
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Elliptic Curve Cryptography and Smart Cards

AHMAD KHALED M. AL-KAYALI

17 February, 2004
GIAC Security Essentials Certification (GSEC)
Practical Assignment Version 1.4b, Option 1

ABSTRACT

Elliptic curve cryptosystems (ECCs) are becoming more popular because of the
reduced number of key bits required in comparison to other cryptosystems (for example,
a 160 bit ECC has roughly the same security strength as 1024 bit RSA). In addition,
ECC satisfies smart cards requirements in terms of memory, processing and cost. In
this report, I will present a background on ECC including the basics and some ECC
techniques. Then, I will talk about smart cards, their constraints and ECC
implementation options.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 2

TABLE OF CONTENTS

TABLE OF CONTENTS ... 2
1. INTRODUCTION... 3
2. SOME CRYPTOGRAPHY CONCEPTS ... 3

CRYPTOGRAPHIC GOALS .. 3
TYPES OF CRYPTOGRAPHY.. 3

3. ELLIPTIC CURVE THEORY ... 4
ELLIPTIC CURVES OVER FINITE FIELDS ... 4
ELLIPTIC CURVES OVER GF(P) ... 5
ELLIPTIC CURVES OVER GF(2K) .. 6

4. ELLIPTEC CURVE CRYPTOGRAPHY .. 7
ELLIPTIC CURVE DIFFIE-HELLMAN KEY EXCHANGE ... 7
ELLIPTIC CURVE ENCRYPTION/DECRYPTION .. 8
ELLIPTIC CURVE DIGITAL SIGNATURE ALGORITHM (ECDSA).. 8

5. SMART CARDS AND ECC ... 9
SMART CARD TYPES ... 10
HOW ECC FITS SMART CARDS .. 10
ECC IMPLEMENTATION CHOICES FOR SMART CARDS .. 11

6. CONCLUSION.. 12
REFERENCES... 13

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 3

1. INTRODUCTION
In 1985 Niel Koblitz and Victor Miller proposed the Elliptic Curve Cryptosystem (ECC)
[8]. ECC is basically a method based on the Discrete Logarithm Problem over the points
on an elliptic curve. Since that time, ECC has received considerable attention from
mathematicians around the world, and no significant weaknesses in the algorithm have
been demonstrated. Although there are still some doubts in the reliability of this method,
several encryption techniques have been developed recently using these properties.

Whenever the cryptographic problem appears so difficult to crack or break, it means
that key sizes can be reduced in size considerably especially when compared to the key
size used by other cryptosystems [8]. This made ECC a challenge to the RSA, one of
the most popular public-key methods known. ECC is showing to offer equivalent
security to RSA but with much smaller key size.

ECC not only permits the reduction of the key size and, but also ECC is able to do
operations very fast. In addition, processing power can be reduced in ECC. All those
features allow ECC to be a convenient environment for smart cards.

2. SOME CRYPTOGRAPHY CONCEPTS
Cryptographic Goals
Generally, a good cryptography scheme must satisfy a combination of four different
goals [2]:

• Authentication: Allowing the recipient of information to determine its origin, that is,

to confirm the sender's identity. This can be done through
something you know or you have. Typically provided by digital
signature.

• Nonrepudiation: Ensuring that a party to a communication cannot deny the
authenticity of their signature on a document or the sending of a
message that they originated. Typically provided by digital
signature.

• Data integrity: A condition in which data has not been altered or destroyed in an
unauthorized manner. Typically provided by digital signature.

• Confidentiality: Keeping the data involved in an electronic transaction private.
Typically provided by encryption.

Types of Cryptography
There are two main types of cryptography. Those are public-key and symmetric-key.
Public-key is a form of cryptography in which two digital keys are generated, one is
private, which must not be known to another user, and one is public, which may be
made available in public. These keys are used for either encrypting or signing
messages. The public-key is used to encrypt a message and the private-key is used to
decrypt the message. However, in another scenario, the private-key is used to sign a

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 4

message and the public-key is used to verify the signature. The two keys are related by
a hard one-way (irreversible) function, so it is computationally infeasible to determine
the private key from the public key. Since the security of the private key is critical to the
security of the cryptosystem, it is very important to keep the private key secret. This
public-key system has the problem of being slow. On the other hand, the system has
powerful key management and, even more importantly, public-key cryptography has the
ability to implement digital signatures in an efficient way.

However, symmetric-key is a form of cryptography in which two parties that want to
communicate can share a common and secret key. Each party must trust the other not
to tell the common key to anyone else. This system has the advantage of encrypting
large amount of data efficiently. However, the problem rises when it comes to key
management over large number of users. [1]

3. ELLIPTIC CURVE THEORY
Elliptic curves are known so because they are described by cubic equations, similar to
those used in ellipsis calculations. The general form for elliptic curve equation is [6]:

y2 + axy + by = x3 + cx2 + dx + e

Figure 1 shows a graph drawn by a tool1 available at Certicom (www.certicom.com) of
some elliptic curve.

Figure 1: Elliptic curve for the equation y2= x3 -6x + 10

Elliptic Curves over Finite Fields
A finite field is a set of elements that have a finite order (number of elements). The order
of Galois Field (GF) is normally a prime number or a power of a prime number. There
are many ways of representing the elements of the finite field. Some representations
may lead to more efficient implementations of the field arithmetic in hardware or in
software. The elliptic curve arithmetic is more or less complex depending on the finite
field where the elliptic curve is applied. GF(2k) and GF(p) are considered in this report

1 http://www.certicom.com/content/live/resources/ecc_tutorial/ecc_javaCurve.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 5

because of their popularity in ECC. In fact, there are no security or standardization
differences exist between the two types. However, performance and cost differences
can arise when a smart card application is to be implemented as will be shown later in
this report. [1,10]

Elliptic Curves over GF(p)
An elliptic curve over GF(p) , where p is a prime, can be defined as the points (x, y)
satisfying the elliptic curve equation:

y2 = x3 + ax + b (mod p)

Where 4a3 + 27b2 ≠ 0 (mod p) and x, y, a, b ∈ GF(p).

In addition to the points satisfying the curve equation E, a point at infinity,ϕ , is also
defined. With a suitable definition of addition and doubling of points, this enables the
points of an elliptic curve to form a group with addition and doubling of points being the
group operation, and the point at infinity being the identi ty element.

In order to achieve an efficient implementation of elliptic curves, firstly field arithmetic
(modular addition, subtraction, multiplication and inversion) must be available. These
operations are then used in the algorithms for addition and doubling of points.

The addition of two different points on the elliptic curve is computed as shown below [9]:

 (x1 , y1) + (x2 , y2) = (x3 , y3) ; where x1 ≠ x2

λ = (y2 – y1)/(x2 – x1)
x3 = λ2 – x1 – x2

y3 = λ(x1 – x3) – y1

Figure 2 shows how two points can be added graphically on the elliptic curve. Assume
that P and Q are two distinct points on the elliptic curve E. Since we are intersecting a
line with a cubic curve, the straight line joining P and Q must intersect through a third
point on the curve; we will call it -R. If we reflect the point –R in the x-axis, we will get
another point called R, where R = P+Q.

Figure 2: Two-point addition (R=P+Q) operation over elliptic curve

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 6

The addition of a point to itself (doubling a point) on the elliptic curve is computed as
shown below [9]:

 (x1 , y1) + (x1 , y1) = (x3 , y3) ; where x1 ≠ 0

λ = (3(x1)2 + a) /(2y1)
x3 = λ2 – 2x1

y3 = λ(x1 – x3) – y1

Figure 3 shows how a point can be doubled graphically on the elliptic curve. Assume we
want to double a point P on the elliptic curve. We take the tangent line to the curve and
passing by P. The line must intersect the curve through another point; we will call it -R.
Again, we reflect the point –R in the x-axis to the point R where R=2P.

Figure 3: Point doubling (R=2P) operation over elliptic curve

Elliptic Curves over GF(2k)
GF(2k) is called a characteristic two field or a binary finite field. It can be viewed as a
vector space of dimension k over the field GF(2) that consists of the elements 0 and 1.
To clarify, there exist k elements (x0 , x1 , x2 . . . , xk-1) in GF(2k) such that each element
x∈GF(2k) can be uniquely written in the form:

x = a0 x0 + a1x1 . . . + ak-1xk-1
Where ai∈GF(2).

Such a set {x0 , x1 , x2 . . . , xk-1} is called a basis of GF(2k) over GF(2). Given such a
basis, a field element x can be represented as the bit string (a0 a1 . . . ak-1). Performing
addition of any field elements can be achieved easily by bit-wise XOR-ing the vector
representations of the elements. The multiplication rule depends on the selected basis.
GF(2k) over GF(2) has many different bases. Some bases lead to more efficient
implementations of the arithmetic in GF(2k) than other bases. The most popular two
bases used are the polynomial and the normal bases. Since elements in one basis
representation can be efficiently converted to elements in the other basis representation
by using an appropriate change-of-basis matrix, interoperability between systems using
the two different types of field representation can be achieved easily. The elliptic curve
equation over GF(2k) is:

y2 + xy = x3 + ax2 + b
Where x, y, a, b ∈ GF(2k) and b ≠ 0.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 7

The addition of two different points on the elliptic curve is computed as shown below [9]:
(x1 , y1) + (x2 , y2) = (x3 , y3) ; where x1 ≠ x2

λ = (y2 + y1)/(x2 + x1)
x3 = λ2 + λ + x1 + x2 + a
y3 = λ(x1 + x3) + x3 + y1

The addition of a point to itself (Doubling a point) on the elliptic curve is computed as
shown below [9]:

 (x1 , y1) + (x1 , y1) = (x3 , y3) ; where x1 ≠ 0

λ = x1
 + (y1)/(x1)

x3 = λ2 + λ + a

y3 = (x1)2 + (λ + 1) x3

4. ELLIPTEC CURVE CRYPTOGRAPHY
The point addition in elliptic curves is the basic operation to make it used in
cryptography. Calculating the point k(x, y) from (x, y) is feasible to figure. k(x, y) can be
computed by repeated point additions such as [8]:

),(),(...),(),(yxkyxyxyx
timesk

×=+++
4444 34444 21

Where k ∈N and (x, y) is a point on the elliptic curve.

However, it is very hard to determine the value of k knowing the two points: k(x, y) and
(x, y). This leads to the definition of Elliptic Curve Logarithm Problem (ECDLP), which is
defined as: Let E be an elliptic curve defined over a finite field, and let P be a point
(called base point) on E of order n. Given Q as another point on E, the Elliptic Curve
Discrete Logarithm Problem (ECDLP) is to find the integer l, 10 −≤≤ nl , such that:

Q = lP.

This property leads to several algorithms for cryptography. Some of these techniques
will be introduced in the following subsections.

Elliptic Curve Diffie-Hellman Key Exchange
Symmetric-key (also known as secret-key) cryptosystems are normally used for
encryption/decryption purposes, because it is faster than public-key cryptosystems.
Symmetric-key cryptosystems requires a secret key to be agreed upon before the
cryptographic process starts. This agreement can be performed by Diffie-Hellman key
exchange technique on which elliptic curve idea can be applied. The elliptic curve Diffie-
Hellman key exchange method is described by the following example.

Suppose that users A and B want to agree upon a secret key, which will be used for
secret key cryptography. Users A and B choose a finite field, GF(p) for example, and an
elliptic curve E is defined over this field. They also construct a randomly chosen point

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 8

(x, y) lying on the elliptic curve E. We will refer to (x, y) as the base point of the
cryptosystem. The finite field, the elliptic curve, and the base point are all to be known
publicly.

User A then randomly chooses a large integer a∈ GF(p) and keeps a secret. User A
now computes the point a(x, y) which will lie on E. User B does the same: B randomly
chooses a large integer b and computes b(x, y). Both A and B make a(x, y) and b(x, y)
publicly known [8]. In other words, these act as public keys. The secret key that A and B
use to encrypt messages sent to each other is ab(x, y)•, which both A and B can
compute. User A knows a and b(x ,y), and so can find ab(x, y). Whereas, B knows b
and a(x, y), and so can find ab(x, y). The security of this system lies in the fact that a
third party C, for example, knows only a(x, y) and b(x, y), and unless C can solve the
elliptic curve discrete logarithm problem there is no efficient way to break the
encryption.

Elliptic Curve Encryption/Decryption
There are many ways to apply elliptic curves for encryption/decryption purposes. A
simple method will be introduced here to give the flavor of elliptic curve
encryption/decryption techniques. Assume working with GF(p) finite field and an elliptic
curve E. The users randomly chose a base point (x, y), lying on the elliptic curve E. The
plaintext (the original message to be encrypted) is coded into an elliptic curve point (xm,
ym). Each user selects a private key n (which can be placed in his smart card) and
compute his public key P = n(x, y). For example, user A’s private key is nA and his public
key is PA = nA(x, y).

For any one to encrypt and send the message point (xm, ym) to user A, he/she needs to
choose a random integer k and generate the ciphertext Cm = {k(x, y) , (xm, ym)+ kPA }.
The ciphertext pair of points uses A’s public key, where only user A can decrypt the
plaintext using his private key [8].

To decrypt the ciphertext Cm, the first point in the pair of Cm, k(x, y), is multiplied by A’s
private key to get the point: nA (k(x, y)). Then this point is subtracted from the second
point of Cm, the result will be the plaintext point (xm, ym). The complete decryption
operations are [8]:

((xm, ym)+ kPA) - nA (k(x, y)) = (xm, ym)+ k (nA(x, y)) - nA (k(x, y)) = (xm, ym)

Elliptic Curve Digital Signature Algorithm (ECDSA)
Elliptic Curve Digital Signature Algorithm (ECDSA) is elliptic curve analogue of the
Digital Signature Algorithm (DSA). The signature has the property that it can be
produced by only one single individual (or smart card) who has the private key, but can
be verified by anyone who receives the message. The process of ECDSA is composed
of three main steps: key generation, signature generation and signature verification.
Each step is described as follows [5]:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 9

ECDSA key generation
Each user of the scheme does the following:

1. Select an elliptic curve E over a finite field, say GF(p). The number of points on E
should be divisible by a large prime n.

2. Select a point P = (x,y)∈GF(p) of order n.
3. Select an unpredictable integer d in the range [1, n-1]. d will act as the private

key
4. Compute Q=dP
5. The user's public key is (E, P, n, Q).

ECDSA signature generation
To sign a message, m, the user does the following:

1. Select a random integer k in the range [1, n-1].
2. Compute (x1, y1) = kP = k(x,y), and set r = x1 mod n. If r is zero then go back to

step 1. In other words, if r=0 then the signing equation [s = k-1(h(m) + dr) mod n]
will not involve the private key d.

3. Compute k-1mod n.
4. Compute s = k-1(h(m) + dr) mod n, where h is the hash value obtained from a

suitable hash algorithm (for example, the Secure Hash Algorithm, SHA-1).
5. If s=0 go to step 1. This because if s is zero then s-1 mod n does not exist and s-1

mod n is needed in the signature verification.
6. The signature to be included in the message m is the pair of integers (r, s).

ECDSA signature verification
To verify the signature (r, s) on the message m, the following should be done:

1. Obtain an authentic copy of the public key (E, P, n, Q).
2. Verify that r and s are integers in the range [1, n-1].
3. Compute w = s-1 mod n and h(m).
4. Compute u1= h(m).w mod n and u2 = r.w mod n.
5. Compute u1P+u2Q = (x0 , y0) and v = x0 mod n.
6. Accept the signature if and only if v=r.

5. SMART CARDS AND ECC
A smart card is a plastic card about the size of a credit card, with an embedded
microchip that can be loaded with data, used for telephone calling, electronic cash
payments, health care, identification and other applications [9]. One can see that many
of those applications are the right place to use encryption and/or digital signature. In
addition, for smart cards to be used practically, they need to be inexpensive.

Smart cards have the fact that their stored data can be protected against unauthorized
access and tampering. Therefore, smart cards can safely contain sensitive data.
Example of sensitive data is the private key which is used to perform signature or
decryption. The private key can be protected by the smart card since it never leaves the
smart card. Smart card is considered to be ideal cryptographic token.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 10

Smart Card Types
Memory Cards
Though referred to as smart cards, memory cards are typically much less expensive
and much less functional than microprocessor cards. They contain EEPROM and ROM
memory, as well as some security logic. In the simplest case, security logic exists to
prevent writing and erasing of the data. More complex cases allow for memory read
access to be restricted by encryption. Typical memory card applications are pre-paid
telephone cards and health insurance cards.

Microprocessor Cards
Components of this type of architecture include a CPU, RAM, ROM and EEPROM.
Majority of smart cards in the market have between 128 and 1024 bytes of RAM,
between 1 and 16 kilobytes of EEPROM, between 6 and 16 kilobytes of ROM and an 8-
bit CPU clocked at a 3.57 megahertz. The operating system is typically stored in ROM,
the CPU uses RAM as its working memory and most of the data is stored in EEPROM.
Usually, RAM requires four times as much space as EEPROM, which in turn requires
four times as much space as ROM.

Cryptographic Coprocessor Cards
Although technically these are in the category of microprocessor cards, they are
separated here because of differences in cost and functionality. Because some
cryptographic algorithms require very large calculations, an 8-bit microprocessor with
very little RAM can take on the order of several minutes to perform operation over large
private keys. However, if a cryptographic coprocessor (a dedicated hardware
component for cryptographic processing) is added to the architecture, the time required
for this same operation is reduced to around a few hundred microseconds. However.
there is a drawback which is the cost. The addition of a cryptographic coprocessor can
increase the cost of today's smart cards by 20% to 30%[1].

Contactless Smart Cards
Though the reliability of smart card contacts has improved to very acceptable levels
over the years, contacts are one of the most frequent failure points any
electromechanical system due to dirt, wear… etc. The contactless card solves this
problem and also provides the issuer an a high degree freedom during use. Cards need
no longer be inserted into a reader, which could improve end user acceptance. No chip
contacts are visible on the surface of the card. However, despite these benefits,
contactless cards have not yet seen wide acceptance. The cost is higher and not
enough experience has been gained to make the technology reliable enough. [8]

How ECC Fits Smart Cards
Less Memory and Shorter Transmission Times
ECDLP algorithm leads to a very strong security with relatively small keys. When the
key becomes smaller, the memory needed to store keys is smaller and, consequently,
the less data needs to transfer between the card and the application. Therefore, the
transmission time is shorter.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 11

Scalability
Smart card applications always require stronger security that can be achieved with
longer keys. However, ECC can provide the security with relatively fewer extra system
resources. This means that with ECC, smart cards can keep their cost and provide a
higher level of security at the same time.

No Coprocessor
ECC reduces the processing times very much because of the nature of actual
computations (especially in case of GF(2k) where there are no modular operations).
Other systems have a dedicated crypto coprocessor to do the computations.
Coprocessor has the problem of increasing both the area and the cost. However, in the
case of ECC, the algorithm can be implemented in the available CPU with no additional
hardware.

On Card Key Generation
For true nonrepudiation, the private key must be kept secret and inaccessible to
anyone. In current public-key systems, cards are personalized (keys are loaded or
injected into the cards) in a secure environment to meet this security issue. Because of
the complexity of the computation required, generating keys on the card is inefficient
and typically impractical. With ECC, the time needed to generate a key is so short and
can be done with the limited computing power of a smart card, provided a good random
number generator is available. This means that the card personalization process can be
more efficient for applications in which nonrepudiation is important.

ECC Implementation Choices for Smart Cards
In general, the use of GF(2k) offers significant performance advantages over GF(p).
The reason is for that is the existence of modular operations in case of GF(p) [4].This is
true for a low-cost 8-bit smart card which has no crypto coprocessor. To achieve closely
equivalent performance with GF(p), a crypto coprocessor is required. This additional
crypto coprocessor increases the cost of each chip by 20% to 30%, which adds three to
five dollars to the cost of the card. With GF(2k), a smart card is less expensive because
a coprocessor is not needed.

In environments in which an arithmetic processor is already available, the performance
of GF(p) can be improved so that in some cases it exceeds the performance of GF(2k).
This is true for platforms with crypto coprocessor such as some types of smart cards. If
a crypto coprocessor is already available on the smart card or the cost is not a big deal,
then GF(p) would offer performance advantages over GF(2k) implemented without a
dedicated hardware component.

Additionally, point compression allows the points on an elliptic curve to be represented
with fewer bits of data. In smart card implementations, point compression is essential
because it reduces not only the storage space for keys on the card, but also the amount
of data that needs to be transmitted to and from the card. It can be accomplished with

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 12

negligible computation using GF(2k), but can affect GF(p) implementations
considerably. GF(2k) hardware implementations offer significant performance and area
size advantages over GF(p) hardware implementations. Smart cards requiring a number
of different cryptographic services with extremely fast performance would require
cryptographic coprocessors. Existing crypto coprocessors, which are optimized for
modular arithmetic needed on GF(p), do not substantially increase the performance of
GF(2k) arithmetic. A coprocessor designed specifically to optimize GF(2k) would take up
less space on the smart card and cost, and would provide superior performance to an
GF(p) implementation.

6. CONCLUSION
In this paper, I demonstrated the Elliptic Curve Cryptography (ECC). The demonstration
included some of the theoretical and practical aspects of ECC. Most of the studies
currently made have shown that ECC is the most convenient cryptosystem for the smart
cards. Saving time, cost and area are the reasons behind this for smart cards. On the
other hand, the fact that the elliptic curve cryptosystem implementation is much more
complicated and requires deeper mathematical understanding than the other
cryptography implementation (for example RSA), makes it more susceptible to errors.
Certainly, ECC systems solved some major problems which exist in others. Clearly time
will tell whether such a strong system is here to stay.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 13

REFERENCES

1) Certicom Corp. "The Elliptic Curve Cryptosystem for Smart Cards." May 1998. URL:

http://www.comms.engg.susx.ac.uk/fft/crypto/ECC_SC.pdf (15 Jan. 2004)

2) Cole, Eric, Jason Fossen, Stephen Northcutt, Hal Pomeranz. SANS Security Essentials with CISSP

CBK, Version 2.1.USA: SANS Press, 2003.

3) Crutchley, Duncan Alexander. "Cryptography And Elliptic Curves." May 1999. URL:

http://www.dacrutchley.plus.com/files/ecc_project.zip (2 Jan. 2004)

4) Hitchcock, Y., Edward Dawson, Andrew Clarck, Paul Montague. "Implementing an efficient elliptic

curve cryptosystem over GF(p) on a smart card." 24 October 2002. URL:

http://anziamj.austms.org.au/V44/CTAC2001/Hitc/Hitc.pdf (2 Feb. 2004)

5) Jonson, D., Alfred Menezes. "Ellipic Curve DSA (ECDSA): An Enhanced DSA." 24 February 2000.

URL:

http://citeseer.nj.nec.com/cache/papers/cs/8755/http:zSzzSzcacr.math.uwaterloo.cazSz~ajmenezezS

zpublicationszSzecdsa.pdf/johnson99elliptic.pdf (8 Feb. 2004)

6) Pietiläinen , Henna. "Elliptic curve cryptography on smart cards." October 2000. URL:

http://henna.laurikari.net/Dippa/di.pdf (2 Feb. 2004)

7) Ranket, Wolfgang, Wolfgang Effing. Smart Card Handbook, Second Edition. England: Willey,

2000:18-26.

8) Stallings, William. Cryptography and Network Security: Principles and Practice, Second Edition. New

Jersey: Prentice Hall Inc., 1999.

9) Von York, E. "Elliptic Curves Over Finite Fields." 7 May 1992. URL:

http://www.mapleapps.com/categories/mathematics/algebra/code/elliptic/elliptic.pdf (24 Jan. 2004)

10) Woodbury, Adam D., Daniel V. Bailey, Christof Paar. "Elliptic Curve Cryptography on Smart Cards

without Coprocessors." The Fourth Smart Card Research and Advanced Applications (CARDIS 2000)

Conference. 22 September 2000. URL: http://www.crypto.ruhr-uni-

bochum.de/Publikationen/texte/WoodburyBaileyPaarCARDIS.pdf (24 Jan. 2004)

