
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

M. Stuart Perkins
February 01, 2004
GSEC Practical Assignment, v. 1.0 (Initial Release)

Design From a Distance:

An Introduction to Security Design Patterns

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 2

TABLE OF CONTENTS

1. Abstract…………………………………………………………….3
2. Problem Statement…………………………………………………3
3. Introduction to Design Patterns……..………………………….….4

a. Design From a Distance (The Value of Patterns)…………...4
b. A Definition of Design Patterns…………………………….5
c. A Pattern Language………………………………………….6

4. The Enclave Pattern…...…………….……………………………..7
5. Security Patterns…………………………………………………...9

a. Overview of Security Patterns………………………………9
b. Build From the Ground Up………………………………….10
c. Separate Security Layer……………………………………..12

6. Conclusion: The Design From A Distance Pattern……..………….14

References……………………………………………………………..16

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 3

Abstract

 Recent studies have shown that human error is the number one cause
of security breaches resulting in real or serious harm to major corporate
networks. Companies do not have the time or resources to train their entire
IT staff to the level of technical competency of a certified security
professional, and yet, the average IT professional is responsible for the
security of the networks on which they operate and the software that they
write. What is needed is a way to capture the knowledge and experience of
professionals and make it available to everyone in a language that does not
obfuscate principles with industry lingo and technical detail.
 Design patterns provide just such a language. They describe generic
approaches to solving recurrent problems that are not tied to any particular
language or implementation. The use of design patterns can help a software
developer or security professional avoid costly mistakes, save time on
design, and think through a problem on an abstract level.
 This paper introduces the Design Patterns methodology, and presents
several basic security patterns, including a pattern that acts as a foundation
for the design of any security system, the Design From A Distance pattern.

Problem Statement

In 2003, the Computing Technology Industry Association (CompTIA)

commissioned a study on the state of network security within major
corporations. Matthew Poyiadgi, a regional director for the association
found the results “pretty staggering” [Sturg03]. According to an article by
Will Sturgeon on ZDNet, March 2003, “Human Error in the workplace still
poses the single largest threat to corporate networks, with a lack of training
being blamed for a problem which businesses should have overcome long
ago.”

The findings of the study indicate that technology alone is not sufficient
for securing a network against today’s sophisticated attacks. It is becoming
more important than ever for companies to maintain a security-conscious
staff. More than two thirds of the companies polled claimed that only a
quarter of their staff is trained on security issues [Sturg03]. Obviously, not
everyone can become a certified security expert, certainly not on the
company’s time (or the company’s dime), but every IT professional must
understand fundamental security principles, because as demand for security

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 4

experts outgrows the supply, management will depend more on the rest of
their IT staff to keep their networks safe. Imagine this scenario:

You are a software developer. You’ve worked for your company for quite a few

years and have gained the respect of senior management as one who is trustworthy,
competent, and able to rise to any challenge. Due to budget cutbacks, and disappointing
revenue projections, your company must scale back its payroll. They lay off the entire
systems administration staff at your office and ask you to take over the responsibility of
network security as a collateral duty.

It may sound unlikely, but it happened to a friend of mine just recently.

How does one who has no background in network security begin to plan a
security policy for a large, distributed corporate network? Fortunately, when
you strip a good security policy of industry-specific semantics, and remove
all references to specific tools or implementations, what remain are axioms
and principles that would make good sense to anyone. Therefore, the first
rule of thumb to planning a network security policy, for the non-expert, is to
separate the design from the details, or in other words, design from a
distance.

Introduction to Design Patterns

Design from a Distance (The Value of Patterns)

There has been a lot of hype about Design Patterns in recent years,

especially among software engineers. Even more recently, organizations
like the Open Group(www.opengroup.org) have begun applying the Design
Patterns methodology to security systems [Open Group]. Strangely, even
some of the loudest advocates of Patterns would have a hard time describing
what they are and why they’re useful.

So why are they useful, anyway? Imagine you’re taking a hot-air balloon
ride. When you first climb into the bucket, you look down. You see blades
of grass, the occasional wildflower tossed in. If you were an avid gardener,
perhaps you could even pick out the different types of grass there. As the
balloon begins to rise the blades of grass become more numerous as your
field of vision grows larger. Eventually, you can no longer think of the
individual blades, only that together they make a field. Other objects come
into view. Trees become forests. Houses become towns. As your mind
receives more input, it finds ways to group objects together so that it can

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 5

catalog them more easily. As you distance yourself from a problem you can
see the big picture, and think about what the forces, components, and
interactions are which define the problem on an abstract level.

This is the primary advantage of patterns, and it explains why they were
such a success when introduced to the software design world in the early
1990s. By that time, software had become extremely complex and
development lifecycles were getting longer. Developers were spending too
much time in the details, and often these details were the same solutions to
the same problems that had already been faced and solved a million times.
Patterns made it possible for common problem/solution pairs to be
identified, labeled, and categorized, completely independent of language or
implementation, so that developers could think through the design without
worrying about the details.

After the Internet explosion in the late 1990s, the complexity of
networks, and therefore network security, began to grow at an exponential
rate, so, naturally, the security community has begun to adopt a pattern-
based approach to securing large, complicated networks.

A Definition of Design Patterns

It is important to note, before continuing any further, that the key word in
any discussion of Design Patterns is abstraction. Patterns are not meant to be
solutions, rather, approaches to solutions. They are independent of any
language or implementation. Consider the following definition by
Christopher Alexander, author of The Timeless Way of Building.

Each pattern describes a problem which occurs over and over again in our

environment, then describes the core of the solution to that problem, in such a
way that you can use this solution a million times over, without ever doing it the
same way twice. [Alexander79]

If it seems vague, that is because it was meant to. The first step to

understanding Patterns is to separate oneself from the details. (Remember,
design from a distance.) Alexander was speaking in the context of buildings
and bridges but the same applies to network security [Hohmann03]. The
knowledge and experience that is essential to the career of a security
professional has nothing to do with syntax or semantics, but the larger
conceptual constructs that are implemented using that syntax[GoF94]. For

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 6

example, which is more valuable to a DBA, knowledge of MySQL or
knowledge of relational database concepts?

A Pattern Language

There are four essential elements to a pattern [OG02]:

1. name – This is arguably the most important part, even though it’s
the shortest. The name should effectively describe the usefulness
of the pattern in a few words. It should be memorable so that it
can be easily called to mind.

2. problem – This may be one problem or a system of problems that
the pattern addresses. It can be complicated, but the idea is to
describe, in generic terms, the rationale behind the pattern.

3. solution – The solution portion of the pattern should be “specific
but flexible”[OG02]. It is important that this solution doesn’t bind
to any language, tool, or procedure. It should just describe the
elements and interactions among the elements of a typical solution.

4. consequences – This section should list the trade-offs among
competing forces when using this pattern.

These four basic elements represent the core of a good pattern;

however, most pattern languages offer a much more restrictive format or
template [Kienzle02]. The elements of a pattern may be represented using
graphs, use cases, UML diagrams, or text. Often, the problem and solution
sections are broken up into several subsections such as intent, motivation,
and applicability. A well-written pattern is thorough, addressing all relevant
aspects of the problem domain, and conveys practical experience [GoF94].
There should be examples cited of how this pattern has been useful in the
past. In the case of software design patterns, there may even be sample code
as an example of how the pattern might be implemented for a specific
language.

There are many variations on the pattern template set forth by the
Gang of Four (GoF) in their book, Design Patterns. The one used in this
paper is based on that one, but with a few elements removed for simplicity’s
sake, and the one element added. The template looks like this:

Name: the pattern name
Alias: the set of alternate names for this pattern
Intent: a short description of the purpose of the pattern

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 7

Motivation: a description of the problem domain, with the intent of showing
the need for this pattern. Often this will explain how this pattern addresses a
fundamental security principle.
Principles: there are some security axioms that have been floating around
since the mid 1970s (possibly longer) that form a foundation for good
design. The principles addressed by this pattern should be listed here.
Applicability: description of the cases in which this pattern is useful
Forces: the set of forces that describe the way the system should work or
behave and that may effect the implementation
Solution: a description of how to approach the problem. This should
include implementation caveats, practical examples, and diagrams if
applicable. This section tends to be lengthy.
Consequences: the trade-offs among competing forces
Related Patterns: other patterns that may be used in conjunction with this
pattern or in its place

The Enclave Pattern

 The following security pattern forms a foundation for thinking about
securing a network. It is a simple reminder of what a secure or protected
system really is, on an abstract level. Notice the use of non-technical
language to describe the forces involved. Essentially, there are resources
that must be protected, a resource manager that has access to these
resources, a protected place or enclave in which these resources reside, an
access policy which dictates who can and who cannot access the protected
resources, and a guard who is responsible for enforcing that policy [OG02].

Name:

Enclave
Alias:

Reference Monitor
Protected System

Intent:
Structure a system so that all access by clients to resources is

mediated by a guard which enforces a security policy.
Motivation:

Some systems contain resources that must be protected. The owner of
the system depends on the confidentiality, integrity, and availability of the
resources on that system. If any one of these aspects for any one resource is

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 8

compromised, the system itself is considered to be compromised, and all
resources within it, suspect.
Principles:

Compartmentalize
Applicability:

Use this pattern whenever you want to control access to a system
through a single access point using a guard mechanism to enforce an access
policy.
Forces:

• Client or Requestor
o Submits entry request to the Guard

• Guard
o Mediates all requests for entry using an Access Policy
o Grants access to Clients that are accepted by the Access Policy
o Denies access to Clients that are not accepted by the Access

Policy
o Cannot by bypassed

• Resource Manager
o Services requests to access protected resources for Clients that

have been allowed in by the Guard
• Access Policy

o A rule set by which requests from Clients are validated
o The access policy must be allowed to change without effecting

other system forces
• Access Point

o A single point at which the Guard protects the system
o The system has one and only one Access Point

Solution:
 The trick is ensuring that the system’s Guard is non-bypassable. A
firewall, for example, may technically be bypassable if users within the
network can hook up a modem and access the internet through their ISP. In
order to make the firewall non-bypassable, the network administrator can
institute and enforce a strict policy against modems behind the firewall using
tools like Phone Sweep (available at www.sandstorm.net). Other methods of
bypassing firewalls include peer-to-peer file sharing with tools like Gnutella,
which takes advantage of the fact that a typical firewall configuration will
not prevent a node inside the network from initiating a connection outside.
 In the case of a software application, the Guard may receive some
input like a password directly from the user. In this case, it is imperative that

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 9

the Guard is not “corruptible” in the sense that it could be bypassed by
malicious data passed in by the user. A data-poisoning attack may be used
to take advantage of a Guard’s inability to deal with invalid inputs. Such
data may result in a buffer overflow, allowing malicious code to be run
within the protected system. Such vulnerabilities can often be avoided by
vigilant programming.
Consequences:

Resources are isolated
Loose coupling among forces [OG02].

- Notice that if the Guard mechanism or Access Policy
changes, no other forces are affected

Degrades Performance
- It’s a fact of life. Whenever you put an authentication

mechanism between clients and data, the request cycle
slows down, sometimes dramatically.

Related Patterns:
 GoF defines this pattern as a “Protection Proxy” because it describes
the mediation of requests for services by a Guard [GoF94].

Security Patterns

Overview Of Security Patterns

 Security patterns provide the following advantages according to
Schumacher [Schumacher01].

1. Beginners gain the power of expert experience
2. Problems and solutions can be identified and paired more efficiently
3. Problems are approached in a structured way
4. Dependencies of forces can be discovered and handled appropriately.

The example given above is a simple one but illustrates the power of

approaching a problem in a structured way. The discussion of a protected
network as a system of forces brings to light an important design element:
The Guard is separate from the Access Policy. This allows the Guard to be
swapped out easily if it is determined that it is bypassable or if it fails in
some way. Consider modern Windows security. The Kerberos protocol acts
as the single entry point, or Guard, to the domain controller, but may be

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 10

swapped out and replaced by NTLM for backward compatibility without
affecting the rest of the system.

Enclave is an example of an entity pattern, one of three types of security
patterns that work together to provide a useful system of patterns. Other
types of patterns include structural and procedural patterns. They are
defined below along with some examples. They all address one or more of
the security principles first outlined by Saltzer and Schroeder in 1975
[Saltzer75], a few of which are listed here.

1. Secure the weakest link
2. Practice Defense in Depth
3. Fail Securely
4. Follow the Principle of Least Privilege
5. Compartmentalize
6. Keep it Simple

Structural patterns are definitions of key system design concepts that

describe correct usage of pre-defined entity patterns. They tend to be
hierarchical, in that more complex structures can be broken down into
simpler structures. Structural patterns are formulated such that their
implementations are actual “products” that can be deployed. Some
examples of structural patterns are Trusted Proxy and Separate Security
Layer.

Procedural patterns use structural patterns to define an approach to a
problem. The difference is often in the wording. A procedural pattern name
will be some imperative. If the word “Do” in front of a pattern name makes
sense, it is a procedural pattern. An example of a procedural pattern is Build
From the Ground Up [Kienzle02].

The Build From the Ground Up Pattern

Build From the Ground Up

Name:

Build From the Ground Up
Alias:

Start From Scratch
Know Your System

Intent:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 11

To ensure that the owners and maintainers of a secure system
understand how their system works.
Motivation:

Software application loopholes tend to be the most readily exploited
vulnerability on a network [Yoder97]. Often, the network administrators are
unaware of the loopholes. A complex system is dangerous because it is
difficult to monitor the weak links. It becomes impossible if the system
architects don’t even know that those weak links exist. If a system must be
complex, which it often must be in order to support business needs, then it is
imperative that the architects know every service that is running, every piece
of hardware attached, every application, every protocol, every open port, and
every way in and out of the system.
Principles:
 Secure the Weakest Link
 Keep It Simple
 Principle of Least Privilege
Applicability:

Follow this pattern when you are building a new network, or
overhauling an existing one with new hardware or software, particularly
when migrating to a new operating system or hardware platform.
Forces:

• Attacker
o He wants into your system. He will often know more about the

security signatures of the hardware and software that you’re
running than you do.

• Enclave
o The protected system you maintain or are attempting to build.

This pattern inherits the Enclave pattern’s forces. The elements
of the enclave (Guard, Access Policy, etc) represent the
software that will govern your system.

• A complex system is more difficult to secure
• Operating System and Server software is often rolled out with a

default implementation that works right out of the box.
Solution:
 The solution has four parts [Yoder97].

1. Understand the default implementation. A lot of operating systems
and web servers are designed to work right out of the box with
minimal configuration on the part of the user. This is mighty
convenient unless you are at all concerned with security. That isn’t to
say that you should never use the default plug-and-play settings. Just

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 12

know what they are. A good example of this is building a Red Hat
Linux server. The graphical tool provided is extraordinary. It allows
you to disable or enable options in groups or individually. The
shocking thing is just how much is enabled by default.

2. Simplify the configuration. Don’t allow yourself to be overwhelmed
by the configuration options. You may find yourself selecting options
you don’t even understand, simply out of frustration. There are two
keys. First, let the problem domain dictate your actions. Focus on the
settings that you know you need in order to meet your design
objectives. Second, document everything. Keep a record of all the
software you install, including version numbers, support and
download web addresses, and the date you installed it. That way,
when you go to rebuild a system you won’t become overwhelmed.

3. Remove any services that you do not need. The less you have running
on your server, the less you have to keep track of.

4. Investigate vulnerabilities that may be built into your software. Keep
track of security-related news, particularly for the software that you
use. Subscribe to mailing lists from the relevant vendors for this
purpose. Visit http://www.sans.org/newsletters/ for current security
news. “Keep it simple” will only get you so far. There comes a point
when you just have to know the code.

Consequences:
• Makes for a longer time to market. It will take a lot of time up front,

especially if you are just learning the ins and outs of the hardware and
software you use to implement.

• You will save time in the long run if you don’t have to constantly
keep track of vulnerabilities in software and services that you don’t
use.

Related Patterns:
The Enclave Pattern is the net result of a successful implementation of

this pattern.

The Separate Security Layer Pattern

Separate Security Layer

Name:

Separate Security Layer
Alias:

Bottom Up Security

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 13

Intent:
Ensuring that an application’s security mechanisms are not

undermined by an insecure framework, and providing a loose coupling
between application and security.
Motivation:
 Security is an aspect of any software system that needs to be flexible
and able to change with the times. Applications that provide their own
security mechanisms are difficult to maintain. If the security
implementation turns out to be faulty, the whole application must be
refactored. New applications take much longer to write because they too
must implement some security. Often, security will be implemented the
same way in each new application. This is especially the case in the web
domain. This redundancy can lead to the duplication of errors, and can be a
maintenance nightmare.
 Furthermore, sensitive authentication data, like passwords, is only as
safe as the application is, and often, applications are not designed with
security in mind.
Principles:
 Defense In Depth
 Secure the Weakest Link
Applicability:
 Use this pattern when you are designing a suite of software
applications that need to share a security implementation, or if you intend to
write the security implementation upon which some applications may run.
This pattern allows you to move forward with design even before the details
of your security implementation are nailed down if you consider security
functionality to be a hinge point or area of design that will likely change.
Forces:

• Framework
o The foundation upon which your application is built

• Application
• An application that interacts with low-level security mechanisms is

difficult to debug and impossible to transport.
• Interfacing with an external security solution is not always possible

Solution:
 Use the security mechanisms provided by your application
framework. If there isn’t one, design one separate from your applications
that can run underneath them. Often a database will be involved in your
security implementation to store login ids and passwords, roles, etc. Your
applications should never interact directly with the security database.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 14

Instead, your security framework should do it and provide a separate
connection to your applications, wherein the application requests
authentication through the security layer.
 On a smaller system, the same database that is used for application
data is used for security. This is okay, but you should always design your
security system as if it had its own database. Using the same connection
mechanism for your security layer that is used by your applications causes
an unnecessary coupling between the systems. Provide a distinct connection
mechanism for your security layer [Probst02].
Consequences:

o Any new application developed can hook into an existing security
framework

o Old applications must be refactored with security-related code
removed.

o Your security framework will become a single point of failure for all
your applications (so make sure it’s secure).

Related Patterns:
 The Distinct Connection mini-pattern [Probst02] supports the
decoupling of security implementation from applications.

Conclusion: The Design From a Distance Pattern

 A good design starts with principles and objectives. Its purpose never
strays from the adherence to those principles, nor from the fulfillment of
those objectives. It’s easy to become distracted by the sheer volume of
information and tools available to the security professional, but the most
valuable tool that you’ll ever have is a mind that can identify patterns in
chaos, and overcome complexity by abstraction. Remember, the Devil’s in
the details, so always design from a distance.

Design From a Distance

Name:

Design From a Distance
Alias:

None
Intent:
 Separating the design criteria from the details of the implementation
Motivation:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 15

 Today’s corporate systems are complex. The human mind was not
designed to track the quantity of details that must be tracked in order to
securely maintain these large systems. That’s why the human mind
instinctively groups objects together and seeks patterns in chaos.
Principles:
 Keep it Simple
 Compartmentalize
Applicability:
 Use this pattern whenever you begin to feel overwhelmed by the task
of designing and implementing a security policy for your network or system.
Forces:

o The human mind is limited in the number of details it can track
o Abstract problem and solution pairs tend to be recurrent across all

operating systems, languages, and applications.
o Every complicated information security paradigm has a real-world

analogy.
Solution:
 In information security, the beginning of wisdom is to know what you
do not know. Design patterns are the result of many years of mistakes and
successes. They capture the experience and knowledge of the best in the
industry. If you are just getting started, there is no need to get wrapped up in
the gory details. Pattern catalogs are the playbooks of the experts. Use
them.
 Let the problem domain dictate your course of action [Hohm03]. In
other words don’t “goldplate.” Keep your solution as simple as it can be
while meeting the requirements. Also, your organization should have an
understanding of the real value of the assets you are protecting. In some
cases, cost-benefit analysis will prevent unneeded expense in developing a
security solution. Security design without assessment of the business value
is an anti-pattern that should be avoided [Miroslav02].
 Keep an eye on the big picture. The most complicated system is
always just a system of patterns. Learn to recognize them. They may
overlap. In fact a good patterns should overlap according to Alexander, the
Father of Design Patterns [Alexander79].
 If you are an IT professional, your knowledge of security will be
tested. It is inevitable. Fortunately, when it is, you can stand on the
shoulders of giants, and be confident that the solutions you recommend are
effective ones. Patterns make it possible.
Consequences:

o Avoid burnout

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 16

o Avoid costly mistakes that have already been made and documented a
million times

Related Patterns:
 All patterns are related in that this pattern acts as a guide for
implementing security patterns in general.

List of References

[Alexander79] Alexander, C. The Timeless Way of Building. Oxford
University Press, 1979.

[GoF94] Gamma, E., R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
1994.

[Hillside] Hillside.net: Your Patterns Library,
http://www.hillside.net/patterns

[Hohmann03] Hohmann, Luke, Beyond Software Architecture, Addison-
Wesley, 2003.

[Kienzle02] Kienzle, Darrell, Ph.D and Matthew Elder Ph.D., Security
Patterns For Web Application Development, 2002,
http://www.scrypt.net/~celer/securitypatterns/ final report.pdf

[Miroslav02] Miroslav Kis, Ph.D., Information Security Antipatterns in
Software Requirements Engineering, 2002,
jerry.cs.uiuc.edu/~plop/plop2002/ final/mkis_plop_2002.pdf

[OG] The Open Group, http://www.opengroup.org

[OG02] The Open Group. Guide to Security Patterns.
http://www.opengroup.org/security/gsp.htm, 2002.

[Probst02] Probst, Stefan, Reusable Components for Developing Security
Aware Applications, 2002, http://www.acsac.org/2002/papers/88.pdf

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 17

[Saltzer75] Saltzer, Jerome and Michael Schroeder, The Protection of
Information in Computer Systems, 1975,
http://www.cs.virginia.edu/~evans/cs551/saltzer/

[Schumacher01] Schumacher, M. and U. Roedig. Security Engineering with
Patterns, Monticello, IL, 2001.

[SecPat] Security Patterns Homepage, http://www.securitypatterns.org/

[Sturgeon03] Sturgeon, Will, “What’s the Biggest Threat to Your
Network?”, 2003,
http://www.zdnet.com.au/news/business/0,39023166,20273295,00.htm

[Yoder97] Yoder, J. and J. Barcalow, Architectural Patterns for Enabling
Application Security, 1997,
http://www.joeyoder.com/papers/patterns/Security/appsec.pdf

