GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

© SANS Institute 2004,

Operating System Build Management in the Enterprise

GIAC Security Essentials Certification (GSEC)
Practical Assignment
Version 1.4b

Duncan C Beattie

February 07, 2004

As part of GIAC practical repository.

1
Author retains full rights.

Table of Contents

ADSTITACT ..o 3
INteNded AUIENCEcoeiiiiiiiiiiiiieeeieeee ettt 3
The Case for Build POIICIES ..o 3
Policy Definition and Documentation...................euiiiiiiiiiiiiiiiiiiieeiieeeeeeeeeeeeee e 4
Implementing Standard Builds ... 7
Automating Solaris Deployment............coooviiiiiiiiiiiiiiiiiiiiee 8
Jumpstart Installation ProCess ... 9
Jumpstart Architecture and Security Scripts..........coooiiiiiiii 10
Ongoing Build MaintenanCe ... 11
Build Policy Compliance Monitoring using Symantec ESM............ccccccvvvvvinnnn. 13
Creation of Revised DOM@INS...... ... 13
Creation of ReviSed POIICIES ... 14
Build Compliance ProCedures.iiiii i 15
o100 10 =1 o VTR 15
Appendix A — JASS Finish SCripts..........oiiiiiiii e 16
REFEIENCES ...ttt e e e eees 18

Table of Figures

Figure 1: Security policy hierarchy. ... 4
Figure 2: Build policy iNflJUBNCES.ooiiiiiiiiiiiiiiiiieeeeee e 5
Figure 3: Jumpstart Installation...... ... 9
Figure 4: Build Maintenance Life CycCle............ccoovviiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeee 11

2

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Abstract

Mitigating the risk to critical systems from vulnerabilities in operating system
builds is an important responsibility of any system administrator. In organisations
with a large number of servers, running multiple applications and services,
managing the state of production builds can be a time consuming exercise.
Regardless of the size of an organisation's IT infrastructure, it is crucial from a
security perspective that administrators know the detail of the production
operating system configuration on the servers for which they are responsible.

Establishing a standard system build policy for each operating system is the
foundation upon which to build an understanding of systems, improving the ability
to detect change and to understand the risk posed by new threats. This paper
discusses points to consider in creating system build policies and how to tackle
both bringing systems into compliance and ensuring that they remain compliant.

Intended Audience

This paper assumes an understanding of system administration. Awareness of
the basic principle aims of IT security — to protect data integrity, availability and
confidentiality — and an understanding of risk awareness and management is
assumed.

The Case for Build Policies

“We need to work with companies to help them build security plans.”
- Mike Nash, vice president of the
security business unit at Microsoft [1]

Protection of business data and the availability and performance of online
systems are key responsibilities of the system administrator. In a large
environment an administrator’s confidence in the servers he looks after will be
dictated by the extent to which he knows his systems. If servers are released in
an ad hoc manner, with the level of security in place dependant upon the
individual carrying out the work, this confidence will be diminished. By
implementing hardened systems according to a technical build policy, and
monitoring build compliance post-release, the security of the environment can be
greatly enhanced.

Without build policies that cover secure baseline settings and detail patching
requirements and intervals, the vulnerability to new risks can be greater.
Furthermore, the ability to detect signs of intrusion is also greatly enhanced by
establishing policies that define a normal system state.

2
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Policy Definition and Documentation

Information security policies underpin the security and well being of information
resources.. they are the foundation, the bottom line, of information security within
an organisation [2].

Security policies can be defined at many levels. Many organisations will have an
umbrella corporate security policy that defines what is expected of staff that use
company computers. High level company policies may contain information from
fraud and money laundering prevention to CCTV (Closed Circuit Television)
usage and business continuity guidelines.

To compliment physical security and regulatory guidelines there will also be rules
governing the protection of information. Such information security manuals may
define organisation practice including Internet usage, password standards, and
corporate email policy in a manner that will be understood by all, from data entry
clerks to IT operations staff.

Corporate/Group
Security Policy

Information
Security Policy

v v

Windows 2000 Solaris Build
Build Policy Policy

AIX Build Policy

Figure 1: Security policy hierarchy.

Operational business security policies that are defined and published at a high
level in the organisation serve as the foundation for information security policy,
which in turn serve as the basis from which to develop technical build policies. It
is the technical build documentation that serve as the baseline reference for
putting policy into practice.

4
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Operating System
Build Polic

Corporate/Group
Standards

Figure 2: Build policy influences.

In addition to corporate security policy manuals, technical (or industry) best
practice will influence the specific recommendations of an O/S build specification.
There are many excellent resources available published online and in text books
that describe hardening techniques for hardening Windows, Unix and Networking
environments. Technical advice in hardening white papers and security manuals
are also a good source of material that can be tailored for inclusion in each

policy.

Each secure operating system build policy will document the technical
configuration of a server build. The prescriptive configuration and settings for the
following elements of a hardened build will be included:

- relevant subsystems - daemons - filesystems
- users and groups - password settings - file permissions
- privileged account access - auditing and accounting

Whilst a build policy may have a lot in common with system hardening
instructions, the main difference is that it will define a baseline system state; the
standards by which all servers must be built.

<
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

There are, of course, many different uses to which a production server may be
put. Depending on their application, the baseline build of a server may differ.

For example, the build of an Internet-facing web server will clearly bear little
relation to that of an internal data server. In order to understand the environment
an administrator oversees, it will often be the quality and relevance of his
documentation that makes build management a less arduous task.

A documented technical system build policy can be used in such bread-and-
butter administration work as preparing a server build before it is introduced to
the production network. Similarly, the standards defined for newly built boxes
may be introduced to legacy systems that may not yet reflect the same levels of
security.

System administration is rarely as clear cut as this, of course. There will often be
circumstances where best practice cannot be followed without compromising the
systems' ability to provide service to the business. Extra ports may need to be
opened, incoming connections set up, network shares declared or additional
privileges granted to user accounts. For example, the default standard for a
hardened production server may include turning off X services. Whilst it is
possible to temporarily open X ports on a server for the duration of an Oracle
upgrade, some application administration tools — such as FileNet's Image
Services System [3] — may require X access on a permanent basis. Just as itis
important to document a standard for system builds, it is equally important to
record exceptions to the norm.

Deviations from the documented baseline configuration can introduce elements
that may be considered managed, acceptable risks depending on the
circumstances. There are often ways of minimising the risk posed by leaving
non-standard ports open, by front-ending daemons using tcp-wrappers to
minimise access to specified users or IP addresses, or by tunnelling X
communications over encrypted SSH connections. It is important to record the
differences from standard baseline settings, as this information is crucial to
understanding the strengths and weaknesses of any environment, and in defining
a baseline for that system.

A
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Implementing Standard Builds

When a technical operating system build policy has been produced, the
administrator uses this as their specification for configuring new servers before
they are released into production. The policy will also be used in scoping
hardening exercises that are carried out on legacy environments to address any
gaps in the state of older servers.

In large enterprises the volume of server builds and migrations often necessitate
the use of baselined ‘golden’ server images, or scripts that automate the
deployment of baseline servers. The use of such tools and techniques relieve
the administrator of what can be resource-hungry work, but in terms of build
management the main advantage is in the ability to deliver consistent, secured
servers to the environment.

Administrators often develop scripts, small utilities and batch files to automate
repetitive tasks. Operating system and application software, service pack
installations, patching, environment variable settings, daemon configuration,
backup and job scheduling settings, registry tweaks, ACL definition and of course
security settings defined in the build document can all be set in automated build
scripts.

To develop in-house scripts from scratch may not suit all enterprises. There are
many packages and toolkits available that provide automated deployment and
configuration facilities. These technologies include the following:

Ignite-UX For automating deployment of HPUX servers.

BladeLogic Compatible with multiple UNIX, Windows and
Linux platforms.

Veritas OpForce For rolling out consistent Windows, Solaris,
AIX and Linux builds.

ProLiant Essentials Rapid To enable automated deployment of Windows

Deployment Packs or Linux on ProLiant servers.

System Preparation (Sysprep) | Enabling automated installation of Windows

tool, and Remote Installation | Server 2003.

Services (RIS).

To illustrate the value of using tools that automate the deployment of
standardised server images, the next section briefly describes how this can be
done using Solaris Jumpstart.

7
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Automating Solaris Deployment

Automation of Solaris deployment across multiple machines is provided by
Solaris Jumpstart software. Jumpstart runs on a central server that contains
operating system and application software in addition to configuration build
scripts.

Jumpstart infrastructures are comprised of three core server components that
may be provided by one or more servers. These are the boot, profile and install
services. The boot service provides the IP addresses of the client, and
Jumpstart profile and install servers using DHCP or RARP. The profile service
provides the configuration information the install will refer to. As a minimum,
details such as system locale, time zone, terminal type, security policy, name
server and time service must be defined to enable an install to proceed without
interaction.

The Jumpstart install service provides the Jumpstart client with rules that
determine which scripts are run pre- and post- O/S installation, which profile is
used and so forth. Within the base jumpstart directory there are further
filesystem partitions that contain various categories of scripts, policies, operating
system and application software.

Jumpstart directory structure:

/jumpstart/Begin
/jumpstart/Drivers
/jumpstart/Finish
/jumpstart/OS
/jumpstart/Packages
/jumpstart/Patches
/jumpstart/Profiles
/jumpstart/Sysidcfg

The install process uses a master rules. ok [4] file that includes one or more
rules to determine how a target machine is installed and configured. Keyword
parameters in the rules file that match system attributes such as hostname,
network or machine type will determine which profile and which scripts are used
during the install. For example:

network 152.3.140.0 profiles/trusted scripts/trusted finish

Here, a host on the 152.3.140 network will install Solaris using the profile
trustedand finish the installation by executing the trusted finish script.
The finish script may be stored in the Drivers directory, which will in turn call
further finish scripts. Driver scripts are commonly used in the rules file to call the
desired start and finish scripts.

R
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The sysidcfg file used during the installation process defines all of the necessary
environmental settings such as networking details, time zone and root password
attributes.

Jumpstart Installation Process

The following six steps illustrate the procedure of installing Solaris on a client
machine using Jumpstart [5].

Boot / Install
Server

3

" JurrpStart
Profile
4) Sarver

Prafile
5

rules.ok

Name Server

Figure 3: Jumpstart Installation [6]

1. First the client is turned powered on and boots as a network install. The client
sends a RARP broadcast to determine its IP address to which the boot server
responds with the necessary network interface data.

2. Having established the network information the boot process continues,
loading the install kernel and the installs the operating system. It also
determines the network information for the designated profile server
containing a rules.ok file.

3. The sysidtool determines default information for the client in the name
service.

4. The installation software contacts the profile server and searches for an
appropriate rule in the rules.ok file for the client.

5. The rule for the client contains the name of the profile file to be used for the
installation.

6. The installation software installs Solaris on the client according to the
instructions in the profile file.

Q
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jumpstart Architecture and Security Scripts

Solaris released the Jumpstart Architecture and Security Scripts (JASS) [7]
toolkit as a means of implementing the hardening recommendations made in
security articles at the Sun BluePrints web site [8]. The JASS toolkit works in
unison with Jumpstart technology by supplementing profiles with finish scripts
that carry out best practice server hardening and baselining.

The heart of the JASS toolkit is in the Driver scripts it supplies. These scripts
called by the toolkit driver scripts are finish scripts only. The driver scripts
contribute to the hardening process by defining environment variables used
during the install, copying files to the client and defining the finish scripts that are
run.

At the core of the toolkit is the driver.run script which takes the information fed to
it from the earlier driver.init script (package mount directory, scripts directory,
JASS suffix that is used when copying off replaced files) then proceeds to verify,
commence and eventually conclude the installation process.

First, driver.run will verify the various mount points and host details defined in the
environment variables. If any fail verification the process will abort and the
installation will halt. The package, patch and any other Jumpstart filesystems
required are then mounted on the client system. Having mounted the necessary
directories, the files specified in the finish script are copied to the client. The
scripts defined in the finish driver script are then executed, the Jumpstart
filesystems unmounted and the client rebooted. Further driver scripts
config.driver, hardening.driver and secure.driver assist in the install and
hardening process by running initialisation tasks, defining the base OS install
details, hardening script used during the install.

The raison d’étre of the JASS toolkit is, after all, to assist in securing and
baselining Solaris systems. To this end, the toolkit includes a comprehensive set
of finish scripts that disable services, enable extra logging, install recommended
patches and harden file permissions. These are listed in the appendix A.

n
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Ongoing Build Maintenance

Having produced a document declaring secure build standards, and having
introduced automated methods of deploying fresh server builds that adhere to
them, it is important to ensure that the released level of security is maintained
over time.

Introducing build standards in a large environment is best approached in an
incremental manner. This is particularly true of hardening the legacy
environment, but will eventually hold true for all servers as new standards are
introduced and policies are revised. Initial build policy may only define a limited
set of basic security measures, to address vulnerabilities or weaknesses that are
trivial to resolve, for example.

When a server is released, it makes sense for it to be tested by IT security staff
who can assess build compliance and sign off new installations. Once in
production, every server will be subject to daily administration, development,
project and architectural influences. The main security drivers for changes are in
applying patches and workarounds to any vulnerability a vendor may publish.

Regular reviews and audits of system builds (often the responsibility of IT
Security or Audit staff) are worth scheduling. Should any lapse in security be
identified, remedial action may be taken to address any weakness. With
effective basic monitoring procedures, weaknesses may also be investigated and
addressed retrospectively soon after they are introduced. This iterative process
of revising and implementing standards, and ongoing compliance monitoring is

illustrated below.
ﬁ Revise Policy Standards \

Fix non-compliant servers Implement Standards on Servers

\ Monitor and Assess /

Build Compliance

Figure 4: Build Maintenance Life Cycle.

11
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Monitoring build compliance must cover all aspects of the policy that has been
put in place. Tools such as nmap can be used to check that the expected
network ports are listening. In house developed scripts can be used to report
patch levels, and other system state information. This can be a very resource
intensive and costly operation, indeed many firms opt to outsource security
monitoring to third parties [9] or introduce intrusion detection to the infrastructure.

Running vulnerability scanners against systems will merely confirm that they are
not vulnerable to known common threats, and that hosts do not exhibit the basic
weaknesses that the policy was designed to mitigate. Tools such as nmap,
Tripwire and Nessus are, along with central log monitoring, very useful additions
to the defence-in-depth strategy of any IT security procedures. In an enterprise
scale organisation it is worth investing in an enterprise scale solution for build
compliance monitoring.

ISS Security Scanner, VigilEnt Policy Center and BindView policy compliance
tools offer excellent solutions to monitoring multiple system builds to ensure that
they remain in line with policy.

Enterprise Security Manager (ESM) from Symantec is a tool in the same class.
The following section describes how ESM works in principle and gives an
indication of the value of such tools to organisations that need to maintain large
heterogeneous environments.

k)
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Build Policy Compliance Monitoring using Symantec ESM

To begin with, it is worth clarifying a few terms in relation to ESM. ESM policies
consist of a number of modules that in turn are made up of a set of related
checks. For example, there are modules that carry out checks on Password
Strength, Network Integrity, OS Patches and Account Integrity. The extent to
which a check can be tailored depends on the nature of the check. Checks that
report whether unsuccessful SU attempts are logged or whether a server has
shared folders allowing Full Control to Everyone configured may only be set on
or off. Other checks have greater granularity, from defining the maximum
number of characters in a password to listing users and groups that may log on
locally, or have the ability to take ownership of files or other directories.

In some modules, checks on specific file properties and permissions, or registry
settings, will compare values on target servers with those defined in an ESM
template. Templates are used in the Registry, File Attribute and File Watch
module checks, and to determine the patch sets installed on servers.

The configuration details of policies and registration details of agents are
contained in a proprietary database on the ESM manager server. Agent software
installed on target servers is configured to register with the manager. Console
software allows remote workstations to connect to the manager to administer
policies and templates, organise related agents into domains and view and
manipulate if necessary the results of policy runs.

A policy run can be initiated by dragging a policy onto a domain or agent. Policy
runs may also be scheduled using the scheduling functionality ESM provides.
For example, to obtain data on the state of the network settings on Windows
2000 servers, a policy run may be scheduled to run a Network Integrity module
on the Windows 2000 domain.

Creation of Revised Domains

ESM provides a number of default domains into which agents may be
categorised. These are Windows 2000, Windows NT, UNIX, NetWare/NDS, and
OpenVMS.

The creation of domains that segregate server by operating system, and by
server type in the case of the larger NT environment, allow policy runs to be
targeted more efficiently against related host populations.

12
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Creation of Revised Policies

As a build compliance tool, in order for the data to be meaningful in any
organisation, the settings on modules and checks need to reflect the standards
that ought to be in place in the server O/S configuration. The security settings
available in ESM policies detail very specific low level settings in addition to
things like password settings that can be directly transposed from the guidance in
build documentation.

Default polices are provided by ESM to get the security administrator up and
running quickly. In order for ESM monitoring to be as relevant as possible it is
worth developing an ESM policy (and associated templates) for each
documented O/S build policy.

It is important that the settings in the policies are right. It is worth investing time
in reviewing each and every check that is available is each module for each of
the main O/S environments. Where appropriate, each check should be set up
according to it's bearing to defined and published standards (documented or
otherwise). Having established the initial state of the policies, it is also worth
recording the settings in spreadsheets that include a cover sheet with version
control data, which will be maintained on an ongoing basis as a record of their
development and current status.

14
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Build Compliance Procedures.

Having configured the build compliance tool to reflect the standards that have
been implemented, the Audit and IT Security functions of an organisation can
agree compliance strategies that make the most of the tool’s features.

Full system audits can be carried out on a twice annually or quarterly basis.
Smaller, more focussed policies can be scheduled to run on a weekly or daily
basis to examine system compliance in critical areas such as listening TCP
services, open shares and changes in access privileges. Compliance tools can
be used to confirm that critical patches have been applied on all systems as
evidence that systems adhere to patch policy and are not vulnerable to the latest
threats.

They can also play a useful role in checking that audit recommendations have
been carried out. For example, a template can be developed to test that file
permissions on specific files and directories are at a prescribed level, that a file
contains a given value or that a specific file exists. The compliance check that
identifies a weakness can also be used to confirm that it has been resolved
following a fix-up change.

Escalation procedures will need to be set up so that when weaknesses and non-

compliant settings are found, they can be communicated at the appropriate level

to the relevant administration and support staff. By feeding into an organisation’s
Risk and Compliance functions, effective use of compliance monitoring tools and
techniques not only aid in identifying security weaknesses in system settings, but
crucially, are key to providing evidence that standards are being met.

Summary

There is no point in any organisation developing well-intentioned, well-informed
policies to govern the way IT infrastructure should be used and controlled,
without implementing them at all levels. Equally, there is no benefit in developing
automated systems to churn out clones of securely built servers, without putting
measures in place to ensure they remain secure post-deployment. Regardless
of the tools and technologies used in monitoring compliance, it ultimately
depends on the quality of secured systems, the relevance of the governance
controls, and the effectiveness of monitoring and escalation procedures to deliver
a secure environment.

By defining standards, with the ability to provide evidence that they are
maintained, the business will be in a sound footing from which to react to change,
regulatory demands and future threats.

15
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix A — JASS Finish Scripts

For details on the function of each of these scripts, refer to JumpStart
Architecture and Security Scripts for the Solaris Operating Environment - Part 3
By Alex Noordergraaf, [http://www.sun.com/blueprints/0900/jssec3.pdf].

Disable Finish Scripts

disable-asppp.fin
disable-autoinst.fin
disable-automount.fin
disable-core-generation.fin
disable-dmi.fin
disable-dtlogin.fin
disable-keyserv-uid-nobody.fin
disable-Ip.fin
disable-nfs-client.fin
disable-nfs-server.fin
disable-nscd-caching.fin
disable-power-mgmt.fin
disable-preserve.fin
disable-remote-root-login.fin
disable-rlogin-rhosts.fin
disable-rpc.fin
disable-sendmail.fin
disable-slp.fin
disable-snmp.fin
disable-spc.fin
disable-syslogd-listen.fin
disable-system-accounts.fin
disable-uucp.fin

Enable Finish Scripts

enable-32bit-kernel.fin
enable-bsm.fin
enable-ftp-syslog.fin
enable-inetd-syslog.fin
enable-priv-nfs-ports.fin
enable-rfc1948.fin
enable-stack-protection.fin

14
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Install Finish Scripts

install-at-allow.fin
install-cron-allow.fin
install-fix-modes.fin
install-loginlog.fin
install-newaliases.fin
install-openssh.fin
install-recommended-patches.fin
install-security-mode.fin
install-strong-permissions.fin
install-sulog.fin

Minimize Finish Script
minimize-iplanet-enterprise-server.fin
Remove Finish Script
remove-unneeded-accounts.fin

Set Finish Scripts

set-login-retries.fin
set-rmmount-nosuid.fin
set-root-password.fin
set-system-umask.fin
set-term-type.fin
set-tmpfs-limit.fin
set-user-password-regs.fin
set-user-umask.fin

Update Finish Scripts
update-at-deny.fin

update-cron-deny.fin
update-inetd-conf.fin

17
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

References

[1] Lemos, Robert. “Decoding the lessons of Slammer” 4 March 2003.
http://news.com.com/2008-1082-990757.html

[2] The Information Security Policies and Standards Group.
URL: http://www.information-security-policies-and-standards.com/

[3] FileNet Image Manager — product literature.
URL: http://www.filenet.com/English/Products/Datasheets/023250005.pdf

[4] Duke University Computer Science Department.
“‘Duke Sysadmins Talk: Solaris Jumpstart.” 6 July 2001.
URL: http://www.cs.duke.edu/~braun/jumpstart/rules2.html

[5] Dubrawsky, Ido.
“Jumpstart for Solaris Systems, Part One”. 12 March 2001.
URL: http://www.securityfocus.com/infocus/1383

[6] Kasper, Paul Anthony & McClellan, Alan L.
Automating Solaris Installations. Prentice Hall / SunSoft Press, 1995.

[7] Sun Microsystems, Inc. “Solaris Security Toolkit (JASS).”
URL: http://wwws.sun.com/software/security/jass/

[8] Sun Blueprints Online. June 1999 - January 2004.
URL: http://www.sun.com/blueprints/browsesubject.html#security

[9] Faile, Jonathan S. “Security Outsourcing.” 25 August 2001.
URL: http://www.sans.org/rr/papers/index.php?id=223

1R
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

