
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GSEC Practical Assignment Page 1 of 24 Sandeep Singh Sandhu

Single Sign On Concepts & Protocols

GSEC Practical Assignment Version 1.4b, Option 1

Author: Sandeep Singh Sandhu

Date: 30th January 2004

Abstract:
A single sign on infrastructure is increasingly becoming essential in modern
enterprises with many users accessing multiple applications over large networks.
This paper describes the characteristics and concepts of a few important protocols
and technologies that have been used for implementing authentication and single
sign-on (SSO) mechanisms for computer networks.

We begin by examining the main features expected of an SSO solution. The related
problems of securely performing authentication and authorization in an insecure
open network are explored. Some relevant concepts and protocols have been
discussed in this context. These form the building blocks for designing a SSO
infrastructure.

The Kerberos and Sesame protocols have been briefly described to illustrate the
design of a full-fledged SSO architecture.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GSEC Practical Assignment Page 2 of 24 Sandeep Singh Sandhu

Table of Contents:
1 Introduction... 3

2 Features ... 3

3 Concepts & Protocols ... 4

3.1 A Cryptography Primer ... 5
3.1.1 Conventional encryption/Symmetric key or shared secret Encryption [6] . 5

3.1.2 Hash Functions and Message Authentication Codes (MAC/HMAC)[6] 5

3.1.3 Digital certificates and Public Key Encryption... 6

3.1.4 Oakley protocol for key management [8] .. 6

3.1.5 The S/KEY One-Time Password System [9] .. 7

3.2 Authentication & Authorisation.. 7
3.2.1 PPP authentication protocols.. 8

3.2.2 Mail Authentication Other Protocols: APOP, AUTH, and SASL................ 9

3.2.3 HTTP Auth [16]... 10

3.2.4 Windows NTLMv2 protocol [17].. 13

3.2.5 Transport Layer Security (TLS) [18] ... 13

3.2.6 Smart Cards[19] ... 15

3.2.7 Biometric Authentication... 15

3.2.8 Access control information storage... 16

3.2.9 Security Assertion Mark-up Language (SAML) [24]................................ 18

3.2.10 The Generic Security Service API Mechanism (GSS-API) [26] 18

4 SSO Protocols.. 19

4.1 The Kerberos Network Authentication Service (Ver5) [2] [28] 19

4.2 The SESAME Protocol v4 [29].. 22

5 Conclusion.. 23

6 References: .. 23

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GSEC Practical Assignment Page 3 of 24 Sandeep Singh Sandhu

1 Introduction
A single Sign-on infrastructure provides transparent access to all network resources
for a user with only a single login. It enables a user to access multiple computer
platforms or application systems after being authenticated just one time [1]. The
user’s identity and authorization data is stored in this centralized setup (of 1 or more
servers), which is trusted by all applications.
This has several advantages over having separate multiple logins to each network
host [2]:
• Improved productivity since a user only needs to remember one SSO password

to access every network resource or application.
• Easier and consistent administration of both users’ and applications’ security

profiles.
• Simpler and more secure integration of security features during application

programming since only standard library calls to the SSO API need to be called.
• Integration of security administration for disparate systems - applications running

on different operating systems/hardware, etc.
• Improved network security - by implementing an SSO it is assured that

passwords and sensitive data will be securely transmitted and managed for all
applications. Users don’t write down their multiple passwords to remember
ensuring better security practices amongst users. A centralized profile
administration to control and monitor user’s access privileges.

• Lower cost of implementing and maintaining security across the enterprise.
Security services & functionality need not be re-built from scratch for every new
application. [3]

Single sign on can be implemented either as a common authentication/authorisation
service with centralised identity management. This provides a common centralised
infrastructure to which both users and hosts communicate to authenticate accesses
to resources – e.g. Kerberos and Sesame.

Alternatively Single sign on can be implemented as a password synchronisation
protocol. This type of implementation uses services/agents on all hosts to distribute
and synchronise a user’s password and/or access controls on all hosts whenever a
user’s profile is modified. While this does not provide benefit of centralised profile
administration, it provides an easier and more cost effective means to implement
SSO since architectural changes are not required for all hosts.
The implementation of a password synchronisation solution has been described in
[4] at the SANS reading room. This approach is not discussed in the paper.

2 Features
An SSO must securely identify a user and support a number of different identity
verification methods – password, dynamic passwords, hardware tokens, smart
cards, digital certificates, biometric identifiers, etc. The user’s access control
information and the resource’s access control profile must be stored centrally by the
SSO for better security and administration. All authorisation and authentication
messages and decisions must be secured when being transmitted on the network

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GSEC Practical Assignment Page 4 of 24 Sandeep Singh Sandhu

from the SSO infrastructure to/from the host applications and users. All profile and
security administration activity must be auditable and controlled securely.

The features required of an SSO infrastructure are: [5][2]

• The solution must be scalable so it can expand to serve the requirements of a
large enterprise.

• An SSO infrastructure must be reliable and provide a fail-over arrangement

• An SSO should be able to support mutual authentication of client and server

• It should provide transmission level security (e.g. TLS or IPSEC)

• An SSO should guarantee integrity of data or confidentiality or both

• An SSO must provide sufficient flexibility to carry service specific attributes in
messages

• Use reliable transport mechanisms for transmissions

• It should be able to support access certificates, or access control information,
access rules, restriction filters.

• Its functions/operations should be auditable (e.g. audit trails/logs with
timestamps for important events)

• The SSO infrastructure should be supported for operation in diverse
environments on clients & servers running on different applications, operating
systems, hardware, etc.

• It should be able to re-authenticate a user on demand, send updated
authentication information and support user login time-outs.

• The authentication and access authorisation should be extendable to clients-
servers across domain in a multiple domain/realm environment using the
principles of propagation of trust by trust-chaining/trust proxy/hierarchy, etc.

SSO protocols must be protect against some of common types of attacks such as:

• Network sniffing for shared secrets

• Replay attacks

• Negotiating a weak authentication scheme when multiple options exist.

• Online dictionary attacks

• Man in the middle attacks (passive & active)

• Chosen plaintext attacks

• Pre-computed dictionary attack (pre-compute hashed values from a
dictionary)

• Brute force attacks

• Spoofing by counterfeit servers

• Storage of authentication information by network cache’s (proxy/gateway)

3 Concepts & Protocols
A few important concepts used throughout this discussion of SSO are explained in
this section.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GSEC Practical Assignment Page 5 of 24 Sandeep Singh Sandhu

3.1 A Cryptography Primer
We introduce, very briefly, some important concepts related to cryptography which
will be useful in understanding the protocols and practices discussed later. The
topics are not all-inclusive of this vast subject; these are only intended to highlight
some important cryptographic concepts used to cryptographically verify identity and
trust. The reader is advised to refer to the excellent sources listed in the references
section for a formal and complete description of these concepts [6][25].

3.1.1 Conventional encryption/Symmetric key or shared secret Encryption [6]
This type of encryption operation transforms plain text into cipher text (encrypted
messages) using a secret data (key) known to the sender. This cipher message can
now be safely transmitted over an unsecure channel of communication (e.g. internet)
to the recipient. The recipient will be able to decrypt and read the message by using
the same secret key used by the sender.
Its disadvantage is that the secret key needs to be sent securely to the recipient on a
separate secure channel (out-of-band transmission e.g. password sent by post).
Also, if the messages needs to be exchanged in this manner with a large number of
users each pair of users would need a separate shared secret, e.g. to exchange
messages between 10 users (10 x 9) / 2 = 45 shared secret keys are required. For n
users, n x (n-1) ÷ 2 keys are required which becomes impractical to be implemented
manually.
The strength of an encryption is measured in terms of the length of the secret key;
this is specified in bits: 64, 128, 256, 512 bits. Keys should be large enough so that
brute force attacks (guessing all possible key combination becomes computationally
impractical. Many algorithms have evolved for encrypting data using symmetric keys
– a few important ones used extensively are CAST128, TripleDES, AES Rjindeal,
and IDEA.

3.1.2 Hash Functions and Message Authentication Codes (MAC/HMAC)[6]
A variety of methods have been designed for detecting errors and changes in data
transmission. Even-odd parity checks have been used for error detection in serial
data transfers or RAID hard disc arrays. 16 bit and 32 bit checksums are used for
detecting media storage/retrieval errors for magnetic media/tapes/discs.
Cryptographic hash codes/digests and message authentication codes (MAC) have
similarly evolved for ensuring that the data being examined has not been tampered.
These are one-way functions whose output cannot be used to recover the original
data. They generate a small fixed length code from a larger variable length message.
The recipient can compare this code to that computed at his end using the message
received earlier, and determine that the message was tampered if these are not
equal. If the MAC is encrypted with a shared secret key or the user’s private key, it
can be sent along with the message itself on the same unsecure channel for
immediate verification of integrity.
Another use of MAC codes is for encrypting a user’s password and then send the
MAC code over the unsecured channel or store it on the local file system. This
protects the user’s password from tampering or misuse. These mechanisms are
discussed later in CHAP and Kerberos protocols.
Some of the commonly used hash/MAC codes are MD5, RIPEMD and SHA1, these
can be of lengths of 128, 160, 256, or 512 bits. A larger size MAC is more resistant

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GSEC Practical Assignment Page 6 of 24 Sandeep Singh Sandhu

to birthday attacks (comparing two messages to find a pair whose MAC codes
match). This is also known as collision resistance of the MAC. To further strengthen
MAC codes an HMAC mechanism has been proposed in RFC 2104 [7]. It enhances
security by using a secret key along with the message as input to the hash function.
This is described as:

HMAC = Hash (Key XOR opad, Hash (Key XOR ipad, text))

Where, Hash(A, B) = the hash function applied ov er A and B

 Key = the secret key used in the HMAC operation

 ipad = byte 0x36 repeated 64 times

 opad = byte 0x56 repeated 64 times

 Text = message/data

3.1.3 Digital certificates and Public Key Encryption
In public key encryption two keys are created for each user – a private key to be kept
secret and a public key to be distributed publicly. To encrypt a message the user
uses the recipient’s public key, encrypts and sends the data to the recipient. The
recipient can decrypt the message using his private key.
Message integrity and non-repudiation can be assured by signing the message data.
The sender can do this by encrypting the message with the sender’s private key to
create a message, which can only be decrypted by using the sender’s public key.
This validates that the message was only sent by the sender and has not been
tampered after it was digitally signed. A combination of encryption and signing can
ensure privacy, authenticity, integrity and non-repudiation of any message.
It has the advantage that for 10 users to exchange messages only 10 pairs of keys
are required (or, 2n) as opposed to 45 keys (or, n x (n-1) / 2) for symmetric
encryption.
Public keys eliminate the problem of securely exchanging keys over an insecure
channel. Public keys can be distributed on the same unsecured communication
channel. A pubic key infrastructure is required to administer and authenticate the
identities and validity of the keys used for public-private key encryption. A trusted
third party Certificate authority signs each user’s public keys to confirm the identity of
that key. Alternatively, a web of trust model can be used where user’s sign keys for
people they trust and this extends to assure other users that the key signed by a
person they trust can also be trusted. This approach has been used for Pretty Good
Privacy (http://www.pgpi.org/).

3.1.4 Oakley protocol for key management [8]

The Oakley protocol provides a scalable and secure mechanism for key distribution
on the Internet. The Diffie-Hellman key exchange [6] mechanism provides a secure
way for two entities to agree on a secret key without requiring it to be transmitted on
the unsecure channel. The STS mechanism demonstrates a way to embed this in a
secure protocol to encrypt data and additionally validate each other’s identities. The
Oakley protocol adds several features to enhance these protocols:

• Providing a weak form of address validation by using anti-clogging tokens
(cookies) to prevent Denial of Service attacks.

• The two parties can negotiate the encryption, authentication and key-
derivation algorithms while setting up a secure channel.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GSEC Practical Assignment Page 7 of 24 Sandeep Singh Sandhu

• The keys are derived from an encryption algorithm in addition to the Diffie-
Hellman mechanism. This strengthens the protocol.

• The protocol allows user-selectable and user-defined groups (mathematical
structures) used in the encryption to be specified for performing the Diffie-
Hellman key exchange.

• It also permits the use of authentication based on symmetric encryption or
non-encryption algorithms. This flexibility is included in order to allow the
parties to use the features that are best suited to their security and
performance requirements

3.1.5 The S/KEY One-Time Password System [9]
An S/KEY system client passes the user's secret pass-phrase through multiple
applications of a secure hash function to produce a one-time password. On each
use, one reduces the number of applications. Thus a unique sequence of passwords
is generated. The S/KEY system host verifies the one-time password by making one
pass though the secure hash function and comparing the result with the previous
one- time password.
The client's secret pass phrase should be more than eight characters; this is
concatenated with a “seed” that is transmitted from the server in clear text. This non-
secret seed allows a client to use the same secret pass phrase on multiple machines
(using different seeds) and to safely recycle secret passwords by changing the seed.
The user's secret pass-phrase never crosses the network at any time, including
during login or when executing other commands requiring authentication such as the
UNIX commands “passwd” or “su”. Thus, it is not vulnerable to eavesdropping/replay
attacks. Added security is provided by the property that no secret information need
be stored on any system, including the host being protected.
Operation:
A function on the host system that requires S/KEY authentication is expected to
issue an S/KEY challenge. This challenge give a client the current S/KEY
parameters - the sequence number and seed. The format of a challenge is:

s/key sequence_integer seed

The client can compute from a hardware device (or lookup a printed table) the one
time password. It then passes it to the host system where it can be verified from a
table or file storing the last successful login, or it may be initialized with the first one-
time password of the sequence using the keyinit command.

3.2 Authentication & Authorisation
Authentication is the process of verifying a users identity [1]. An authentication
process consists of two steps:

• Identification: Presenting an identifier to the security system (enter
username)

• Verification: Presenting or generating authentication information that
corroborates the binding between the entity and the identifier (password entry
and verification)

The verification process involves validating the authentication information used to
verify an identity claimed by or for an entity. It may be derived from:

• Something the entity knows. (e.g. a static password).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GSEC Practical Assignment Page 8 of 24 Sandeep Singh Sandhu

• Something the entity possesses. (e.g. a dynamic/one-time password
generated from a hardware device/token, digital certificate)

• Something the entity is. (e.g. biometric authentication of fingerprint/palm
geometry)

In an unsecure, open network, vulnerable to an active man-in-the-middle attack, it
might be essential to assure the user that the host system is genuine and an
authentication of the host is included as part of the authentication process. This
might be done by displaying the user’s profile information after login (last login time,
etc) or validating the Host system’s digital certificate signed by a trusted third party
as described in the TLS protocol.

3.2.1 PPP authentication protocols
The Point-to-Point Protocol (PPP) provides a standard method for transporting multi-
protocol datagrams over point-to-point links (defined in RFC1661). It consists of a
link control protocol, which utilises the Password Authentication Protocol (PAP), the
Challenge Handshake Authentication Protocol (CHAP) or the extensible
authentication protocol (EAP) commands to configure a link.
These authentication protocols are intended for use primarily by hosts and routers
that connect to a PPP network server, but can be applied to other scenarios as well.
Password Authentication Protocol (PAP) [10]
When the password authentication protocol is used in PPP after the link
establishment phase is complete, an Id/Password pair is repeatedly sent by the
client to the server until authentication is acknowledged or the connection is
terminated. PAP has the disadvantages that passwords are sent "in the clear", and
there is no protection from playback or repeated trial and error attacks. The client is
in control of the frequency and timing of the attempts.
Challenge handshake authentication protocol (CHAP) [11]
The Challenge handshake authentication protocol involves sending a random
Challenge to the user (client) to which the client responds with a cryptographically
hashed response which depends upon the Challenge and a secret key. This value is
then checked against the hashed value generated by the server from the shared
secret key (e.g. password) and if equal, the authentication is successful and is
acknowledged.
Its advantages are that:

• Shared secret is never sent over the network

• The challenge depends on an incrementally changing random value so the
server is protected against a replay attack.

• The use of repeated challenges is intended to limit the time of exposure to
any single attack. The server is in control of the frequency and timing of the
challenges

• It can be used for mutual authentication if a client needs to authenticate a
server.

The disadvantage of using this mechanism is that for evaluating the response hash,
a server requires the shared secret to be available in plaintext form. Most password
databases or files store shared secrets after irreversibly encrypting them (to protect
against their misuse), hence these cannot be used for CHAP.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GSEC Practical Assignment Page 9 of 24 Sandeep Singh Sandhu

The challenge values must be unique and unpredictable to protect against replay
attacks.
Extensible Authentication Protocols (EAP) [12]
PPP was not defined to be flexible enough to extend the types of authentication
methods/commands hence the EAP was proposed as a non-negotiable
authentication configuration during the link control protocol to specify the following
additional authentication methods to be used:

• Identity

• Notification

• Nak (Response only)

• MD5-Challenge

• One-Time Password (OTP)

• Generic Token Card
These protocols are not directly related to application authentication methods
required for an SSO but they do provide a valuable insight into how different
protocols have evolved to securely authenticate users.

3.2.2 Mail Authentication Other Protocols: APOP, AUTH, and SASL
These protocols provide other techniques to auth users without sending a shared
secret on insecure network.

POP3 APOP command [13]
The post office protocol supports the optional use of the APOP command to securely
authenticate an email reader without sending the password in clear text on the
network.
The command is issued as:

APOP name digest

Where the arguments are the user’s id and a MD5 digest string. A POP3 server
which implements the APOP command will include a timestamp in its banner
greeting - the syntax of the timestamp might be: <process-ID.clock@hostname> . The
POP3 client uses this timestamp for the APOP command. The `digest' parameter
(16-octet value) is calculated by applying the MD5 algorithm to a timestamp string
followed by the password.
The server verifies the digest provided. If the digest is correct, the POP3 server
issues a positive response, and the POP3 session enters the TRANSACTION state,
else a negative response is issued. As such, shared secrets should be long strings
(considerably longer than the 8-character example shown below).

An APOP Example [13]

S: +OK POP3 server ready < 1896.697170952@dbc.mtview.ca.us >
C: APOP mrose c4c9334bac560ecc979e58001b3e22fb
S: +OK maildrop has 1 message (369 octets)

In this example, the shared secret is the string `tanstaaf '. The MD5 algorithm is
applied to the string <1896.697170952@dbc.mtview.ca.us>tanstaaf which produces a
MD5 digest value of c4c9334bac560ecc979e58001b3e22fb

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GSEC Practical Assignment Page 10 of 24 Sandeep Singh Sandhu

IMAP auth command [14]
The Internet Message Access Protocol, Version 4 contains the AUTHENTICATE
command, for identifying and authenticating a user to an IMAP4 server and for
optionally negotiating a protection mechanism for subsequent protocol interactions.
The following authentication mechanisms can be used by this command:

• Kerberos_v4

• GSSAPI

• SKEY
A full description of the implementation is out of the scope of this paper.

Simple Authentication and Security Layer (SASL) Protocol: [15]
The RFC 2222 specifies a SASL mechanism for connection oriented protocols to
identify and authenticate a user and optionally negotiate protection of subsequent
protocol interactions for inserting a security layer between the connection and the
protocol. If a server supports the requested mechanism, it initiates an authentication
protocol exchange consisting of a series of server challenges and client responses
that are specific to the requested mechanism. If the use of a security layer is
agreed upon, then the mechanism must also define or negotiate the maximum
cipher-text buffer size that each side is able to receive.

Other SASL extensions include RFC 2444 - “One Time Password SASL Mechanism”
by Newman, RFC 2245 - “Anonymous SASL mechanism”, and RFC2831 - “Using
Digest Authentication as a SASL Mechanism” by Leach & Newman.
SASL mechanisms have been defined for many protocols - Kerberos, GSS API, and
S/key; other registered mechanisms are available at the IANA website at
http://www.iana.org/assignments/sasl-mechanisms . SASL has also been used
implemented with SMTP for securing mail server access.

3.2.3 HTTP Auth [16]
Since a large no of applications developed nowadays tend to be web-based clients,
we examine in some detail the authentications protocols used for HTTP protocol.
HTTP provides a simple challenge-response authentication. It uses an extensible,
case-insensitive token to identify the authentication scheme, followed by a comma-
separated list of attribute-value pairs which carry the parameters necessary for
achieving authentication via that scheme.
 auth-scheme = token

 auth-param = token "=" (token | quoted-stri ng)

The following parameters are supported:

• Realm: It defines the protection space and allows the protected resources on a
server to be partitioned into a set of protection spaces, each with its own
authentication scheme and/or authorization database. This token is given as:
"realm = <realm-value> ”.

• Challenge: This is sent as part of an unauthorised access error message 401,
include a WWW-Authenticate header field containing at least one. The token is
given as:
challenge = <auth-scheme> <one or more #auth-para m>

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GSEC Practical Assignment Page 11 of 24 Sandeep Singh Sandhu

• Credentials: The Authorization field value consists of credentials containing the
authentication information of the client for the realm of the resource being
requested. The web-browser must choose to use one of the challenges with the
strongest auth-scheme it understands and request credentials from the user
based upon that challenge. The token is given as: “credentials = <auth-

scheme> #auth-param ”

The authentication scheme could be either “basic” or “digest” authentication.
Basic Authentication Scheme
This authentication scheme sends the password un-encrypted and only disguised in
Base64 encoding character string. The unauthorised response (error 401) from the
web server is given as:

WWW-Authenticate: Basic realm="My_Realm"

Where, "My_Realm " is the realm. To receive authorization, the client sends the userid
and password, separated by a single colon (":") character within a base-64 [7]
encoded string in the credentials.

basic-credentials = base64-user-pass

base64-user-pass = <base64 encoding of user-pass>

Where, user-pass = userid ":" password

A Basic Auth Example [16]:
If the user agent wishes to send the user id "Aladdin" and password "open sesame",
it would use the following header field in the response from the web browser:

Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

Digest Authentication Scheme:
The server using this authentication scheme sends a challenge to the client
containing a nonce value. The client responds back with a digest (default is 128 bit
MD5 digest) of the username, the password, the given nonce value, the HTTP
method, and the requested URI. This ensures that the password is never sent in the
clear. The username and password must be prearranged for creating the digest in a
fixed format.
The following tokens are sent by the server in a "401 Unauthorized" response, and a
WWW-Authenticate header:

challenge = "Digest" digest-challenge

The digest-challenge is one or more of:
(realm | [domain] | nonce | [opaque] |[stale] | [algorithm] | [qop-
options] | [auth-param])

Where,

• Realm is the role or user space authorised to use the protected resource.

• Domain is the protected space being accessed by the client given as "domain

= < URI>“ where URI is the absoluteURI or abs_path

• Nonce is a base64 encoded or hexadecimal encoded string sent as "nonce =

<nonce-value> ”. The server should prevent using or accepting a previously
used nonce value to prevent replay attacks.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GSEC Practical Assignment Page 12 of 24 Sandeep Singh Sandhu

• Opaque represents a string to be returned by the client unchanged, this could
be used for session tracking. The format is "opaque = < quoted-string>”

• Stale indicates the previous request had been rejected since the nonce was
stale. The format of the token is "stale = ("true" | "false") “

• Algorithm string indicates a pair of algorithms used to produce the digest and
a checksum given as "algorithm= ("MD5" | "MD5-sess" | token)”

• QOP-options is an obsolete optional directive indicating the “quality of
protection” for the connection, the format is: "qop = auth | auth-int |
token”

The client responds with the following request header:
 credentials = "Digest" digest-response

Here, the digest-response is one or more of the following separated with spaces:
(username | realm | nonce | digest-uri | response | [algorithm] |
[cnonce] | [opaque] | [message-qop] | [nonce-count] | [auth-param])

Where,
• The user’s name given as "username = username-value”
• Digest-uri is the URI from Request-URI of the Request-Line; duplicated in the

header because proxies are allowed to change the Request-Line in transit
digest-uri, this is given as "uri = <digest-uri-value>”, as specified by
HTTP/1.1

• Message-qop is the Quality of protection of the message: "qop = <qop-
value>”

• Cnonce is an opaque string sent only if the server sent a qpop value
"cnonce=cnonce-value

• Nonce-count is the hexadecimal number of counts of requests sent by the
client with nonces

• Response contains the authentication reply from the client given as:
"response = <request-digest> ”. The request digest is calculated as:

"KeyedDigest((Hash(“ username":"realm":"password”) ,
 nonce-value":"nonce-count":"cnonce-value":"qop-val ue":"
 Hash(“Method":"digest-uri-value”)
)"

A Digest Auth Example [16]:
The first time the client requests the document, no Authorization header is sent, so
the server responds with:
HTTP/1.1 401 Unauthorized

WWW-Authenticate: Digest

realm="testrealm@host.com",

qop="auth,auth-int",

nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",

opaque="5ccc069c403ebaf9f0171e9517f40e41"

The client may prompt the user for the username and password, after which it will
respond with a new request, including the following Authorization header:
Authorization: Digest username="Mufasa",

realm="testrealm@host.com",

nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GSEC Practical Assignment Page 13 of 24 Sandeep Singh Sandhu

uri="/dir/index.html",
qop=auth,

nc=00000001,

cnonce="0a4f113b",

response="6629fae49393a05397450978507c4ef1",

opaque="5ccc069c403ebaf9f0171e9517f40e41"

For some applications, TLS or SHTTP are more appropriate options.

3.2.4 Windows NTLMv2 protocol [17]
Before adopting Kerberos for Windows 2000, windows implemented the NT LanMan
Version 2 (NTLMV2) challenge-response authentication protocol for operating
system authentication for network resources- this is supported by Windows NT SP4
and Win 9x operating systems. It is an improved CHAP protocol which allows user’s
to get transparently authenticated to the domain controller, file servers, printers, or
other Microsoft applications such as MS SQL database servers, MS Exchange mail
servers and IIS web servers within the same domain. The mechanism works as
follows:

• The user logs in, to which the server sends a challenge.

• A 16-byte hash (NTLM hash) is created by hashing the user’s Unicode
password using the MD4 function.

• The Unicode uppercase username is concatenated with the Unicode
uppercase server name. This is hashed using MD5 HMAC function with the
16-byte NTLM hash as the key to create the 16-byte NTLMv2 hash.

• A block of data known as the "blob" is constructed as shown below [17]:

Bytes Description Content

0 Blob Signature 0x01010000

4 Reserved long (0x00000000)

8 Timestamp Little-endian, 64-bit signed value representing the number of
tenths of a microsecond since January 1, 1601.

16 Client Challenge 8 bytes

24 Unknown 4 bytes

28 Target Information Target Information block (from the Type 2 message).

(variable) Unknown 4 bytes

• The auth server’s local security authority (LSA) constructs a user ID (UID)
which the user can use for all future sessions.

3.2.5 Transport Layer Security (TLS) [18]
Transport Layer Security specifies a protocol used to provide secure, encrypted,
application independent socket communications for any application utilising TCP/IP.
TLS comprises of the following 2 protocols:

• TLS Record Protocol: It ensures that the data transmitted is private (encrypted
using symmetric keys) and reliable (integrity check using HMAC/MAC hash
codes). Other socket-based protocols are encapsulated by this protocol. It is a

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GSEC Practical Assignment Page 14 of 24 Sandeep Singh Sandhu

layered protocol. At each layer, messages may include fields for length,
description, and content.
The Record Protocol takes messages to be transmitted, fragments the data
into manageable blocks, optionally compresses the data, applies a MAC,
encrypts, and transmits the result. Received data is decrypted, verified,
decompressed, reassembled, and then delivered to higher-level clients.

• TLS Handshake Protocol: This protocol is encapsulated in the record protocol
and allows the server and client to authenticate each other and to negotiate
an encryption algorithm and cryptographic keys before the application
protocol transmits or receives its first byte of data. The TLS Handshake
Protocol provides connection security. It provides the following security
functions:

o Authentication of the client/server’s identity using RSA, DSS, DSA, etc.
o Secure negotiation of the shared secret.
o Reliable & tamper proof negotiation of the secrets

The protocol has been based on the SSL ver 3 designed by Netscape initially for
HTTPS communications.

The following record-protocols are described for TLS version 1:

• TLS Handshake protocol

• Alert message protocol: Alert messages convey the severity of the message
and a description of the alert. Alert messages with a level of fatal result in
the immediate termination of the connection.

• Change cipher spec protocol: It consists of a single message sent by both the
client and server to notify the other party that subsequent records will be
protected under the newly negotiated CipherSpec and keys.

• Application data protocol
The record layer of the protocol performs the following functions:

• Fragmentation of the received variable length plaintext into data chunks of 214
bytes or smaller length.

• All records are compressed if a compression algorithm is specified.

• Payload protection functions encrypt the data using stream ciphers or block
ciphers A MAC code to detect the integrity of the data, the Mac record also
contains a sequence number to detect repeated messages.

• Key generation: The Record Protocol generates keys, IVs, and MAC secrets
from the master key provided by the handshake protocol. The master secret
is hashed into a sequence of secure bytes, which are assigned to the MAC
secrets, keys, and non-export IVs required by the current connection state.

The TLS handshake protocol consists of a set of 3 sub-protocols - the change cipher
specs protocol, alert messages protocol, and the application data protocol.
The handshake consists of the following steps:

• Send initial “hello” messages to agree on algorithms, exchange random values,
and check for session resumption.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GSEC Practical Assignment Page 15 of 24 Sandeep Singh Sandhu

• Pre-master secret key agreement

• Exchange certificates and cryptographic information to allow the client and server
to authenticate themselves.

• Generation of a master secret key from the pre-master secret key and exchanged
random values.

• Provide security parameters to the record layer.

• Verification of security parameters and integrity check of the handshake.

Figure 1: Message flow for a full TLS handshake

3.2.6 Smart Cards[19]
Smart cards provide an alternative to entering passwords for confirming identity.
They provide the authentication of the type “something you have”. These cards
contain a microprocessor chip that stores the user’s secret key/private key. This is
accessed from a smart card reader terminal/interface which then utilises the secret
key/data for user authentication and encryption. The key might also optionally be
protected by a user password to access the key from the chip. This access control
may also be further used to supply the private key used in public key encryption, or it
may be coupled with a biometric id system to further increase the number of tokens
used in authentication.

3.2.7 Biometric Authentication
Biometric authentication utilises the principle of identifying an entity on the basis of
“something the person is”. Devices and technologies exist to utilise the following
aspects of uniqueness of an individual for authentication [19]:

• Fingerprint scan

• Retinal blood vessel scan

• Iris pattern scan

• Palm geometry

• Voice pattern recognition

• Facial thermography

-------->

* Indicates optional or situation-dependent messages that are not always sent.

Server Client

2) ServerHello
Certificate*
ServerKeyExchange*
CertificateRequest*
ServerHelloDone

1) ClientHello

Application Data

3) Certificate*
ClientKeyExchange

CertificateVerify*

[ChangeCipherSpec]

Finished
4) [ChangeCipherSpec]

Finished

Application Data

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GSEC Practical Assignment Page 16 of 24 Sandeep Singh Sandhu

The functions performed by a Biometric system are getting data from the hardware
interface, message transmission/communication to the authentication servers, signal
processing and match decision-making.
The protocols for universally utilising biometric information from such devices and
their use in authentication systems are being developed and standardised. One
significant standard is X9.84. The BioAPI specification targets to create an platform
independent universal API for vendor-independent utilisation of such devices in
computer systems (BioAPI ver 1.1 is the ANSI standard - ANSI/INCITS 358-2002).
Products implementing the BioAPI are listed at
http://www.bioapi.org/BioAPI_products/products.htm

3.2.8 Access control information storage
The access control information describing the various users, applications, files,
printers, and other resources accessible from a network is often collected into a
special storage protected storage to be used in verifying and making access control
decisions.
These can be stored in various ways:
a) LDAP Directory Server & Protocol [20]
The object (resources) and subject (users) information is sometimes stored in a
directory, which is a type of a hierarchal database. Directories allow users or
applications to find resources that have the characteristics needed for a particular
task. Directories are different from databases in that they are read much more than
written and are optimized for high volumes of read requests. Write access might be
limited to system administrators or to the owner of each piece of information.
A client application that wants to read or write information in a directory calls a
function or application programming interface (API) that causes a message to be
sent to a process on the server which accesses this information. When a directory is
distributed (and not centralized), the information stored in the directory can be
partitioned or replicated on several directory servers. [20]

LDAP defines a standard method for accessing and updating information in a
directory. It derives its design from the DAP (directory access protocol) developed to
access the hierarchal namespace structure directory defined by CCITT in the X.500
standard (created in 1988, which became ISO 9594). The latest LDAP version 3 is
defined in RFC 2251.
LDAP defines the content of messages exchanged between an LDAP client and an
LDAP server. The messages specify the operations requested by the client (search,
modify, delete, TCP/IP session operations, etc.), the responses from the server, and
the message formats.
In LDAP, a directory entry describes an object, which is identified by a “Distinguished
name” (DN) and can contain multiple attributes with types and values. These are
organized in a tree structure called the Director information tree (DIT). The object is
described by its class, classes are stored as part of a schema.
The following operations are defined for LDAP access:

• Query: search and compare data for objects/attributes

• Update: Add, delete, modify RDNS and directory tree

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GSEC Practical Assignment Page 17 of 24 Sandeep Singh Sandhu

• Authentication: Bind (initiate and authenticate a session to the server using
Kerberos/SASL/etc.), unbind (terminate session) and abandon.

A LDIF file format is defined to convey directory information as a series of records
separated by line separators. A record consists of a sequence of lines describing a
directory entry or a sequence of lines describing a set of changes to a single
directory entry. An LDIF file specifies either a set of directory entries or a set of
changes to be applied to directory entries. A sample entry is given below [20]:

dn: cn=John Smith, ou=people, o=ibm.com
objectclass: top
objectclass: organizationalPerson
cn: John Smith
sn: Smith
givenname: John
uid: jsmith
ou: Marketing
ou: people
telephonenumber: 123-4567

LDAP over TLS: To secure all access control information and communications, the
LDAP access can be secured using TLS protocol. This secures all profile accesses
and administration activities, ensure confidentiality, and can verify the identity of the
hosts/initiators based TLS authentication methods (including client digital
certificates).
A useful case study on implementing LDAP based access control has been
described in a paper by Andres Andreu [21]. Another useful guide by Ellen Smith on
implementing LDAP is available at [22]
b) File System Based Access Control
NTFS[23] contains access control lists for controlling access to the objects stored on
the file system and the registry. The MFT (master file table) record for every file and
directory on an NTFS volume contains a security descriptor (SD) attribute which
contains information related to security and permissions for the corresponding
object.
Every object’s SD contains 2 access control lists (ACLs):

• System access control list (managed/used by the system)

• Discretionary access control list (store permissions for users and groups)
Each ACL has access control entries (ACE), which contains an ID to identify a
user/group and the set of permissions applicable for the user/group to the object.
ACLs are also interpreted as per its inheritance model – static (default ACL of parent
directory) or dynamic (changes with parent ACL change).

Unix file systems (such as ext2, ext3, reiserfs, UFS) also store information such as
file read, write or execute permissions. They also support features such as set-user-
id flags and set-group-id flags on executable files/programs to propagate trust.
c) Database storage of Access control information
The user’s access profile information can be stored in a generic database as tables
and relationships for storing identification information and authorisation information.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GSEC Practical Assignment Page 18 of 24 Sandeep Singh Sandhu

For example: Tables for user names and encrypted passwords and roles/groups for
users can be used to provide a convenient storage and retrieval of access control
information.
The advantage of using generic databases is that programming language and API
interfaces are readily available to access the information from databases – this
makes implementing such a solution very attractive.

3.2.9 Security Assertion Mark-up Language (SAML) [24]
The Security assertion mark-up language (SAML) is an XML message format that
defines a protocol specification to use when two servers need to share
authentication information. The protocol uses the web infrastructure where XML data
moves over HTTP protocols on TCP/IP networks.
With SAML, any point in the network can assert that it knows the identity of a user or
piece of data. It is up to the receiving application to accept if it trusts the assertion.
SAML provides a mutually agreed-upon mechanism that states the trust level for any
given user or group by specifying how to represent users, identifies what data needs
to be transferred, and defines the process for sending and receiving authorization
data.
The SAML specification also provides insight into the design issues for building an
interoperable, Web-enabled system.
A few products which implement SAML are: [24]

• IBM Tivoli Access Manager

• Oblix NetPoint

• SunONE Identity Server

• Baltimore, SelectAccess

• Entegrity Solutions AssureAccess

• Internet2 OpenSAML

• Netegrity SiteMinder

• Sigaba Secure Messaging Solutions

• RSA Security ClearTrust

• VeriSign Trust Integration Toolkit

• Entrust GetAccess 7
The latest version of the SAML specifications (ver 1.1) can be found at the OASIS
site at http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security.

3.2.10 The Generic Security Service API Mechanism (GSS-API) [26]
The Internet RFC 1508 defines GSS-API as an API which provides security services
to callers in a generic fashion, supportable with a range of underlying mechanisms
and technologies and hence allowing source-level portability of applications to
different environments. The specification defines GSS-API services and primitives
at a level independent of underlying mechanism and programming language
environment, and is to be complemented by other, related specifications.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GSEC Practical Assignment Page 19 of 24 Sandeep Singh Sandhu

GSS aims to provide a high-level abstraction layer on top of different low-level
security services allowing programmers to develop applications utilizing the SSO
architecture
Applications, which require use of the API, call on GSS-API functions in order to
protect its communications with authentication, integrity, and/or confidentiality
security services.
A GSS-API caller accepts tokens provided to it by its local GSS-API implementation
and transfers the tokens to a peer on a remote system; that peer passes the
received tokens to its local GSS-API implementation for processing.
The security services available through GSS-API in this fashion are implementable
over a range of underlying mechanisms based on secret-key and public-key
cryptographic technologies.

GSS-API comprises of the following elements:

• Credentials - a structure for establishing a peer’s security context related
information.

• Tokens: These are data elements used in GSS-API calls, they can be context-
level or per-message tokens.

• Security contexts

• Mechanism types – these specify the common mechanism selected by both
peers while establishing the security contexts.

• Naming of structures

• Channel Bindings
A Java reference implementation has been provided by Sun Microsystems and is
distributed as part of the JDK1.4 libraries. A useful guide for utilising the GSS-API
functions in java programs has been given by Faheem Khan [27]. It demonstrates
the ease with which programmers can use the GSS-API for integrating features such
as Kerberos authentication into their programs using the Java GSS-API.
Windows 2000/2003 provides a Microsoft implementation of GSS-API called the
SSPI (security service provider interface), which provides a Microsoft API for
implementing the interfaces specified by GSS-API. It allows security service
providers (SSPs) to provide their security implementations according to a standard
interface defined for the Microsoft Windows operating system.
Many commercial and open-source C-language implementations are available for
GSS-API. Entrust provides an entrust implemented GSS-API compliant API via its
Entrust Authority Toolkit in C language for GSS-API available at
http://www.entrust.com/authority/gss_api/features.htm. It implements the SPKM
(Simple public key mechanism) version 1 and 2.

4 SSO Protocols

4.1 The Kerberos Network Authentication Service (Ver5) [2] [28]
The Kerberos service provides a trusted third party authentication service in which
each entity or principle (server or client) is a user to the Kerberos service and believe
Kerberos’ judgment of its peer’s identity.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GSEC Practical Assignment Page 20 of 24 Sandeep Singh Sandhu

Kerberos uses shared secret key symmetric encryption. For a user the secret is the
user’s password applied to a one-way function. Kerberos uses Propagation mode
CBC DES (cipher block chaining) encryption which propagates an error throughout
the message if it is changed/tampered/damaged.

Kerberos keeps a database of the users and their secret keys. The secret keys are
negotiated at registration. It also generates temporary session keys which are only
used for one session. Kerberos can be configured to use only authentication
features, or integrity protection, or both. Collision-resistant checksums
(SHA1/MD5/etc.) are generated and used to protect the integrity of messages.
It utilizes libraries for providing encryption, database administration, authentication,
administration, database replication, and user/application programs.
In the Kerberos database records are held for each principal, containing the name,
secret key, expiration date and other administrative data. Names are of the format
name.instance@realm , where - the primary name is the name of the user or service,
instance is the name of the machine where the server runs, and realm is the
administrative domain that maintains the authentication data. There is one copy of
the master database/server on which user administration can be done, but there can
exist several slaves which provide a read-only database for authentication. The
database can be replicated on these read-only slave machines, which receive
periodic updates from the master machine.

There are 2 types of credentials used in Kerberos: tickets (used to securely pass
user’s identity between the auth server and application) and authenticators
(additional user information to prove the client’s identity). Tickets are secured with
the server’ secret key and can be used by the user several times during a session
and is described as:

Ticket = EncryptserverKey(serverid, clientid, client network address, timestamp, ticket lifetime, client-server sessionKey)

An authenticator can only be used once during authentication, it is given as:

Ticket = EncryptsessionKey(clientid, client network address, timestamp)

A principal needs to perform the following function to use Kerberos authentication:
• Client sends a request for a Ticket-Granting-Server (TGS) ticket to the

Kerberos server by sending the client name and TGS name.
• The Kerberos server authenticates the client and issues session keys for the

TGS-client exchange, the TGS ticket encrypted using the TGS-Kerberos
server keys; all encrypted using the client’s key.

• Request for a service ticket from the TGS by sending the service name, TGS
ticket and the client authenticator, both encrypted in the TGS-client session
key.

• The TGS server checks for the clients access controls and issues a client-
server session ticket encrypted using the server key and the client-server
session key, both encrypted using the TGS-client session key. This is used in
all server accesses made by the client to the same server.

• An optional mutual authentication may be done where the server sends the
client the timestamp value+1 encrypted in the server-client session key.

This process of Kerberos authentication is explained in figure 2. The other functions
performed by Kerberos are:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GSEC Practical Assignment Page 21 of 24 Sandeep Singh Sandhu

• Administration functions: password change, add/delete principals, etc.
• Periodic Kerberos database replication onto the slave machines
• Interaction with other Kerberos realms for cross-realm trust propagation

A few Assumptions are made while implementing Kerberos [28]:
• Network is not protected against Denial of service attacks by Kerberos
• All principles must keep secret keys safe.
• The network must be secure against password guessing attacks
• All hosts on the network, which are part of Kerberos, must be loosely

synchronized for timestamps to be effectively used.
• Principle names/ACL entries should not be recycled on a short-term basis to

prevent identity theft.

Figure 2: Kerberos Authentication [2]

Implementing Kerberos: Kerberos implementation involve – setting up
authentication modules for the OS/applications, installing the Kerberos server,
creating a database and user accounts, realms, setup access to services, and setup
trust and account mappings for foreign-domains.
There is a useful article on implementing Kerberos to integrate Windows 2000 and
Linux OS authentication written by Alan Withers available at
http://barney.gonzaga.edu/~awithers/integration/. Another good article on Kerberos

Kerberos
Server

2) TGS Ticket: EncryptclientKey (client-TGS Key, EncryptTGS(ticket))

Client

1) Initial Ticket Request: Send clientID, TGS name

5) Service request:

EncryptclientSrverKey(Authenticator) and
EncryptSrverKey(Ticket)

Application
Server

3) Service ticket request:

ServerID,

EncryptTGSKey(Ticket) and
EncryptclientTGSKey (Authenticator)

Ticket
Granting
Server

4) Service ticket Response:
EncryptclientTGSKey(Client-server-Key,
EncryptServerKey(Client-server-Ticket)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GSEC Practical Assignment Page 22 of 24 Sandeep Singh Sandhu

implementation by David Smith can be found at
http://www.samag.com/documents/s=1769/sam0112d/0112d.htm.
Unix/Linux PAM modules (Pluggable authentication modules) for Kerberos are
available at http://www.kernel.org/pub/linux/libs/pam/modules.html which enable
quick integration of Kerberos authentication for a UNIX/Linux shell. A Kerberos
authentication module for Apache “Mod_auth_kerb” is a module designed to provide
Kerberos user authentication to the Apache web server
(http://sourceforge.net/projects/modauthkerb/). It uses the Basic Auth mechanism to
retrieve the username/password pair, and supports mutual authentication from some
browsers via plugins/patches.

4.2 The SESAME Protocol v4 [29]
Secure European System for Applications in a Multi-vendor Environment (The
SESAME Project)", is designed similar to Kerberos, but improves it by implementing
concepts such as public key infrastructure for better secret key protection and key
distribution.

Sesame supports access control, communications integrity and confidentiality while
ensuring access control to services is controlled to appropriate level of security [29].
Sesame provides a core functionality over which vendors can build their products.
For example, the Open Software Foundation’s Distributed Computing Environment
(DCE) has merged basic Kerberos functionality with sesame architecture concepts.
The GSS API interface is also implemented in sesame, which hides implementation
specific distributed authentication and access control details.

SESAME supports role based attributes for role-based access controls, hence builds
authorization along with authentication services. It also supports the concept of
delegation of a user’s privileges to another user/application. To fully utilize the public-
key-infrastructure, iinterfaces are defined for online or offline access to certification
authorities(CA) or registration authorities(RA). A Key distribution server can
optionally be used to perform key mediation during the authentication process; this
server is used to deliver basic keys, manage long-term secret keys with services,
manage mappings of services with names/domains, and support inter-domain
operations.

Since SESAME uses PKI, its principles/entities are given DNs (distinguished names
similar to DNs used in LDAP). Symmetric key encryption, HMAC algorithms and
asymmetric key (public key) algorithms are used by SESAME. Two types of session
keys have been defined – basic key (protect PAC integrity) and dialog keys (protect
other data exchanges).
The process for authenticating a user in SESAME is described in brief:
• The users (initiator) logs onto the central authentication server of the sesame

infrastructure.
• After successful authentication, the initiator is given a ticket that he presents to a

privilege attributes server (PAS) to get a privilege attributes certificate (PAC).
This access control certificate provides proof of his access rights and is signed by
the public key of the privilege attribute server.

• The initiator provides this access control certificate to a target application when
access to its protected resource is required. The initiator is given keying

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GSEC Practical Assignment Page 23 of 24 Sandeep Singh Sandhu

information once it has selected an application to access. One part of this
protects the certificate while another part protects the integrity and confidentiality
of the data exchanged between the initiator and the target application. The actual
key used is either constructed by the initiator itself, or by a key distribution server.

5 Conclusion
We have examined some important protocols which are designed to securely
authenticate and authorise network users as SSO and keep data secure
communications. Modern Cryptographic algorithms offer numerous possibilities for
system designers to develop newer and better versions of the protocols described
here. These protocols cater to a wide variety of application security requirements
and may be implemented as such in newer areas for improving network security.

6 References:
[1] R. Shirey , “Internet security glossary”, RFC2828 , May 2000

URL: http://www.ietf.org/rfc/rfc2828.txt, Jan 2004

[2] Jennifer G. Steiner - MIT, Cliffored Neumann, Jeffery I Schiller – MIT, “Kerberos: An
authentication service for Open Network Systems”, 30-mar-98,
URL:http://secinf.net/uplarticle/2/kerberos.ps Jan04

[3] Schiener, “step-by-step instructions for implementing Kerberos on windows 2000”, URL:
http://www.microsoft.com/windows2000/techinfo/planning/security/kerbsteps.asp, Jan 2004

[4] Nancy Loveland “Single Sign On Through Password Synchronization” 6 Feb 2002
URL: http://www.sans.org/rr/papers/6/140.pdf Jan, 2004

[5] Network Working Group, RFC 2989, “Criteria for Evaluating AAA Protocols for Network
Access” – 2000, URL: http://www.faqs.org/rfcs/rfc2989.html Jan 2004

[6] William Stallings, “Cryptography and network security” 2nd edition, 1999

[7] H.Krawczyk, M.Bellare, “HMAC”, RFC2104, Feb 97, url: http://www.ietf.org/rfc/rfc2104.txt,
Jan04

[8] H. Orman, “The Oakley Key Management Protocol” RFC 2412, November 1998, URL:
http://www.ietf.org/rfc/rfc2412.txt, Jan 2004

[9] N. Haller, “S/Key Protocol”, RFC1760, Feb95, URL: http://www.ietf.org/rfc/rfc1760.txt Jan 04

[10] B. Lloyd, W. Simpson,“PAP “, RFC1334,oct 92, url: http://www.ietf.org/rfc/rfc1334.txt, Jan 04

[11] W. Simpson, “CHAP”, RFC1994, Aug 92, URL: http://www.ietf.org/rfc/rfc1994.txt, Jan 2004

[12] Blunk, L. and J. Vollbrecht, "PPP Extensible Authentication Protocol (EAP)", RFC 2284,
March 1998; URL: http://www.ietf.org/rfc/rfc2284.txt, Jan 2004

[13] J. Myers - Carnegie Mellon, M. Rose - Dover Beach Consulting, Inc. “Post Office Protocol -
Version 3”, May 1996, URL: http://www.ietf.org/rfc/rfc1939.txt , Jan 2004

[14] J. Myers , “IMAP v4” RFC 1731, Dec 94, URL: http://www.ietf.org/rfc/rfc1731.txt , Jan 2004

[15] J. Myers , “SASL” RFC 2222, oct 97, URL: http://www.ietf.org/rfc/rfc2222.txt, Jan 2004

[16] Network working group,“HTTP Authentication”,RFC2617,
Jun99,url:http://www.ietf.org/rfc/rfc2617.txt , Jan 04

[17] Eric Glass, “The NTLM authentication protocol” 2003, URL:
http://davenport.sourceforge.net/ntlm.html#theNtlmv2Response, Jan 2004

[18] T. Dierks - Certicom, C. Allen - Certicom, "The TLS Protocol", January 1999 URL:
http://www.faqs.org/rfcs/rfc2246.html , Jan 04

[19] Micki Krause, Harold F. Tipton: “Handbook of Information security management”
URL: http://www.cccure.org/Documents/HISM/ewtoc.html, Jan 2004

[20] IBM Redbook “Understanding LDAP”, June 1998
URL: http://www.redbooks.ibm.com/redbooks/pdfs/sg244986.pdf, Jan 04

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GSEC Practical Assignment Page 24 of 24 Sandeep Singh Sandhu

[21] Andres Andreu: “Using LDAP to solve one company's problem of uncontrolled user data and
passwords” (SANS reading room), 30-Oct-2003,

URL: http://www.sans.org/rr/papers/9/1291.pdf, Jan 04
[22] [ELLE03] Securely implementing LDAP by Ellen Smith, 29-jul-2001,

URL: http://www.sans.org/rr/papers/6/109.pdf, Jan 2004
[23] [ntfs] Charles M. Kozierok - The PC Guide, Version: 2.2.0, “Access Control Lists (ACLs) and

Access Control Entries (ACEs)” , April 17, 2001
URL: http://www.pcguide.com/ref/hdd/file/ntfs/secAccess-c.html, Jan 2004

[24] Frank Cohen “Debunking SAML myths and misunderstandings” - 8 July 2003, URL:
http://www-106.ibm.com/developerworks/xml/library/x-samlmyth.html?Open&ca=daw-se-
news, Jan 04

[25] Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone “Handbook of Applied
Cryptography” - October 1996

[26] RFC1508 J. Linn, Geer Zolot Associates, “Generic Security Service Application Program
Interface”, September 1993, URL: http://www.ietf.org/rfc/rfc1508.txt, Jan 2004

[27] Faheem Khan, “Design secure client/server Java applications that use GSS-API and
Kerberos tickets to implement SSO” (9-Sep-03),
URL: http://www-106.ibm.com/developerworks/java/library/j-gss-sso/

[28] J. Kohl , RFC1510, “Kerberos Network authentication service ver 5”, Sep 1993, URL:
http://www.ietf.org/rfc/rfc1510.txt, Jan 04

[29] Tom Parker - ICL, Denis Pinkas – BULL, Issue 1, “SESAME Technology Version 4”, Dec-95,
URL: http://www.isrc.qut.edu.au/sesame/doc-txt/overview.txt, Jan 2004

