact 
on productivity and the bottom line.   

When the Canadian government was the target of computer theft containing sensitive 
data about businesses and individuals, Confidentiality was broken.  The government 
sent “letters to approximately 120,000 people who might be affected. … Although the 
stolen laptop/server was password-protected, the data on the machine was not 
encrypted.”1  The cost to mail notices to 120,000 people is high; however, the cost of a 
case of identity theft is also high for the people affected. 

Lawsuits also represent negative publicity and a loss of confidence regardless of the 
merits of the suit.[Ref 8]  With security and privacy being a hot topic, customers who 
incur any losses may take this course of action as is the case with Microsoft® today. 
[Ref 9, 24, 25].   

Irrespective of the merits of a suit, an attacker who successfully exploits software 
security flaws and penetrates an enterprise computer may not only steal data, but also 
steal intellectual property as well.  Confidentiality and Integrity are broken in addition to 
the customer’s confidence. 

The Morris worm that “paralyzed the internet in late 1988”2 used a buffer overflow 
vulnerability in the finger daemon.  Availability was broken [Ref 6].  While many debate 
whether this type of catastrophic event can happen again, it is unwise to make any 
assumptions about the future of technology.  Society’s dependence on software is 
growing in all areas of professional life from laptops to PDAs, and of personal life from 
online gaming to wireless mobility.  Even a small incident can result in huge losses for a 
single user. 

With many businesses installing software systems to further productivity and realize 
competitive advantage, a loss of intellectual property, loss of quality, and even loss of 
confidence can cripple a vendor’s ability to grow market share. 

1.5 The Proactive Approach 

Because of the changing business environment, because of the attack hazards, and 
because of the potential damages, all software vendors cannot assume that they are 
secure.  Vendors must be proactive and address security early in the software 
development lifecycle (SDLC) by focusing on training, by performing risk and threat 
assessments, and by designing security into the software system.   

It is not possible to make a system 100% secure - it will never ship.  However, these 
commitments to security by management empower a software architect to design a 
more secure software solution. 

See [Ref 11] for more information about the definition of secure software systems. 

   



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 page 5 

2 Change Management Leads to Training and Security Sub-Culture 
Once management and the customer agree that security is a focus area, management 
initiates a change management process to integrate security into the entire software 
development lifecycle (SDLC).  Depending on the needs and size of the organization, a 
change management program may be small with email communications, or may be 
large with training programs. 

2.1 Sponsor 

The sponsor for the change management program within the software development 
organization is a high level and influential manager.  This manager owns the overall 
software development program and: 

• Works with the office of the executive to align the vendor’s policies  

o to integrate security in the entire vendor organization, and 

o to integrate security in the SDLC,  

• Establishes a detailed strategy for integrating security throughout the entire 
software development organization, 

• Works with other executives to establish common strategies in other 
functional areas in the organization,  

• Commits funding for security training, and for other specific security activities 
in the SDLC, 

• Designates a software architect who becomes the Lead Security Subject 
Matter Expert (SME), 

• Announces and supports a security training program for all staff within the 
software development organization, 

• Ensures that the training “material is appropriate and timely for the intended 
audience”3,  

• Ensures that software architects and software designers “have an effective 
way to provide feedback”4, ensures that the “material is reviewed periodically 
and updated when necessary”5, and, 

• Takes responsibility for engaging the customer in the requirements process, 
and for making the customer aware of related security related laws, policies, 
and standards.   

2.2 Change agents 

The sponsor empowers software architects to take actions to support security in the 
context of the software development program.   

A software architect becomes the change agent and is the Lead Security SME within 
their domain.   

Because the architect owns the overall software system architecture and the code itself, 
it is generally in their best interest to develop a secure system.  The architect: 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

page 6 

• Understands software designers’ current knowledge and needs; therefore, 
assists in the development of training material, assists in soliciting feedback, 
and assists in reviewing and updating material for software designers,  

• Works with software design managers to draft training plans according to 
software designers’ roles and responsibilities in the system design,  

• Conducts training sessions for software designers and shares knowledge of 
the latest security issues and methodologies with designers,  

• Works with program managers, project managers, software design managers, 
and test managers to ensure that they can correctly identify and prioritize 
security issues throughout the SDLC, 

• Works with managers to ensure all staff get training according to the needs, 
roles, and responsibilities, and,  

• Works with software designers to resolve security issues, and works with lead 
security SMEs from other functional areas of the organization. 

The architect is the Lead Security SME and may appoint other security SMEs who have 
specific responsibilities.  Security SMEs report on architectural and coding issues to the 
Lead Security SME. 

2.3 Change targets 

Software designers are the change targets.  Many software designers enjoy learning 
new technology and take an active interest in new coding methods.     

The goal of the change management program is to build a knowledge base for software 
architects and software designers to design and develop a more secure software 
system.  Not wanting to be associated with highly-visible security-based design issues, 
designers start to take security seriously and start to document their security 
inspirations on napkins at the lunch buffet.  That is when a security sub-culture forms 
and the real action starts. 

2.4 What is the right training material? 

Training depends on individual needs, responsibilities, and experience.  Training helps 
people understand how to:  

a) Identify and recognize threats in the software system – Potential for a natural, 
accidental, or deliberate action or event to exploit a vulnerability which may 
have detrimental effects that prevent the system from fulfilling either its 
purpose or its goals of CIA,  

b) Identify and recognize vulnerabilities in the software system – Locations in the 
business process or the software system where a weakness exists such 
design or coding flaws, invalid assumptions, invalid input data, or insecure 
storage or transmission of data, 

c) Conduct a risk determination - Identify and measure the probability and result 
on the CIA of assets or on the ability of the system to fulfill its purpose should 
a threat-action or event inflict damages,  



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 page 7 

d) Identify and recognize mitigation techniques – Tools and techniques that 
minimize or eliminate the risk and allow the system to either fulfill its purpose 
or its goals of CIA,  

e) Keep current on security issues such as viruses, trojans, as well as 
vulnerabilities and exploits. 

The vendor gears the training material to peoples’ level of experience and responsibility.   

See [Ref 10] for ideas on training. 

2.5 Responding to objections 

A classic objection to security is that people do not have time to attend security training 
or to resolve security issues during the SDLC.  The concern reflects the triangle, 
illustrated in Figure 1 which is the balance between labor, schedule, and features.  The 
answer to this is quite simple: addressing security early in the SDLC results in a cost 
savings and reduced risk.  Addressing security later in the SDLC or even after the 
software is released results in significant damages and additional project risk.6 [Ref 13] 

The project manager ensures that the schedule provides 
enough time throughout the SDLC to handle security 
issues.  Designers and managers also need to impress 
upon the importance of this time. 

With security on consumer’s minds, any security issues 
can have severe repercussions.  It is unwise to make any 
assumptions about the future or about the security of a 
software system.     

While something is not possible today, technology may make it possible tomorrow.  
That is what technology is all about, is it not? 

2.6 What about other functional areas? 

Other functional areas also require a similar change management program which leads 
to a security sub-culture within the vendor; however, the scope of this discussion is 
limited to software development. 

2.7 What about the customer? 

The customer may also require a security training program; however, the scope of this 
discussion is limited to software development. 

FEATURES 

LABOR SCHEDULE 

Figure 1 Triangle 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

page 8 

3 The Software Development Lifecycle 
On the one hand, the “constant demand for novelty means that software is always in the 
bleeding-edge phase, when products are inherently less reliable.”7  On the other hand, 
Computer Science college professors stress the proven fact that a well-thought-out 
design reduces the number of issues that architects and designers deal with at later 
stages in the SDLC. 

Now that software designers have a basic knowledge foundation and both management 
and the customer place a high priority on building a more secure software system, it is 
possible for security to pervade the SDLC.   

Table 1 Phases of the SDLC, describes at a high level the 5 phases of the SDLC and 
what security actions the vendors takes during each phase.   

Table 1 Phases of the SDLC 

Phase of the SDLC Security in this Phase 

Section 3.1 Phase 1  Perform preliminary Threat and Risk 
Assessment. 

Identify functional security requirements 
broken down into Confidentiality, 
Integrity, and Availability. 

Section 3.2 Phase 2 - Architecture and 
Design 

Perform detailed threat and vulnerability 
identification.  Perform risk 
determination.  Architect and Design 
mitigation techniques. 

Section 3.3 Phase 3 - Software Coding Enforce coding and code submission 
practices. 

Section 3.4 Phase 4 - Test and 
verification 

Conduct vulnerability and threat testing. 

Section 3.5 Phase 5 - Deployment and 
Maintenance 

Identify and classify security issues. 

Fix security issues based on risk. 

 

3.1 Phase 1 - Needs Analysis and the Business Case 

In the needs analysis and business case phase, the vendor obtains, understands and 
documents the customer’s needs, and then prioritizes the customer’s requirements with 
their approval.   

The vendor outlines proposed solutions in a feasibility study along with cost factors, a 
preliminary schedule, and solution alternatives.  If the solution represents an 
appropriate return on the vendor‘s investment, and if management gives the green light 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 page 9 

to proceed, then the program managers, test managers, and software architects draft 
system requirements and functional  requirements.  These new requirements document 
the details of the system and should map directly back to the customers requirements.   
See Section 3.4 Phase 4 - Test and verification for more information on why the test 
organization is involved early in the SDLC. 

3.1.1 Security in Phase 1 

The vendor guides the customer and documents additional security related system and 
functional requirements according to the customer’s security needs. 

3.1.1.1 Regulatory Environment 

The vendor discusses and documents security needs with the customer based on 
current security related laws and policies, government regulation, international 
standards.  This may include, among others, HIPAA [Ref 26, 27], ISO 17799 [Ref 27], or 
the new Canadian Privacy Law [Ref 28]. 

3.1.1.2 Perform a Preliminary Threat and Risk Assessment (TRA) 

The goal of a preliminary TRA is to identify the assets, to identify the environment in 
which the assets operate, and to identify the requirements to protect the assets.   

The vendor performs a preliminary TRA for new and existing features and functionality 
in the system.  “A preliminary risk assessment should define the threat environment in 
which the …  system will operate. This assessment is followed by an initial identification 
of required security controls that must be met to protect the … system in the intended 
operational environment.”8     

The preliminary TRA documents the operating environment by studying the current 
state of the system,  the customer’s business process, and the end users of the system 
in the context of security.  This information is generally already available in other forms 
of documentation and used as input to the preliminary TRA.  

The vendor documents the current state of the system by examining the customer’s 
existing network, by examining existing features and functionality in the software 
system, and by examining the current security architecture.  As a result, the vendor 
understands the current configuration management as well as other deployment and 
maintenance considerations.  This analysis yields the configuration and versions of 
patches, operating systems, databases and storage networks, firewalls, desktop 
applications, as well as the current access control, and authorization mechanisms.  
Other documentation such as network configurations, disaster recovery plans, and data 
backup plans provides detailed information on the customer’s business continuity plans.  

The lead security SME understands not only the customer’s business process, but also 
the end-users of the system.   

One aspect of the customer’s business process includes the customer’s policies, 
procedures, and best practices.  This allows the vendor to understand the customer’s 
business environment and competitive environment.  



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

page 10 

Another aspect of the customer’s business process is the data itself and the users of 
that data.  A high level systems analysis can represent valuable input to a preliminary 
TRA.  A high level systems analysis enables a further understanding of the customer’s 
business by providing information about: 

• Data, 

• User types and roles in the system,  

• Users thoughts and concerns security and privacy, 

• Interactions between the data and its various users, error checking, 

• Importance and sensitivity/classification of the data,  

• The processes which operate on the data, and  

• The flow and storage of data both on paper and within the system.   

In essence, an analysis of the business process and the end users assists in identifying 
the assets and areas where CIA is required.  By questioning each assumption, 
architects learn how to protect the assets in later phases of the SDLC. 

In addition to examining the customer’s environment, the vendor examines its own 
environment.  This includes not only the vendor’s network and software platforms, but  
the software system code and architecture itself as well.  This is done only in the 
context of the customer’s security requirements and may include identifying invalid 
architectural assumptions, or identifying homegrown encryption or access control code 
that may not fulfill the security needs.  The architect identifies any necessary 
architectural modifications for further study to ensure that there is no unforeseen 
scheduling or cost overrun. 

It is impractical to conduct a thorough TRA this early in the SDLC.  The TRA is a living 
process.  As the SDLC progresses, the TRA gets more detailed. 

By conducting a preliminary TRA, it is possible to accurately identify the assets to 
protect, and to determine the functional security requirements.   The architect is later 
able to define the threats to the system and the mitigation techniques later phases of 
the SDLC. 

See [Ref 10] for detail on risk management.   

See [Ref 12] for more detail on determining security goals. 

3.1.2 Expressing Security Needs 

Now that the architect fully understands the customer’s business, business process, 
and the software system’s operating environment, the architect can express security in 
terms of  Confidentiality, Integrity, and Availability functional requirements.    

See [Ref 11] for detail on expressing security requirements.     



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 page 11 

3.2 Phase 2 - Architecture and Design 

In Phase 2, the architect makes specific decisions regarding the software, system, and 
component architecture in order to fulfill the functional requirements.  The architect 
documents and explores any necessary architectural modifications and decides how to 
proceed with the modifications. 

The program managers, projects managers, and the architect also draft a detailed 
schedule.  It is important for all staff involved to understand that security is a key priority 
in the SDLC, and therefore, management must allocate sufficient resources for the 
security tasks. 

3.2.1 Security in Phase 2 

The architect, program managers, software designers, and testers perform a detailed 
TRA.  There is a four-step process. 

1. Identify the threats to the system,  

2. Identify the vulnerabilities in the system,  

3. Determine the risk to the system, and  

4. Develop risk mitigation techniques. 

The test organization also gets involved and begins drafting test plans that tests 
mitigation techniques designed into the software system. 

3.2.1.1 Identify the threats to the system 

In order to deliver CIA within the software system, the architect and the designers 
understand what are the possible actions or events that may compromise the system’s 
ability to deliver CIA or fulfill its mission.  

Following from the analysis in section 3.1, Perform a Preliminary Threat and Risk 
Assessment (TRA), the following are high-level inputs to the threat identification 
process: 

• Functional Requirements, and Functional Security requirements, 

• High level systems analysis – data,  

• Networking environment – network configuration and connectivity,  

• Operating environment – operating systems, databases, software and 
hardware platforms,  

• Architectural, design, and coding assumptions, and application dependencies, 

• Security architecture including access control, authorization, and accounting 
mechanisms, and 

• Studies about the users. 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

page 12 

All of these inputs represent the overall architecture of the system.  It is not necessary 
to get too detailed at this point; a high-level overview is sufficient.  The inputs represent 
identified software, hardware, and data assets and are often called threat targets. 

A threat-source or threat-agent is the source of threat.  It is person or object from where 
the threat originates, for example, a lighting strike, or an untrained employee.  The 
threat-source takes action or initiates an event against a threat target.   

Some examples of threat-source/threat-agents are: 

• Earthquakes • Floods • Electricity 
suppliers 

• Criminals • Hackers • Fire 
• Disgruntled 

shareholders or 
employees 

• Competing 
companies 

• Employees – 
internal (full-time, 
part-time, Temp) 

Some examples of threat actions or events that affect Confidentiality, Integrity and 
Availability are: 

• Impersonation • Social 
engineering 

• Bribery, theft 

• Distribute 
passwords freely 

• Bypass access 
control 

• Unauthorized 
access to data 

• Unauthorized 
modification of 
data 

• Unauthorized 
installation of 
software or 
hardware 

• Invalid, 
incomplete,  
inaccurate data 
entry 

• Tamper or delete 
data and logs 

• Circumvent error 
checking 

• Repudiation of 
transactions 

 • Corrupt data 
 

 

• Authorized 
access to users 
is denied 

• System goes off-
line and cannot 
deliver vital 
services 

• Usurp/spoof 
privileges or 
unauthorized 
privilege 
escalation 

The architect uses threat identification to identify: 

• Sources of threats,  

• Type of threats (natural, accidental, deliberate),  

• Actual threat action or event, 

• Whether the action or event affects Confidentiality, Integrity, or Availability, 

• Whether the target is a data, hardware, or software asset, and 

• Threat target itself,  



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 page 13 

Often, attackers combine multiple threat-actions or events in order to attack a target.  
To this end, the architect considers threat trees.  McGraw and Viega write:  

In assessing risk, we like to identify not only what the risks are, but also the 
potential that a risk can actually be exploited, along with the cost of defending 
against the risk. 

The most methodical way we know of achieving this goal is to build attack trees. 
Attack trees are a concept derived from "fault trees" in software safety (see 
Nancy G. Leveson's Safeware: System Safety and Computers [Addison-Wesley, 
1995]). The idea is to build a graph to represent the decision-making process of 
well-informed attackers. The roots of the tree represent potential goals of an 
attacker. The leaves represent ways of achieving the goal. The nodes under the 
root node are high-level ways in which a goal may be achieved. The lower in the 
tree you go, the more specific the attacks become.9 

This threat identification process identifies actions and events that have a 
detrimental impact on the system which prevent it from fulfilling either its purpose or 
CIA. Later on in this process, the architect ranks the threats. 

Other useful references to consult on building threat trees are [Ref 30, 31]. 

3.2.1.2 Identify the vulnerabilities in the system 

Threats only have a detrimental effect on the system when there is a vulnerability to 
exploit, when there is a threat source, and when there is a threat target.   

This is where the real work begins, and this is where it is necessary to become realistic 
in the process.  Malicious attackers do not play according to a ‘rule book’. 

A classic objection is that nobody will attack the system with a malformed packet to a 
TCP/IP socket, with a buffer overflow, or with database stored procedures.  The answer 
to that is simple.  Any internal employee or external attacker attempts everything that 
they can when they are determined to compromise system security.  Even if something 
is not possible today, technology makes it possible tomorrow. 

Architects and designers alike must be able to identify and recognize how threats can 
manifest themselves, as well as understand how attackers exploit vulnerabilities.  While 
it is important to avoid underestimating threats and vulnerabilities, it is also important to 
avoid overestimating them.  This comes with experience and with building threat trees. 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

page 14 

Some examples of vulnerabilities are: 

• Buffer overflow! 
 
 

• Buffer overflow! 
 

• Unencrypted data 
storage or 
transmission 

• Running features, 
services, 
protocols that are 
not required 

• Not handling 
failures securely 

 
• Incomplete, 

incorrect 
validation of input 
or output data 

• Buffer overflow! • Invalid or 
incomplete 
assumptions 

• Difficult to disable 
features that are 
not required 

• Excess or rigid, 
internal or 
external 
dependencies   

• No logs or audits, 
and no 
redundancy or 
fault tolerance 
implemented 

• No access 
control or 
requiring 
administrator 
access 

 • Improper 
implementation of 
cryptography 

 

3.2.1.3 Determine the risk to the system 

Once the architect identifies threats and vulnerabilities, it is possible to determine 
whether there is a measure of risk to warrant implementation of mitigation techniques.  
There are many different techniques to evaluate the risk; however, the basic function is 
composed of: 

• Impact and size of damage 

o Whether the damage is localized or widespread affecting a critical system 
or a non-critical system.  A customer’s viewpoint has a strong bearing on 
whether a system or service is critical or non-critical.  

o The number of users affected by a threat is large or small. 

o A malformed packet may be able to cause a software system crash 
resulting in a denial of service.  The denial of service may render a 
financial network inaccessible for hours affecting millions of customers. 

• Likelihood of threat-source to take threat action/event, and exploit vulnerability 

o Whether a threat-source is motivated and is likely to exploit a vulnerability.  
Be careful with assumptions in this measurement.  Use a database such 
as SecurityFocus at http://www.securityfocus.com to help guide the 
determination. 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 page 15 

• Steps required to exploit the vulnerability 

o Whether a threat-source is able to find a vulnerability and produce an 
exploit.  

o Whether a threat-source can easily bypass mitigation techniques, and 
whether a threat-source is easily able to exploit the vulnerability. 

Note that risk determination does not include the cost and effort required to fix damages 
as part of the calculation.   

Occasionally, a delay in the schedule tempts managers to also delay a fix so that the 
team meets the ‘go-live’ or delivery date.  This strategy also increases the overall risk to 
project if the threat is serious enough and an exploit either exists or an attacker can 
develop an exploit easily.  Remember that attackers have patience and time. 

The program managers, project managers, design managers, testers, and the software 
architects all collectively evaluate and rank risks.  Once the architect measures risk and 
ranks and prioritizes the threats, it is possible to determine mitigation techniques to 
offset the possibility of any loss. 

There are many different sources on managing risk and methodologies on conducting 
threat and risk assessments.   See [Ref 10, 12, 14, 15, 16, 17, 18, 30, 31, and 32] for 
more detail. 

3.2.2 Develop risk mitigation techniques 

There are two different types of mitigation techniques: Corporate procedures and 
deployments as well as Architectural and design principles – Secure the Weakest Link. 

3.2.2.1 Corporate procedures and deployments 

During the change management process, the vendor and the customer alike develop 
procedures, policies, and guidelines for users using the software system.  This 
encompasses policy and procedure development and strict enforcement including but 
not restricted to: 

• Acceptable use policies, ethics policies,  

• Guidelines to address social engineering and media enquiries, 

• Guidelines addressing privilege creep, account termination procedures,  

• System disposition, data sanitation, shredding, 

• End user training on viruses and Trojans, 

• Business continuity plans (and disaster recovery) which address natural and 
accidental threats-actions and events,  

• Password usage policies and guidelines, 

• Best practices for hardening network and operating systems, 

• Firewall, web content filter, and intrusion protection system deployment 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

page 16 

While these principles are important, in order to be proactive in the SDLC, it is important 
to focus on the principles in section 3.2.2.2 Architectural and design principles. 

3.2.2.2 Architectural and design principles – Secure the Weakest Link 

Architects question all assumptions and ask that others justify their assumptions in 
architectural and design reviews.   

For example, the system can use cryptography to keep secrets, but attackers normally 
attack the system or the business process before the data encryption or after the data 
decryption.   

Let's say the bad guy wants access to secret data being sent from point A to 
point B over the network (traffic protected by SSLv2). A clever attacker will target 
an endpoint, try to find a flaw like a buffer overflow, and then look at the data 
before it gets encrypted or after it gets decrypted, because attacking encrypted 
data is too much work. Cryptography can't help you if there's an exploitable 
buffer overflow.10 

By using a systems analysis as input to the threat modeling process, it is possible to 
find those areas in the system which may be susceptible to attack. 

3.2.2.2.1 Defense In Depth 

Practice defense in depth by applying more than one mitigation technique to protect the 
assets once the TRA identifies the vulnerabilities. 

For example, for an e-commerce application,  

the credit card number should be encrypted before being stored in a database. 
Keep the key for the credit card number on a different machine (this requires 
decrypting and  encrypting on a machine other than the one on which the 
database lives).  That way, if the database gets compromised, the attacker still 
has to find the key, which requires breaking into another machine. This second 
line of defense raises the security bar.11 

Applying multiple risk mitigation techniques protects all the software, hardware, and 
data assets helps the system to fulfill its mission and deliver CIA. 

3.2.2.2.2 Buffer Overflow 

By glancing through the SecurityFocus database, it is obvious that attackers heavily 
exploit the buffer overflow vulnerability over the network.  For the technically minded, 
the ‘Inside the Buffer Overflow Attack’ paper [Ref 22] describes how overflows work.  It 
is important to note that attackers who exploit buffer overflow vulnerabilities can take 
complete control of the system.  There are several lessons stemming from this 
vulnerability.   

1. When copying data, copy only the amount of data that the buffer can hold, and 
no more.  Remember to account for the NULL terminating character if applicable. 

2. Do not assume that the compiler will flag buffer issues for you – the load-builder 
can disable compiler checks in the regular load-build!   

3. Check for all possible function return codes, especially for memory allocation. 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 page 17 

4. Initialize all pointers immediately on pointer allocation. 

5. Check for NULL pointers before accessing pointers. 

6. Enforce and check array bounds before accessing arrays. 

7. Ensure all strings are NULL terminated. 

8. Centralize data processing close to the data itself.  This allows greater control of 
the data and allows architects to question assumptions about control and use of 
the data. 

9. Using encryption does not protect against software design flaws. 

Verifying the design for buffer overflow vulnerabilities strengthens Confidentiality, 
Integrity, and Availability by resisting attackers trying to take control of the system. 

See the following resources for more information on buffer overflows [Ref 12, 31, 33]. 

3.2.2.2.3 Cryptography 

If the data is to be kept secret, there are several considerations in implementing 
cryptography. 

• If the data is secret, consider not storing it at all.  In that case, there is no 
threat-target.   

• Consider not displaying secret data to the user. 

• Many cryptographic algorithms use random number generators that generate 
random numbers.  Some algorithms are vulnerable because the random 
number or the random number seed is predictable and therefore, the results 
are not uniformly distributed in the range. 

• COTS cryptographic libraries are readily available to use in software systems.  
It is unwise to try to create a new cryptographic algorithm.  Leave that up to 
mathematicians. 

• There are issues in key management.  With improper key management, 
storage, and exchange, an attacker can find the key and crack even the most 
powerful algorithms.   Making it easy to perform key management allows 
people to follow the key management process.  If the process is difficult and 
time-consuming, people cut corners  -- compromising the key. 

Cryptography is a large area of discussion.  For more information see [Ref 12 chapter 
8,9].  See Ref [23] for information and issues on Public Key Infrastructure. 

3.2.2.2.4 Migrations 

In software development, maintaining compatibility with old systems is a ‘hot-button’ 
issue because it is expensive.  A mandatory migration to a new platform is a better 
option but it is also expensive.  The problem with old systems is that supporting 
obsolete software platforms and discontinued operating systems with well-known 
security issues represents a significant security risk.  Because administrators rarely 
patch these systems after the fact, internal and external attackers easily target them 
and compromise Confidentiality, Integrity, and Availability. 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

page 18 

3.2.2.2.5 Principle of Least Privilege 

For a transaction, the system and user requires the minimum possible privilege and for 
that transaction only.    

Operations requiring root access should be done on a transactional basis, and should  
be done only for the most critical of tasks.  When the transaction completes, remove the 
root privilege and revert to regular privileges.  There are a number of reasons for this 
principle: 

1. If a user has root privilege, then an attack can break confidentiality and 
integrity by allowing the attacker to escalate or usurp privileges.   

This includes databases which connect as an administrator.  An attacker  can 
then drop tables, delete table rows, and tamper with users, logs and stored 
procedures.  Use COTS authentication systems or integrated authentication 
with the operating system for database access.  As a result, users connect to 
the database as their own operating system account.  

2. Root or administrator passwords may be handed out freely causing an 
account maintenance problem.  The passwords to these accounts are seldom 
changed.  In the hands of an attacker, it is gold.  This breaks confidentiality, 
and integrity.   

3. Permission defaults.  An architecture that asks for read and write access 
unnecessarily breaks Integrity when only read access is necessary.  Question 
the assumptions requiring access to all the resources when only access to 
one resource is required. 

4. Not requiring any access control for a transaction breaks confidentiality, 
integrity, and availability. 

5. Run detailed logging routines that check object access, logins/logouts, and so 
on.  Automated tools that parse logs can look for anomalies that may require 
additional attention. 

If an attacker tries to exploit a vulnerability, there is less impact because there are no 
privileges.  Writing to the disk or modifying system settings or data may be specifically 
denied.  If functionality does not work without root privilege, then software security 
checks are working and should deny non-privileged users access to features or 
functionality that they should not have. 

By forcing software to run with unnecessary privileges, a relatively small attack can 
compromise the system. 

Also tied to the principle of least privilege is the concept of Default Security installations.  
In this case, security is designed by default when the vendor deploys and installs the 
application.  Getting administrators to turn on behavior or install features that are 
disabled by default allows administrators to be more careful when granting access and 
authorization to resources.  If all the services and features are turned on by default, then 
administrators have a difficult time determining how to turn these features off if they are 
not needed.  As a result, the features become targets for attackers. 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 page 19 

It is important for the architect to spend time in this phase to ensure that the software 
system operates under the principle of least privilege. This preserves Confidentiality as 
well as Integrity, and Availability. 

For more information on the principle of least privilege see [Ref 12, 31, 34]. 

3.2.2.2.6 Don’t Trust User Input  

There are three commandments with respect to user input in order to preserve Integrity.  

1. Input from the user should be handled in centralized component or process.  
This allows the input handling and verification code be centralized as well.   

Centralizing input handling code in one place allows developers to not only 
accurately maintain assumptions about what is happening to that data both 
inside and outside the component, but to centralize the validation process as 
well.  If code is spread out in multiple locations, it is difficult to verify 
assumptions. 

2. Question any assumptions regarding the validity and correctness of data until 
the handling and verification code validates the data.   

In a design environment, a designer makes certain assumptions of the code 
and the data.  Question the assumption that a component and process has 
complete control over the data.  Question the assumptions about what the 
user inputs into the system. 

3. Validate all input.   

For example, when asking the user for a first and last name, an attacker 
might input: 

<SCRIPT>MsgBox “Wazzup!”</SCRIPT> 

The characters !, /, <, >, “, and SCRIPT are not part of people’s names.  A 
better method of addressing user input is to check for what is valid. 

Watch for user input that is later displayed as output. This approach also 
helps to protect against cross-site scripting attacks which can operate through 
firewalls and access data via the client web browser. [Ref 35] 

Ensure that the data is the correct length.  If 15 characters are required for a 
data field, then take only the first 15 characters and validate.   

An attacker that compromises the system with bogus data causes Integrity and 
Availability issues.  For more information on validating user input see [Ref 31, 12, 36]. 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

page 20 

3.2.2.2.7 Fail Securely 

When a process, component or function call is unsuccessful perhaps because it failed 
to allocate memory, failed to load a module, or failed to lock a semaphore, it is important 
that the architecture provide the ability to handle the failure securely. 

Keep failure handling code close to the failure as well; otherwise implement a central 
error handling routine which handles errors for a specific component.  

For example, this simple piece of code has a security issue: 

 ChkReturnCode= CheckData(lpStrInputdata) ; 

 If ChkReturnCode = PASS then 

  ‘ great, keep motoring 

 end if 

While a simple check for failure is a step in the right direction, it is not enough.  It is 
important to check each specific return code and handle each specific error 
appropriately.   

Question the default behavior of a failure and ensure that it does not violate any security 
protocols already in place.  Be careful what return codes the system lets the users see.  
It is possible for an error message to give away information that leads the attacker to 
other threat targets. 

Failures are not necessarily an issue unless an attacker can take advantage of the 
failure to compromise Confidentiality, Integrity, or Availability.  If a credit card based 
order processing system goes down for an entire day, it may be an inconvenience for 
customers.  If the system does not divulge any credit card numbers or other personal 
data, then the system has preserved CIA.   

For more information, see [Ref 12, 31, 37] 

3.2.2.2.8 Using constants 

The architect can build a software module containing constant integers, strings, and 
other static read-only variables.  This allows designers to use the constants rather than 
hardcode values in the middle of code.  If there is any issue with the constant or static, 
then it only needs to be changed in one place. 

Hard-coding requires too many assumptions that attackers test.  Avoid hard-coding and 
use constants and parameters whenever possible. 

3.2.2.2.9 Using parameters 

Designers also use allocated parameters for function calls as opposed to passing data 
directly in function calls.  Function calls copy the data for use within the function rather 
than a pointer to the data where practical and where possible.  If the memory is freed 
before the function completes, it may cause a segmentation fault or pointer access fault. 

The same concept of using parameters also defends against SQL injection attacks.  
Hand-constructing SQL statements in code combined with invalid user input data 
causes huge problems.  By using a parameterized query, the database can help 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 page 21 

validate the input and return an error before the SQL statement executes.  The strong 
typing in the SQL language and the database will return an error if the data does not 
conform.  SQL statements can be expensive; using parameters can improve 
performance. 

Using parameters helps preserve data Integrity and Availability.  See [Ref 12, 31, 38, 
36] for more information. 

3.2.2.3 Wrapping it up 

Throughout the SDLC, it is important for the vendor to keep accurate, detailed, and up 
to date documentation regarding the TRA.  This allows managers and designers alike to 
understand the status of vulnerabilities and mitigation techniques. 

3.3 Phase 3 - Software Coding 

In this phase, software designers write the code according to the functional 
requirements and the architecture of the system.  Designers also test and submit code 
from the debugging load-build to the production load-build. 

3.3.1 Security in Phase 3 

3.3.1.1 Own the Code 

Software architects structure the code so that certain key designers and designated 
security SMEs take ownership of a particular area of code.   

Architects structure architectural and coding dependencies such that these areas can 
compile on their own without too many unnecessary ‘includes’, ‘uses’, or references.  As 
a result, the code compiles on its own without affecting too many other users. 

This also allows code owners to question function calls and data usage from modules 
outside their own code.   

Many design and debugging tools now exist in order to determine how function calls 
and data trace through the system. 

3.3.1.2 Write Code and Unit Test 

Designers write code and consult security SMEs whose code is  affected when the code 
is submitted.  The designer also provides full comments in the code, especially 
comments related to security. 

At this time, the designer is working with a debug private version of a software build.  
The designer compiles and tests the code in their own environment without affecting the 
production build. 

The designer can also conduct attacks against their own code to test the mitigation 
techniques, but this can only be done with known vulnerabilities. 

Designers then inform the design team when the code is ready for code review. 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

page 22 

3.3.1.3 Code reviews 

Designers who want to submit code into the production build must first hold code 
reviews.  Designers can submit small blocks of code to allow for modifications and to 
allow for time to unit test the code for security vulnerabilities.  Security SMEs who own 
code affected by a code submission are present at the code review and conduct extra 
security checks.  Once the code owners are satisfied that designers achieve 100% code 
coverage, they can allow the code submission into the production build. 

If the designer claims that 100% code coverage is not possible, then the designer 
documents those non-reproducible cases directly in the code and other design 
documentation.  

3.3.1.4 Code Submission and Revision control systems 

The designer does not submit code without the express authorization of the code 
owner. 

Once a designer submits code into the production build, the load-builder compiles the 
production build on a regular basis.  Architects must insist on implementing a revision 
control system.  The load-builder can back out code submissions without too much 
interruption if there is load-build compile issue. 

3.3.1.5 Metrics and a Post Mortem 

Keep a track of security issues discovered both before and after code submission.  For 
each security issue, conduct a post mortem to determine how and why the security 
issue happened.  Use this data to further educate the staff and to prevent issues from 
occurring again.   

The issues should also go into the issues database so that program managers, design 
and test managers, and architects can later dive into the issues database looking for 
security issues. 

The issues database also holds information regarding unsolved issues for later 
resolution. 

3.3.1.6 Encouragement 

When designers spend time to go through the design and discover a vulnerability, 
provide rewards.  Immediate returns like these encourage fixing security issues and 
encourage the project managers to allow designers to fix security issues throughout the 
SDLC. 

3.4 Phase 4 - Test and verification 

In this phase, the vendor tests the system to ensure that it fulfills the customer’s 
requirements as well as the functional requirements. 

3.4.1 Security in Phase 4 

The test organization tests that the mitigation techniques are working against threats, 
and lead post-mortem activities including identifying how and why security issues occur. 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 page 23 

3.4.1.1 Test Mitigation Techniques 

In phase 4, the tester’s role is to prove that mitigation techniques designed into the 
system are working against the documented threats in the TRA.  The tester has 
permission to test against the vulnerabilities discovered in sections 3.2.1.1 and 3.2.1.2.  
Test plans written in Phase 2 are an important part of the testing. 

The test organization uses the same inputs to test plans as did the software architect in 
phase 2.  With this approach, the test organization actively participates in the earlier 
phases of the SDLC. 

Similar to the fact that it is not possible to make a system 100% secure, it is also not 
possible that testing will uncover every possible security issue.  By keeping the testing 
process in mind from phase 1 and 2, it is possible to design a more secure software 
system.  

It is important to keep test managers and testers in the loop throughout the SDLC.  
Undoubtedly in this phase, testing will uncover issues that may or may not be fixed 
before the system ‘goes live’.   At this time, it is important to rank the threats and the 
security issues and take the time to fix the most serious issues first. 

See Ref [12, 31] for more information on security testing in the SDLC. 

3.5 Phase 5 - Deployment and Maintenance 

In Phase 5, the vendor ships the software system to the customer.  The vendor installs 
the system and it ‘goes live’. 

3.5.1 Security in Phase 5 

Undoubtedly in this phase, issues arise.  The vendor ranks the security issues by 
working with the customer to outline the nature of the security issue, the circumstances 
under which the issue occurs, and a response plan.  The architect conducts a threat 
analysis, determines if an exploit exists for the vulnerability, and ranks the risk. 

If the risk is great, then the designer who wrote the code fixes the security issue.  This is 
only possible with strict revision control systems and code ownership.   

Management need not reprimand the designer for security issues.  Designers cannot be 
aware of everything that an attacker might try to do when a system goes live, but if there 
is no ownership of the issue, then it is impossible for designers to learn from events and 
actions in the field. 

Designers are eager and willing to learn, therefore, it is important to provide that 
learning aspect in later phases of the SDLC.  Allowing designers to meet with the 
customer and learn from the customer’s business allows designers to think about the 
customer’s needs.  This also helps design security into the system from the beginning of 
the SDLC. 

See [Ref 19] for more general information on security in the SDLC. 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

page 24 

4 Closing Remarks 
Ultimately, it is not possible to ship a 100% secure software system.  It will never ship! 
But, it is possible to make a system more secure from the new threats and 
vulnerabilities in the field which poses risk to creating new business opportunities.   

If a vendor initiates a change management process, then a security sub-culture within 
the organization forms and people begin to learn to take security seriously.  By 
committing and being realistic to the risk determination process, and by taking action to 
mitigate that risk, a vendor can realize a competitive advantage and gain a stronger 
footing in this new business marketplace.   

Security does not reduce the performance of a system, but rather enhances the 
performance by ensuring it safeguards Confidentiality, Integrity, and Availability of the 
assets. 

 

   

 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 page 25 

5 Glossary 
All definitions taken from [Ref 14]. 

Confidentiality  Confidentiality is the privacy, secrecy, or nondisclosure of 
information except to authorized individuals.12 

 
Integrity  From a user’s or application owner’s perspective, integrity is the 

quality of data that is based on attributes such as accuracy and 
completeness. From a system’s or operation’s perspective, integrity 
is the quality of data that it is only changed in an authorized manner 
or that the system/software/process does what it is supposed to do 
and nothing more.13 

 
Availability  Availability is the state when data or a system is in the place 

needed by the user, at the time the user needs it, and in the form 
needed by the user.14 

 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

page 26 

6 List of References 
The complete list of references consulted for this paper.  They will assist the reader to 
become familiar with security issues. 

1. Gates, Bill.  “Building Trust in Technology.” Microsoft PressPass.  23 January 2003.  
URL: http://www.microsoft.com/presspass/ofnote/01-03davos.asp (20 December 
2003). 

2. Todd, Matthew.  “Worms as Attack Vectors: Theory, Threats, and Defenses.” SANS 
Reading Room.  31 January 2003. URL: 
http://www.sans.org/rr/papers/index.php?id=930 (20 December 2003). 

3. Gibson, Steve.  “The Strange Tale of the Denial of Service Attacks Against 
GRC.COM.” 6 October 2003. URL: http://www.grc.com/dos/grcdos.htm (20 
December 2003). 

4. Mitnick, Kevin.  The Art of Deception: Controlling the Human Element of Security.  
John Wiley & Sons Canada, Ltd., 2003. 

5. Gragg, David.  “A Multi-Level Defense Against Social Engineering.” SANS Reading 
Room. December 2002.  URL: http://www.sans.org/rr/papers/index.php?id=920 (20 
December 2003). 

6. Schmidt, Charles and Darby, Tom.  “The What, Why, and How of the 1988 Internet 
Worm.”  July 2001.  URL: http://www.snowplow.org/tom/worm/worm.html (20 
December 2003). 

7. Suppa, Carly.  “Computer theft hits CCRA.”  Computer World Canada 17 October 
2003 (2003): 1, 3. 

8. Mann, Charles.  “Why software is so bad and how to fix it.”  MIT Technology Review 
July/August 2002 (2002): 33-38. 

9. Reuters.  “Microsoft Sued for Security Breaches.”  MSNBC Technology & Science 
Hacks, Viruses, Scams & Spam.  2 October 2003.  URL : 
http://msnbc.msn.com/id/3131161/ (20 December 2003). 

10. Wilson, Mark and Hash, Joan.  “Building an Information Technology Security 
Awareness and Training Program.”  National Institute of Standards and Technology.  
October 2003.                                                                                                         
URL: http://csrc.nist.gov/publications/nistpubs/800-50/NIST-SP800-50.pdf (20 
December 2003). 

11. Linger, Richard and Lipson, Howard and McHugh, John and Mead, Nancy and 
Sledge, Carol. “Life-Cycle Models for Survivable Systems.” CMU-SEI CERT® 

Coordination Center.  October 2002.  URL: 
http://www.cert.org/archive/pdf/02tr026.pdf (20 December 2003). 

12. Howard, Michael and LeBlanc, David.  Writing Secure Code, 2nd Edition.  Microsoft 
Press, 2003. 

13. Brooks, Fred.  The Mythical Man Month: Essays on Software Engineering.   Addison 
Wesley Professional, 1995. 

14. Grance, Tim and Hash, Joan and Stevens, Marc.  “Security Considerations in the 
Information System Development Life Cycle.”  National Institute of Standards and 
Technology.  October 2003.                                                                                        



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 page 27 

URL:  http://csrc.nist.gov/publications/nistpubs/800-64/NIST-SP800-64.pdf (20 
December 2003). 

15. Stoneburner, Gary and Goguen, Alice and Feringa, Alexis.  “Risk Management 
Guide for Information Technology Systems.”  National Institute of Standards and 
Technology.  October 2001.              URL:  
http://csrc.nist.gov/publications/nistpubs/800-30/sp800-30.pdf (20 December 2003). 

16. Communications Security Establishment.  “Threat and Risk Assessment Working 
Guide.”  Government of Canada Publications IT Security Guidance.  October 1999.                                                           
URL:  ”http://www.cse-
cst.gc.ca/en/documents/knowledge_centre/gov_publications/itsg/itsg04.pdf (20 
December 2003). 

17. Communications Security Establishment.  “A Guide to Security Risk Management for 
Information Technology Systems.”  Government of Canada Publications IT Security 
Guidance.  1996.   URL: http://www.cse-
cst.gc.ca/en/documents/knowledge_centre/gov_publications/itsg/mg2.pdf (20 
December 2003). 

18. Communications Security Establishment.  “A Guide to RISK ASSESSMENT AND 
SAFEGUARD SELECTION for Information Technology Systems.”  Government of 
Canada Publications IT Security Guidance.  1996.                                                                                                                                     
URL: http://www.cse-
cst.gc.ca/en/documents/knowledge_centre/gov_publications/itsg/mg3.pdf (20 
December 2003). 

19. Software Development Magazine.  Security.  URL: 
http://www.sdmagazine.com/security/ (20 December 2003). 

20. McGraw, Gary and Viega, John.  “The Weakest Link.”  Software Development 
Magazine.  Security.  December 2002.  URL: 
http://www.sdmagazine.com/documents/s=818/sdm0212e/  (20 December 2003). 

21. McGraw, Gary and Viega, John.  “The One-Click Trick.”  Software Development 
Magazine.  Security.  June 2002.  URL: 
http://www.sdmagazine.com/documents/s=818/sdm0306c/  (20 December 2003). 

22. Donaldson, Mark.  “Inside the Buffer Overflow Attack: Mechanism, Method, & 
Prevention.”  SANS Reading Room.  3 April 2002.  URL:  
http://www.sans.org/rr/papers/index.php?id=386  (20 December 2003). 

23. Nash, Andrew and Brink, Derek and Duane, William and Joseph, Celia.  PKI: 
Implementing & Managing E-Security.  Osborne/McGraw Hill Media Group, 2001. 

24. Evers, Joris.  “Security suit against Microsoft could turn huge.”  Infoworld.  2 October 
2003. URL: http://infoworld.com/article/03/10/02/HNmssecsuit_1.html (20 December 
2003). 

25. Rist, Oliver.  “Microsoft sued over security? No surprises here.”  Infoworld.  10 
October 2003. URL: http://www.infoworld.com/article/03/10/10/40enterwin_1.html 
(20 December 2003). 

26. Filkins, Barbara.  “Getting Started: The Impacts of Privacy and Security Under 
HIPAA - A Case Study.”  SANS Reading Room.  10 July 2003.  URL: 
http://www.sans.org/rr/papers/index.php?id=1214 (20 December 2003). 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

page 28 

27. Borkin, Sheldon.  “The HIPAA Final Security Standards and ISO/IEC 17799.”  SANS 
Reading Room.  15 July 2003.  URL: 
http://www.sans.org/rr/papers/index.php?id=1193 (20 December 2003). 

28. Government of Canada.  “Privacy Legislation.”  Government of Canada. Privacy 
Commissioner of Canada.  20 December 2003.  URL: 
http://www.privcom.gc.ca/legislation/index_e.asp (20 December 2003). 

29. McGraw, Gary and Viega, John.  “Risk Analysis: Attack Trees and Other Tricks.”  
Software Development Magazine.  Security.  August 2002. URL: 
http://www.sdmagazine.com/documents/s=818/sdm0208a/ (20 December 2003). 

30. Amoroso, Edward.  Fundamentals of Computer Security Technology.  Prentice Hall 
Canada, 1994. 

31. McGraw, Gary and Viega, John.  Building Secure Software: How to Avoid Security 
Problems the Right Way.   Addison-Wesley, 2001. 

32. “Octave.” CMU-SEI CERT® Coordination Center.  URL: http://www.cert.org/octave/  
(20 December 2003). 

33. Raynal, Frederic and Blaess, Christophe and Grenier, Christophe.  “Avoiding 
security holes when developing an application - Part 3 : buffer overflows.”  May 
2001.  URL:  http://www.linuxfocus.org/English/May2001/article190.shtml (20 
December 2003). 

34. McGraw, Gary and Viega, John.  “Less Is More.”  Software Development Magazine.  
Security.  March 2003. URL: 
http://www.sdmagazine.com/documents/s=818/sdm0303f/ (20 December 2003). 

35. Stephens, Cheryl.  “Cross-Site Tracing: Protecting Businesses from a Simple 
Attack.”  SANS Reading Room.  1 June 2003.  URL: 
http://www.sans.org/rr/papers/index.php?id=1140 (20 December 2003). 

36. Hurlbut, Robert.  “Robert Hurlbut’s SQL Server Blog.”  28 September 2003.  URL: 
http://sqljunkies.com/weblog/rhurlbut/posts/243.aspx  (20 December 2003.) 

37. McGraw, Gary and Viega, John.  “Failing Safely.”  Software Development Magazine.  
Security. February 2003. URL:  
http://www.sdmagazine.com/documents/s=818/sdm0302g/ (20 December 2003). 

38. Sonnemans, Fons.  “SQL-strings considered harmful.”  Reflection it.  10 March 
2003.  URL: http://www.reflectionit.nl/SqlInsert.aspx (20 December 2003). 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 page 29 

7 Endnotes 
                                            

1 Suppa, p.1, 3. 
2 Schmidt, Charles and Darby, Tom.  “The What, Why, and How of the 1988 Internet 
Worm.”  July 2001.  URL: http://www.snowplow.org/tom/worm/worm.html (20 December 
2003). 
3 Wilson and Hash, p.4. 
4 see note 3 
5 see note 3 
6 paraphrased from Howard and LeBlanc, p.40. 
7 Mann, p.36. 
8 Grance Hash and Stevens, p.10. 
9 McGraw, Gary and Viega, John.  “Risk Analysis: Attack Trees and Other Tricks.”  
Software Development Magazine.  Security.  August 2002. URL: 
http://www.sdmagazine.com/documents/s=818/sdm0208a/ (20 December 2003).  
10 McGraw, Gary and Viega, John.  “The Weakest Link.”  Software Development 
Magazine.  Security.  December 2002.  URL: 
http://www.sdmagazine.com/documents/s=818/sdm0212e/  (20 December 2003). 
11 McGraw, Gary and Viega, John.  “The One-Click Trick.”  Software Development 
Magazine.  Security.  June 2002.  URL: 
http://www.sdmagazine.com/documents/s=818/sdm0306c/  (20 December 2003). 
12 Grance Hash and Stevens, p.10. 
13 Grance Hash and Stevens, p.10. 
14 Grance Hash and Stevens, p.10. 


