
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

The Role of Static Analysis in Heartbleed

GIAC (GSEC) Gold Certification

Author:(Jeff(Sass,(jsass@adobe.com(
Advisor:(Stephen(Northcutt(

Accepted:((February(12,(2015(
(

(

(

(

Abstract(
The(Heartbleed(bug(was(one(of(the(largest(security(vulnerabilities(of(2014,(not(only(
because(of(the(media(attention(it(garnered(but(also(because(it(affected(over(half(a(
million(web(sites(on(the(Internet.(Because(the(bug(was(in(OpenSSL,(it(affected(web(
sites,(VPN(concentrators,(client(applications(and(mobile(devices.(This(paper(details(
what(the(Heartbleed(bug(is,(how(the(details(were(disclosed,(and(how(vendors(
responded(to(it.(The(role(of(static(analysis(in(software(quality(is(then(discussed.(How(
static(analysis,(specifically(Coverity’s(TAINTED_SCALAR(heuristic,(was(improved(to(
detect(this(bug(will(also(be(presented.(Finally,(how(end(users(can(protect(themselves(
from(similar(vulnerabilities(will(be(discussed.(((
(
(
(
(
(

The Role of Static Analysis in Heartbleed! 2

Jeff(Sass,(jsass@adobe.com(

1. Introduction
Numbered security vulnerabilities known as Common Vulnerabilities and

Exposures (CVEs), have been on the rise since the United States Computer Emergency

Readiness Team (US-CERT) began tracking them in 1999. In 1999 there were 1,597

CVEs and in 2014 there were 9,526. On April 7, 2014, CVE-2014-0160 (“Vulnerability

Summary for CVE-2014-0160”, 2014) was disclosed. It “affected over half a million

widely trusted web servers used on the Internet” (“Half a million widely trusted websites

vulnerable to Heartbleed bug”, 2014). This vulnerability is commonly referred to as the

Heartbleed bug (“The Heartbleed Bug”, 2014). In order to understand why the Heartbleed

bug had such an impact on the Internet, we must first look at what Transport Layer

Security (TLS) and Secure Sockets Layer (SSL) protocols are and how they work.

TLS is used to secure communications between two endpoints. TLS is the

successor to SSL although many references still use the SSL/TLS terminology. For this

discussion of Heartbleed, the term TLS will be used throughout. TLS encrypts and

decrypts packets of data as they flow between two endpoints. It does this so that

eavesdroppers cannot spy on the data while it is in transit. There are many computing

applications that require this type of message confidentiality. The most common example

is when a web browser connects to a web site using https:// instead of http://. The

reasonable assumption is, for that session, there are no eavesdroppers who are decrypting

the traffic and stealing private information (i.e. credit cards, passwords or digital

certificates). This assumption was proven to be incorrect in applications that used certain

versions of OpenSSL containing the Heartbleed bug.

1.1. Incorporating Open Source Libraries
When designing secure applications one of the first questions that must be

answered is: should developers write their own cryptography library or should they use

an open source one? In the earlier days of the Internet, there wasn’t a choice. Developers

had to write their own. Modern software development however, should follow the advice

from the SANS Institute top 25 most dangerous software errors. CWE-327 states to not

use a broken or risky cryptographic algorithm. By only reading the title, a developer

might think that the given advice means that developers should write their own algorithm.

The Role of Static Analysis in Heartbleed! 3

Jeff(Sass,(jsass@adobe.com(

On the contrary, the advice from MITRE and SANS (“CWE/SANS TOP 25 Most

Dangerous Software Errors”, 2010) states:

“Cryptography+is+just+plain+hard.+If+brilliant+mathematicians+and+computer+scientists+

worldwide+can’t+get+it+right+(and+they’re+always+breaking+their+own+stuff),+then+neither+

can+you.”+

(
Per this advice, when looking at cryptography libraries, developers should

generally choose to use an existing algorithm and more specifically an implementation of

that library that has been peer reviewed.

Other factors to consider involve whether or not the library is actively developed,

has a proven track record of quality, has an acceptable licensing agreement, and whether

or not the library is open source. Some cryptography libraries are commercially available

and some are open source. OpenSSL is open source and has a proven track record of

fixing security vulnerabilities (“OpenSSL vulnerabilities”, 2014). Looking at the number

of previous CVEs in OpenSSL’s vulnerability list might lead a developer to choose to

write their own implementation of a cryptographic library. However the opposite is

generally true. Because the OpenSSL team is actively fixing vulnerabilities, and has been

for over a decade, they have established a level of trust that cannot easily be gained by a

newly written library. Examining their CVE list before April 2014 would have led most

developers to choose to incorporate the library instead of writing their own.

Another aspect to consider is if the library is a commercial one or open source.

Open source libraries provide the source code as well as the compiled binary. This gives

developers the ability to inspect the source code as one way to help determine the level of

quality. It is common for open source libraries to also contain unit tests to help prove the

stated quality level. While open source libraries can never guarantee quality, nor can

commercial libraries, being able to read the source code is additional data to help guide

the decision. An experienced developer can determine within a few hours what the level

of quality an open source library possesses.

1.2. Heartbeat Extension
In order to understand the Heartbleed bug, we must first look at how TLS

handshakes work. When a browser connects to a web server there is a handshake that

The Role of Static Analysis in Heartbleed! 4

Jeff(Sass,(jsass@adobe.com(

occurs to establish the connection. Then depending on whether it is HTTP or HTTPS, the

security of that connection is established. HTTP/HTTPS traffic is stateless by default.

This means that once the data is sent, the connection ends. When there is more traffic to

send, the connection must be reestablished and that requires that both computers go

through another handshake process. Heartbeats were added to TLS as specified in RFC

6520 to “keep the connection alive without continuous data transfer” (R. Seggelmann,

2012). When the OpenSSL team added the heartbeat extension feature, they turned it on

by default. Developers have the option to compile with the

-DOPENSSL_NO_HEARTBEATS compiler flag to disable it; however, the OpenSSL

developers made the design decision to turn on the Heartbeat extension by default.

This Heartbeat extension is what keeps the connection open. Heartbeat protocol

messages have four parts: HeartbeatMessageType, payload_length, payload, and

padding. As long as the client continues to receive a HeartbeatResponse to match the

HeartbeatRequest the connection is maintained. When the server receives the

HeartbeatRequest it responds with a HeartbeatResponse with an “exact copy of the

payload of the received HeartbeatRequest” (“OpenSSL Heartbeat Vulnerability”, 2014).

Normally the confidentiality of the payload is not compromised.

1.3. Heartbeat vulnerability
When the Heartbleed bug is exploited, the attacker will create a specially crafted

HeartbeatRequest. This request will shrink the payload to a smaller value, possibly as

small as 1 byte, and set the payload_length to something larger up to 65,535 bytes.

According to page 5 of RFC 6520 (Seggelmann, 2012), the implementation of the

specification should have discarded the HeartbeatMessage.

“If+the+payload_length+of+a+received+HeartbeatMessage+is+too+large,+the+received+

HeartbeatMessage+MUST+be+discarded+silently.”+

Instead of discarding the HeartbeatMessage, the OpenSSL implementation placed

the message into memory at the size specified by the specially crafted request. This is

where the bug occurred.

The Role of Static Analysis in Heartbleed! 5

Jeff(Sass,(jsass@adobe.com(

When a software library takes input from end users and puts it into memory

without checking the parameters, this input is called tainted input. The OpenSSL

implementation trusted the payload_length parameter from the client without checking

the actual size of the payload. This is a violation of CWE-807: Reliance on Untrusted

Inputs in a Security Decision (Christey, "2011 CWE/SANS Top 25 Most Dangerous

Software Errors").

The OpenSSL library looked in the server’s memory at the address of the payload

and then copied the section of memory up to the attacker’s specified payload_length.

This could be up to 65535 bytes. That memory was then returned in the

HeartbeatResponse. The attacker now has access to whatever was stored in the web

server’s memory at that specific time. This could include user names, passwords, or

possibly the encryption keys that were used to establish the secure connection.

There is nothing preventing the attacker from repeating this attack in an attempt to

continue to steal confidential data from the server’s memory. Since the exchange of data

happens during the initial handshake part of the protocol, “exploitation of this bug does

not leave any trace” in the webserver logs (“The Heartbleed Bug”, 2014). Dr. Bagley

referred to this process as “a bit like panning for gold” (Bagley, 2014).

Researchers reviewed the logs of passive Internet taps and did not find any large-

scale evidence of Heartbleed exploits up to April 7. On April 8, they did discover

“subsequent exploit attempts from almost 700 sources” (Durumeric, 2014). This shows

that Heartbleed was extremely easy to exploit, and attackers used tools like Metaspolit’s

pen-testing modules to attack servers immediately after the disclosure.

2. Heartbleed discovery
Two independent security research teams discovered the Heartbleed bug. Neel

Mehta of Google Security discovered Heartbleed on March 21st, 2014 while conducting a

source code review of OpenSSL (Grubb, 2014). On April 2nd, 2014, a team of Finnish

Codenomicon engineers named Antti Karjalainen, Riku Hietamaki, and Matti Kamunen

discovered the bug while performing testing on Codenomicon’s Defensics SafeGuard

feature. (“The Heartbleed Story”, 2014).

The Role of Static Analysis in Heartbleed! 6

Jeff(Sass,(jsass@adobe.com(

The Google team notified the OpenSSL team initially

while the Codenomicon team notified the National Cyber

Security Centre Finland (NCSC-FI) who then asked the CERT

Coordination Centre for a CVE number. Codenomicon then

registered the heartbleed.com domain, created the Heartbleed

logo, and reported the bug to a member of the OpenSSL team

(ironically a Google engineer named Ben Laurie). The

member then forwarded the information to the entire

OpenSSL team. Because two independent sources disclosed

the bug within the same period of time, a patch was released

later that day on April 7, 2014 instead of trying to perform a

more coordinated rollout. A more detailed timeline is available from Ben Grubb of the

Sydney Morning Herald (Grubb, 2014).

3. Heartbleed Response
Hundreds of news reports and articles were posted on the Heartbleed bug. These

quickly spread through the security community and media outlets.

3.1. Security Community Response
Dr. Johannes Ullrich of SANS posted details of Heartbleed to the Internet Storm

Center (Ullrich, 2014). Jake Williams, while speaking at the SANS 2014 conference,

recorded a webcast to the SANS webcast archive (Williams, 2014). He also referenced

that a Heartbleed testing module for Metasploit, a pen testing tool used to test and exploit

vulnerabilities, was posted to GitHub (n.d.).

The lynda.com training site also posted two training videos, “Heartbleed Tactics

for Small IT Shops” (Gassner, 2014), and “Protecting Yourself from the Heartbleed Bug”

(Seeley, 2014). The security community understands how to respond to security

vulnerabilities and ensure the information is accurate and sent to the necessary

professionals.

The$Heartbleed$logo$$

Photograph:$/Codenomicon

The Role of Static Analysis in Heartbleed! 7

Jeff(Sass,(jsass@adobe.com(

3.2. Media Response
When examining the mass media response, two examples stand out: the nightly

comedy show, The Colbert Report, and the web comic xkcd. On the April 8 episode,

Stephen Colbert starts his show by taping a laptop with duct tape and twine and placing a

mousetrap on top of the box in order to “secure his data”. He goes on to say:

“The+Internet+was+supposed+to+be+a+lawless+frontier+where+all+of+humanities+desires+

and+vices+merged+into+a+royally+connected+id+held+in+check+by+a+barely+regulated+ratsH

nest+of+technical+abstractions+I+don’t+understand.+How+did+that+get+out+of+control?”+

A graphical description of the Heartbleed bug was from the xkcd web comic. It was

used because of its simple explanation showing how the vulnerability works (“xkcd:

Heartbleed Explanation”, 2014). The comic medium was used effectively to quickly

show the vulnerability. The combination of these and other media responses highlights a

recent need to explaining security concepts to the masses in an accurate, approachable

way.

3.3. OpenSSL Response
The OpenSSL team responded by fixing the bug and posting the details on their

vulnerability page at http://openssl.org/news/vulnerabilities.html. The patch was released

in version 1.0.1g and 1.0.2-beta2 of their library. Performing a diff on the

tlsl_process_heartbeat() function in the t1_lib.c files from OpenSSL 1.0.1f and 1.0.1g

shows how the bounds check of this memory over-read was added. 1.0.1g was released to

the public on April 7, 2014 (“OpenSSL vulnerabilities”, 2014).

3.4. Vendor Response
Vendors began reviewing their client and server machines to determine if they

contain the vulnerable version of OpenSSL. If the vulnerable version was found the

vendor issued a patch via their normal software update process. For running webservers

an additional best practice was needed to “reissue a new private key and expire all active

user sessions” (Williams, 2014). Client applications should update their applications with

a non-vulnerable OpenSSL library.

The Role of Static Analysis in Heartbleed! 8

Jeff(Sass,(jsass@adobe.com(

3.5. End-User Response
The recommendation from “The Heartbleed Bug” (2014) was to change your

password, but only after you have verified that the server you are connecting to has

already applied the patch and re-issued their digital certificates.

3.5.1. Changing passwords
End-users can check https://lastpass.com/heartbleed/ or similar sites linked from

security researcher Brian Krebs’ blog post (Krebs, 2014), to determine if a web site is

still vulnerable. If end-users changed their password before the site was patched, then the

act of visiting the site and changing your password would incur a higher likelihood of

putting the user’s password in the web server memory. This act of changing the password

could then be exploited compared with a user who didn’t change their password during

this initial rush of disclosure and patching. Brian Krebs gave the following advice, “It

certainly can’t hurt to change your password now and then again next week.” (Wood,

2014).

3.5.2. Password Managers
For a modern Internet user, asking them to reset their password on all sites that

were listed as vulnerable can be very time consuming. To follow Brain Krebs’ advice and

reset them two times could easily result in hundreds of password changes for an average

Internet user. The advice of many security professionals, including L. Newman (2014) is

to setup a password manager. A password manager helps you in two ways. First, they

keep track of all of the passwords you use so you are not tempted to write them down in a

non-secure location. Second, the generate feature will automatically assign a long,

unique, and random password for each site you visit. This will ensure that the password

you change to is strong. Because of the wide media coverage of Heartbleed, many users

started using password managers to help organize their digital lives and make the process

of changing passwords much easier if another vulnerability occurs.

4. Static Analysis
Now that the mechanics of Heartbleed have been presented, we turn to the role of

static analysis in software quality. Static analysis is the process of determining code

The Role of Static Analysis in Heartbleed! 9

Jeff(Sass,(jsass@adobe.com(

quality without executing the program. Static analysis tools trace all of the possible

branches of the code without executing it. In contrast, dynamic analysis works by

analyzing executing code. Dynamic analysis techniques used to find Heartbleed are

discussed further in Dr. Wheeler’s paper “How to Prevent the Next Heartbleed”

(Wheeler, 2014).

Janet Gregory and Lisa Crispin have written two books on agile testing (Crispin,

L., & Gregory, J., 2009) and (Gregory, J., & Crispin, L., 2014). In chapter 8 of their later

book, “More Agile Testing”, an updated version of the agile testing quadrants is

presented and shown below in Figure 1.

Figure1–$Agile$testing$quadrants$>$(Gregory,$J.,$&$Crispin,$L.,$2014),$used$with$permission$

Security testing falls into Q4 in the bottom right and is influenced by technology-

facing tests that critique the product. Security tests are in the same quadrant as

performance and load tests and a category called “ilities” (e.g. reliability, interoperability,

scalability). In their first book “Agile Testing”, the authors state:

The Role of Static Analysis in Heartbleed! 10

Jeff(Sass,(jsass@adobe.com(

“However,+there+are+many+tasks+that+need+specialized+knowledge.+A+good+example+is+

security+testing…+We’re+talking+about+probing+for+external+security+flaws+and+knowing+

the+types+of+vulnerabilities+in+systems+that+hackers+exploit.+That+is+a+specialized+skill+

set.”+(Crispin,+L.,+&+Gregory,+J.,+2009)+

(
Software development teams have the challenge of balancing the amount of effort

they spend on each of the testing quadrants. Focusing on the customer experience should

guide all of these trade-off decisions on product development teams. Teams also need to

evaluate which of the quadrants will give the most “bang for the buck”. If there is a

dedicated quality engineering team then the responsibility for testing items in the higher

quadrants generally falls to them. Because security testing is in Q4 and requires

specialized skills, historically this work is either outsourced to a third party vendor or not

done at all. Luckily, in recent years, there has been a sharp increase in the number of

security jobs at technology companies and many are now choosing to grow this

specialized set of skills in-house.

Adobe uses a mix of all three types of security resources. First, ASSET (Adobe’s

Secure Software Engineering Team) focuses on the larger Adobe security landscape and

helps coordinate security testing with third parties. Second, Adobe utilizes these third

party vendors for pen-testing projects to liaison with developers writing the code. Finally,

individual product teams have security champions that are responsible for ensuring the

overall security profile of the entire product.

There are many security tools that developers can use, some are open source and

some are commercial. Adobe uses many different tools, but the most popular commercial

ones are Coverity and Checkmarx.

4.1. Coverity
Coverity, which was recently purchased by Synopsys, is a “leading provider of

software quality and security testing solutions” (Coverity, 2014). It is considered more

than a security testing tool. The static analysis engine not only detects security defects but

also more general coding defects that are unknowingly made by developers. Adobe uses

the tool for general quality purposes but for this discussion we will focus on the

specifically on the static analysis security checkers. Coverity can be used with the

Coverity Scan service or deployed on-premise.

The Role of Static Analysis in Heartbleed! 11

Jeff(Sass,(jsass@adobe.com(

4.1.1. Coverity Scan
Coverity offers Coverity Scan free of charge to the open source community. This

service scans over 2,500 open source projects and provides the results directly to the

development team. Over 100,000 defects have been fixed that were identified by this

system. Since February 23, 2006, OpenSSL has been one of the projects scanned by

Coverity Scan. In the “Coverity Scan Security Spotlight” report (“Coverity Releases

Security Spotlight Report on Critical Security Defects in Open Source Projects”, 2014),

the Coverity team discusses how tainted data can be exploited in Heartbleed and how

other similar vulnerabilities can be detected and fixed in the open source community.

4.1.2. Coverity on-premise
Companies who purchase Coverity for use on their internal source code

traditionally deploy it on-premise and include the tool as part of the build process. At

Adobe, we do this via a continuous build system as well as using an IDE plugin that

developers use while writing the code.

4.1.3. Coverity challenges
The main challenge that static analysis tools face is how to balance the amount of

false positives that a tool generates with the effectiveness of the tool finding actual bugs

in the code. One of the reason Coverity’s static analysis tools are so popular is that they

have a low false positive rate. If developers and quality engineers are spending time

investigating false positives they are not spending time finding and fixing real bugs.

There isn’t one set rule for how many false positives are allowed before a developer stops

trusting the tool. A good benchmark is less than 20%. Coverity’s desire to use fast

algorithms and keep their false positive rate low prevented the 7.0.3 version of their static

analysis engine from detecting Heartbleed.

4.1.4. Detecting Heartbleed with Coverity
When Coverity’s CTO and co-founder Andy Chou heard about Heartbleed, he

blogged about his team’s investigations (Chou, 2014). Heartbleed was a buffer over-read

on the memcpy() function call. More specifically it was a buffer over-read involving

tainted data. It is difficult to determine that the tainted data came from an untrusted

source like a network socket or from an attacker. Coverity wasn’t designed to test all of

The Role of Static Analysis in Heartbleed! 12

Jeff(Sass,(jsass@adobe.com(

the memcpy() statements in a program and assume they have tainted data in them. This

would have invariably led to a larger than acceptable false positive rate. A way to make

the problem more tractable is to examine if the data was part of a byte-swap operation.

There are many use cases for byte-swap operations but one common one is sending data

across a network. When performing that operation, you cannot assume that the server has

the same endianness as the client and vice-versa. Programmers use network byte order

and then either do a byte-swapping operation or not depending on if that matches your

computers endianness.

In the case of Heartbleed, the n2s macro was designed to do the byte-swapping.

By examining the code preceding the memcpy(), and determining that a byte swapping

operation was occurring, Coverity could now make a reasonable assumption that the data

was from an untrusted source and could be tainted.

Coverity 7.0.0.3 was released on April 23, 2014, which detected Heartbleed in the

default configuration by adding a TAINTED_SCALAR checker (Coverity Support,

2014).

4.1.5. Modeling
Another approach Coverity could have used was to model the Heartbleed bug.

Coverity provides a modeling feature in order for developers to teach the static analysis

engine about specific programming constructs in the code. Because Heartbleed was a

specific bug, the easier approach would have been to simply model the exact behavior.

Modeling has its place and Adobe has used it successfully in the past. Coverity’s

design decision to detect Heartbleed with a new TAINTED_SCALAR checker solves not

only this particular vulnerability, but also future vulnerabilities that use the same byte

swapping design. This “clever” approach has already been improved upon by

GrammaTech’s CodeSonar (Anderson, 2014).

5. Conclusions
Heartbleed was a serious vulnerability and there are other serious vulnerabilities

that have yet to be disclosed. The Stuxnet worm used four distinct zero-day

The Role of Static Analysis in Heartbleed! 13

Jeff(Sass,(jsass@adobe.com(

vulnerabilities in its search for computers used to control Iran’s nuclear facilities (Zetter,

2014). It takes increased skill to find and exploit one vulnerability, making it more

impressive that Stuxnet contained four. The national debate continues if vulnerabilities

should be disclosed when they are discovered or kept for exploitation later by the NSA

(Zetter, 2014). As that discussion continues, development teams should employ all of the

available tools to remove vulnerabilities in the first place. By improving our static

analysis detection algorithms, development teams have a better chance at catching these

bugs before they are exploited.

(

The Role of Static Analysis in Heartbleed! 14

Jeff(Sass,(jsass@adobe.com(

6. References
(2014, December 11). Retrieved January 10, 2015, from

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160

April 2014 Web Server Survey (2014). Retrieved from

http://news.netcraft.com/archives/2014/04/02/april-2014-web-server-survey.html

Anderson, P. (2014, May 1). Finding Heartbleed with CodeSonar. Retrieved January 29,

2015, from http://www.grammatech.com/blog/finding-heartbleed-with-codesonar

Bagley, S. (2014, April 18). Heartbleed, Running the Code. Retrieved January 26, 2015,

from https://www.youtube.com/watch?v=1dOCHwf8zVQ

Chou, A. (2014, April 13). On Detecting Heartbleed with Static Analysis. Retrieved

January 27, 2015, from http://security.coverity.com/blog/2014/Apr/on-detecting-

heartbleed-with-static-analysis.html

Christey, S. (2011, September 13). 2011 CWE/SANS Top 25 Most Dangerous Software

Errors. Retrieved January 21, 2015, from http://cwe.mitre.org/top25/#CWE-807

Cipriani, J. (2014, April 9). Heartbleed bug: Check which sites have been patched -

CNET. Retrieved January 20, 2015, from http://www.cnet.com/how-to/which-

sites-have-patched-the-heartbleed-bug/

Colbert, S. (2014). [Television series episode]. In The Colbert Report. New York:

Stephen Colbert.

Coverity Support. (2014, April 23). [Email] “Request access to heartbleed hotfix”

Coverity. (n.d.). Retrieved January 26, 2015, from http://www.coverity.com/company/

Coverity Releases Security Spotlight Report on Critical Security Defects in Open Source

Projects. (2014, October 15). Retrieved January 25, 2015, from

http://www.coverity.com/press-releases/coverity-releases-security-spotlight-

report-on-critical-security-defects-in-open-source-projects/

Crispin, L., & Gregory, J. (2009). Critiquing The Product Using Technology-Facing

Tests. In Agile Testing: A Practical Guide for Testers and Agile Teams. Upper

Saddle River, NJ: Addison-Wesley.

CWE/SANS TOP 25 Most Dangerous Software Errors. (2010, February 16). Retrieved

January 10, 2015, from http://www.sans.org/top25-software-errors/2010/

The Role of Static Analysis in Heartbleed! 15

Jeff(Sass,(jsass@adobe.com(

Durumeric, Z., Kasten, J., Adrian, D., Halderman, J., Bailey, M., … (2014). The Matter

of Heartbleed. Proceedings of the 2014 Conference on Internet Measurement

Conference, 475-488. Retrieved January 20, 2015, from

https://jhalderm.com/pub/papers/heartbleed-imc14.pdf

Gassner, D. (n.d.). Lynda.com Training | Heartbleed Tactics for Small IT Shops.

Retrieved January 9, 2015, from http://www.lynda.com/Developer-Servers-

tutorials/Heartbleed-Tactics-Small-Shops/169720-2.html

Gregory, J., & Crispin, L. (2014). Using Models To Help Plan. In More Agile Testing:

Learning Journeys for the Whole Team. Upper Saddle River, NJ: Addison-

Wesley.

Grubb, B. (2014, April 15). Heartbleed disclosure timeline: Who knew what and when.

Retrieved January 20, 2015, from http://www.smh.com.au/it-pro/security-

it/heartbleed-disclosure-timeline-who-knew-what-and-when-20140415-

zqurk.html

Half a million widely trusted websites vulnerable to Heartbleed bug. (2014, April 8).

Retrieved February 8, 2015, from

http://news.netcraft.com/archives/2014/04/08/half-a-million-widely-trusted-

websites-vulnerable-to-heartbleed-bug.html

Heartbleed Update. (2014, April 17). Retrieved January 26, 2015, from

http://blogs.adobe.com/psirt/?p=1085

Hern, A. (2014, April 9). Retrieved January 20, 2015, from

http://www.theguardian.com/technology/2014/apr/08/heartbleed-bug-puts-

encryption-at-risk-for-hundreds-of-thousands-of-servers

Internet security flaw may affect YOU. (2014, April 9). Retrieved January 20, 2015, from

http://www.cnn.com/videos/tech/2014/04/09/mxp-heartbleed-internet-security-

flaw.hln

Krebs, B. (2014, April 14). Heartbleed Bug: What Can You Do? Retrieved January 27,

2015, from http://krebsonsecurity.com/2014/04/heartbleed-bug-what-can-you-do/

Newman, L. (2014, April 10). Heartbleed Should Motivate You to Get a Password

Manager. Retrieved January 26, 2015, from

The Role of Static Analysis in Heartbleed! 16

Jeff(Sass,(jsass@adobe.com(

http://www.slate.com/blogs/future_tense/2014/04/10/password_managers_can_pr

otect_you_from_vulnerabilities_like_heartbleed.html

OpenSSL vulnerabilities. (2014, April 8). Retrieved January 26, 2015, from

http://openssl.org/news/vulnerabilities.html

Ramzan, Z. (2014, April 8). OpenSSL Heartbeat (Heartbleed) Vulnerability (CVE-2014-

0160) and its High-Level Mechanics. Retrieved January 27, 2015, from

http://vimeo.com/91425662

Seeley, J. (2014, April 1). Lynda.com Training | Protecting Yourself from the Heartbleed

Bug. Retrieved January 9, 2015, from http://www.lynda.com/Business-Computer-

Skills-Mac-tutorials/Protecting-Yourself-from-Heartbleed-Bug/169873-2.html

Seggelmann, R. (2012, February 1). Retrieved January 26, 2014, from

http://tools.ietf.org/pdf/rfc6520.pdf

The Heartbleed Bug. (2014, April 8). Retrieved January 10, 2015, from

http://www.heartbleed.com

The Heartbleed Story. (2014). Retrieved January 26, 2015, from

http://www.codenomicon.com/resources/brochure/pdf/Heartbleed-Story.pdf

Ullrich, J. (2014, April 9). How to talk to your kids (or manager) about "Heartbleed"

Retrieved January 21, 2015, from

https://isc.sans.edu/forums/diary/How+to+talk+to+your+kids+or+manager+about

+Heartbleed/17943

Vulnerability Summary for CVE-2014-0160. (2014, December 11). Retrieved January

10, 2015, from http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160

Wheeler, D. (2014, October 20). How to Prevent the next Heartbleed. Retrieved January

29, 2015, from http://www.dwheeler.com/essays/heartbleed.html

Williams, J. (2014, April 9). OpenSSL "Heartbleed" Vulnerability. Retrieved April 9,

2014, from https://www.sans.org/webcasts/openssl-heartbleed-vulnerability-

98105

Williams, J., & Goodman, A. (2014, May 22). How Defense-In-Depth Helps Protect You

From Unexpected Vulnerabilities Like Heartbleed. Retrieved January 9, 2015,

from https://www.sans.org/webcasts/defense-in-depth-helps-protect-unexpected-

vulnerabilities-heartbleed-98155

The Role of Static Analysis in Heartbleed! 17

Jeff(Sass,(jsass@adobe.com(

Wood, M. (2014, April 9). Flaw Calls for Altering Passwords, Experts Say. Retrieved

January 20, 2015, from http://www.nytimes.com/2014/04/10/technology/flaw-

calls-for-altering-passwords-experts-say.html

xkcd: Heartbleed Explanation. (2014, April 9). Retrieved January 20, 2015, from

http://xkcd.com/1354/

Zetter, K. (2014). Digital Pandora. In Countdown to Zero Day: Stuxnet and the Launch of

the World's First Digital Weapon. New York: Crown.

 (n.d.). Retrieved January 20, 2015, from https://github.com/rapid7/metasploit-

framework/blob/master/modules/auxiliary/scanner/ssl/openssl_heartbleed.rb

