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Abstract 
 
This paper describes a technique of applying Genetic Algorithm (GA) to network 
Intrusion Detection Systems (IDSs).  A brief overview of the Intrusion Detection 
System, genetic algorithm and related detection techniques is presented.  
Parameters and evolution process for GA are discussed in detail.  Unlike other 
implementations of the same problem, this implementation considers both 
temporal and spatial information of network connections in encoding the network 
connection information into rules in IDS.  This is helpful for identification of 
complex anomalous behaviors.  This work is focused on the TCP/IP network 
protocols. 
 
1. Introduction  
 
In recent years, Intrusion Detection System (IDS) has become one of the hottest 
research areas in Computer Security.  It is an important detection technology and 
is used as a countermeasure to preserve data integrity and system availability 
during an intrusion.  
 
When an intruder attempts to break into an information system, or performs an 
action not legally allowed, we refer to this activity as an intrusion (Graham, 2002; 
see also Jones and Sielken, 2000).  Intruders can be divided into two groups, 
external and internal.  The former refers to those who do not have authorized 
access to the system and who attack by using various penetration techniques.  
The latter refers to those with access permission but wish to perform 
unauthorized activities. Intrusion techniques may include exploiting software 
bugs and system misconfigurations, password cracking, sniffing unsecured 
traffic, or exploiting the design flaw of specific protocols (Graham, 2002).  An 
Intrusion Detection System is a system for detecting intrusions and reporting 
them accurately to the proper authority.  Intrusion Detection Systems are usually 
specific to the operating system that they operate in and are an important tool in 
the overall implementation an organization’s information security policy (Jones 
and Sielken, 2000), which reflects an organization's statement by defining the 
rules and practices to provide security, handle intrusions, and recover from 
damage caused by security breaches.  
 
There are two generally accepted categories of intrusion detection techniques: 
misuse detection and anomaly detection.  Misuse detection refers to techniques 
that characterize known methods to penetrate a system.  These penetrations are 
characterized as a ‘pattern’ or a ‘signature’ that the IDS looks for.  The 
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pattern/signature might be a static string or a set sequence of actions.  System 
responses are based on identified penetrations.  Anomaly detection refers to 
techniques that define and characterize normal or acceptable behaviors of the 
system (e.g., CPU usage, job execution time, system calls).  Behaviors that 
deviate from the expected normal behavior are considered intrusions 
(Bezroukov, 2002; see also McHugh, 2001).   
 
IDSs can also be divided into two groups depending on where they look for 
intrusive behavior: Network-based IDS (NIDS) and Host-based IDS.  The former 
refers to systems that identify intrusions by monitoring traffic through network 
devices (e.g. Network Interface Card, NIC).  Host-based IDS monitors file and 
process activities related to a software environment associated with a specific 
host.  Some host-based IDSs also listen to network traffic to identify attacks 
against a host (Bezroukov, 2002; see also McHugh, 2001).  There are other 
emerging techniques.  One example is known as a blocking IDS, which combines 
a host-based IDS with the ability to modify firewall rules (Miller and Shaw, 1996).  
Another is called a Honeypot, which appears to be a ‘target’ to an intruder, but is 
specifically designed to trap an intruder in order to trace down their location and 
respond to attack (Bezroukov, 2002). 
 
The Intelligent Intrusion Detection System (IIDS) is an ongoing project at the 
Center for Computer Security Research (CCSR) in Mississippi State University.  
The architecture combines a number of different approaches to the IDS problem, 
and includes different AI techniques to help identify intrusive behavior (Bridges 
and Vaughn, 2001).  It uses both anomaly detection and misuse detection 
techniques and is both a network-based and host-based system.  Within the 
overall architecture of the IIDS, some open-source intrusion detection software 
tools are integrated for use as security sensors (Li, 2002), such as Bro (Paxson, 
1998) and Snort (Roesch, 1999).  Techniques proposed in this paper are part of 
the IIDS research efforts.  
  
Genetic Algorithm (GA) has been used in different ways in Intrusion Detection 
Systems.  The Applied Research Laboratories of the University of Texas at 
Austin (Sinclair, Pierce and Matzner 1999) uses different machine learning 
techniques, such as finite state machine, decision tree, and GA, to generate 
artificial intelligence rules for IDS.  One network connection and its related 
behavior can be translated to represent a rule to judge whether or not a real-time 
connection is considered an intrusion.  These rules can be modeled as 
chromosomes inside the population. The population evolves until the evaluation 
criteria are met.  The generated rule set can be used as knowledge inside the 
IDS for judging whether the network connection and related behaviors are 
potential intrusions (Sinclair, Pierce and Matzner 1999). The COAST Laboratory 
in Purdue University (Crosbie and Spafford, 1995) implemented an IDS using 
autonomous agents (security sensors) and applied AI techniques to evolve 
genetic algorithms.  Agents are modeled as chromosomes and an internal 
evaluator is used inside every agent (Crosbie and Spafford, 1995).  
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In the approaches described above, the IDS can be viewed as a rule-based 
system (RBS) and GA can be viewed a tool to help generate knowledge for the 
RBS. These approaches have some disadvantages.  In order to detect intrusive 
behaviors for a local network, network connections should be used to define 
normal and anomalous behaviors.  Sometimes an attack can be as simple as 
scanning for available ports in a server, or a password guessing.  But typically 
they are complex and are generated by automated tools that are freely available 
from the Internet.  An example can be a Trojan horse or a backdoor that can run 
for a period of time, or can be initiated from different locations.  In order to detect 
such intrusions, both temporal and spatial information of network traffic should be 
included in the rule set.  The current GA applications do not address these issues 
extensively. This paper shows how network connection information can be 
modeled as chromosomes, and how the parameters in genetic algorithm can be 
defined in this respect.  Some examples are used to show the implementation. 
 
The rest of the paper is organized as follows.  Section 2 provides a brief 
introduction to genetic algorithm.  Section 3 describes the detailed 
implementation of applying genetic algorithm to intrusion detection.  Section 4 
discusses the architecture for the proposed implementation.  Section 5 presents 
the conclusion and future work.  
 
2. Introduction to Genetic Algorithm 
 
Genetic algorithm is a family of computational models based on principles on 
evolution and natural selection.  These algorithms convert the problem in a 
specific domain into a model by using a chromosome-like data structure, and 
evolve the chromosomes using selection, recombination and mutation operators.  
The range of the applications that can make use of genetic algorithm is quite 
broad (Sinclair, Pierce and Matzner 1999; see also Whitley, 1994).  In computer 
security applications, it is mainly used for finding optimal solutions to a specific 
problem.  
 
The process of a genetic algorithm usually begins with a randomly selected 
population of chromosomes.  These chromosomes are representations of the 
problem to be solved.  According to the attributes of the problem, different 
positions of each chromosome are encoded as bits, characters or numbers. 
These positions are sometimes referred to as genes and are changed randomly 
within a range during evolution.  The set of chromosomes during a stage of 
evolution are called a population.  An evaluation function is used to calculate the 
‘goodness’ of each chromosome. During evaluation, two basic operators, 
crossover and mutation are used to simulate the natural reproduction and 
mutation of species.  The selection of chromosomes for survival and combination 
is biased towards the fittest chromosomes.  
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Figure 1 shows the structure of a simple genetic algorithm.  It starts with a 
randomly generated population, evolves through selection, recombination 
(crossover), and mutation.  Finally the best individual (chromosome) is picked out 
as the final result once the optimization criterion is met (Pohlheim, 2001).   
 

 
 

Figure 1. Structure of A Simple Genetic Algorithm (Pohlheim, 2001) 
 
A genetic algorithm is quite straightforward in general but it could be complex in 
most cases.  For example, during the crossover operation, there could be one-
point crossover, or even multiple point crossovers.  There are also parallel 
implementations of genetic algorithms.  Sometimes series of parameters (for 
example, mutation rate, crossover rate, population size, chromosome size, 
number of evolutions or generations, and how the selection is done) needs to be 
considered with specific selection process.  The final goal is to search the 
solution space in a relatively short period of time (Pohlheim, 2001).   
 
3. Genetic Algorithm Applied to Intrusion Detection 
 
Applying genetic algorithm to intrusion detection seems to be a promising area. 
We discuss in detail about the motivation and implementation details in this 
section. 
 
3.1  Overview 
 
Genetic algorithms can be used to evolve simple rules for network traffic 
(Sinclair, Pierce and Matzner 1999).  These rules are used to differentiate normal 
network connections from anomalous connections. These anomalous 
connections refer to events with probability of intrusions.  The rules stored in the 
rule base are usually in the following form (Sinclair, Pierce and Matzner 1999): 
 

if { condition } then { act } 
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For the problems we presented above, the condition usually refers to a match 
between current network connection and the rules in IDS, such as source and 
destination IP addresses and port numbers (used in TCP/IP network protocols), 
duration of the connection, protocol used, etc., indicating the probability of an 
intrusion. The act field usually refers to an action defined by the security policies 
within an organization, such as reporting an alert to the system administrator, 
stopping the connection, logging a message into system audit files, or all of the 
above.  For example, a rule can be defined as: 
 

if {the connection has following information: source IP address 10.0.0.18; 
destination IP address: 192.168.0.55; destination port number: 21; connection 
time: 10.1 seconds } 
 then {stop the connection} 

 
This rule can be explained as follows: if there exists a network connection 
request with the source IP address 10.0.0.18, destination IP address 
192.168.0.55, destination port number 21, and connection time 10.1 seconds, 
then stop this connection establishment. This is because the IP address 
10.0.0.18 is recognized by the IDS as one of the blacklisted IP addresses 
therefore any service request initiated from it is rejected. 
 
The final goal of applying GA is to generate rules that match only the anomalous 
connections. These rules are tested on historical connections and are used to 
filter new connections to find suspicious network traffic.   
 
In this implementation, the network traffic used for GA is a pre-classified data set 
that differentiates normal network connections from anomalous ones. This data 
set is gathered using network sniffers (a program used to record network traffic 
without doing something harmful) such as Tcpdump (http://www.tcpdump.com) or 
Snort (http://www.snort.com). The data set is manually classified based on 
expert’s knowledge.  It is used for the fitness evaluation during the execution of 
GA.  By starting GA with only a small set of randomly generated rules, we can 
generate a larger data set that contains rules for IDS.  These rules are ‘good 
enough’ solutions for GA and can be used for filtering new network traffic. 
 
3.2  Data representation  
 
In order to fully exploit the suspicious level, we need to examine all fields related 
with a specific network connection.  For simplicity, we only consider some 
obvious attributes for each connection.  The definition of rules (for TCP/IP 
protocols) is shown in Table 1. 
 
The corresponding rule for the “Example Value” attribute in Table 1 could be 
translated as: 
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if {the connection has following information: source IP address 10.0.??.??; 
destination IP address: 192.168.176+?.??; source port number: 42335; 
destination port number: 80; connection time: 482 seconds; the connection is 
stopped by the originator; the protocol used is TCP; the originator sent 7320 
bytes of data; and the responder sent 38891 bytes of data } 
 then {stop the connection} 

 
 

Attribute Range of Values Example Values Descriptions 

Source IP address 0.0.0.0~255.255.255.255 0a.00.**.** 
 (10.0.??.??) 

A subnet with IP 
address 10.0.0.0 to 

10.0.255.255 

Destination IP 
address 0.0.0.0~255.255.255.255 c0.a8.b*.** 

(192.168.176+?.??)

A subnet with IP 
address 

192.168.176.0 to 
192.168.255.255 

Source Port 
Number 0~65535 42335 Source port number 

of the connection 

Destination Port 
Number 0~65535 00080 

Destination port 
number, indicates 

this is a http service 

Duration 0~99999999 00000482 
Duration of the 

connection is 482 
seconds 

State 1~20 11 

The connection is 
terminated by the 

originator, for internal 
use 

Protocol 1~9 2 The protocol for this 
connection is TCP 

Number of Bytes 
Sent by Originator 0~9999999999 0000007320 The originator sends 

7320 bytes of data 

Number of Bytes 
sent by Responder 0~9999999999 0000038891 

The responders 
sends 38891 bytes of 

data 
 

Table 1. Rule Definition for Connection and Range of Values of Each Field 
 
We can convert the above example into the chromosome form, as described in 
Figure 3.  
 
 (0, a, 0, 0, -1, -1, -1, -1, c, 0, a, 8, b, -1, -1, -1, 4, 2, 3, 3, 5,  

0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 4, 8, 2, 1, 1, 2,  
0, 0, 0, 0, 0, 0, 7, 3, 2, 0, 0, 0, 0, 0, 0, 3, 8, 8, 9, 1) 

 
 
 

Figure 3. Chromosome structure for example in Table 1 
 
Altogether there are fifty-seven genes in each chromosome. For simplicity, we 
use hexadecimal representations for the IP addresses.  The rule can be 
explained as follows: if a network connection with source IP address 10.0.??.?? 
(10.0.0.0 ~ 10.0.255.255), destination IP address 192.168.176+?.?? 
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(192.168.176.0 ~ 192.168.255.255), source port number 42335, destination port 
number 80, duration time 482 seconds, ends with state 11 (the connection 
terminated by the originator), uses protocol type 2 (TCP), and the originator 
sends 7320 bytes of data, the responders sends 38891 bytes of data, then this is 
a suspicious behavior and can be identified as an potential intrusion.  The actual 
validity of this rule will be examined by matching the historical data set comprised 
of connections marked as either anomalous or normal.  If the rule is able to find 
an anomalous behavior, a bonus will be given to the current chromosome.  If the 
rule matches a normal connection, a penalty will be applied to the chromosome.  
Clearly no single rule can be used to separate all anomalous connections from 
normal connections.  The population needs evolving to find the optimal rule set. 
 
In the example shown in Table 1, some wild cards (the ‘*’ character and the ‘?’ 
character) are used and the corresponding genes within the chromosome are 
shown as –1.  These wild cards are used to represent an appropriate range of 
specific values (Crosbie and Spafford, 1995).  It is useful when representing a 
network block (a range of IP addresses or port numbers) in a rule.  Once the 
spatial information is included in the rules, the capability of the IDS can be greatly 
improved as an intrusion may initiate from many different locations.  The 
inclusion of the duration time of a network connection in the chromosome 
ensures incorporation of temporal information for network connections.  The 
maximum value of duration time is 99999999 seconds, which is more than a 
year. This is helpful for identifying intrusions because complex intrusions may 
span hours, days or even months. 
 
The genetic algorithm starts with a population that has randomly selected rules.  
The population can evolve by using the crossover and mutations operators.  Due 
to the effectiveness of the evaluation function, the succeeding populations are 
biased toward rules that match intrusive connections.  Ultimately as the algorithm 
stops, rules are selected and added into the IDS rule base. 
 
3.3  Parameters in Genetic Algorithm 
 
There are many parameters to consider for the application of GA.  Each of these 
parameters heavily influences the effectiveness of the genetic algorithm.  We will 
discuss the methodology and related parameters in the following section.     
 
3.3.1 Evaluation function 
 
The evaluation function is one of the most important parameters in genetic 
algorithm.  The proposed implementation differs from scheme used by (Crosbie 
and Spafford, 1995) in that the definition on calculations of outcome and fitness 
is different.  The following steps are used to calculate the evaluation function.   
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First the overall outcome is calculated based on whether a field of the connection 
matches the pre-classified data set, and then multiply the weight of that field.   
The Matched value is set to either 1 or 0. 
 

Outcome=  ∑
=

57

1
*

i
iWeightMatched

 
The order of weight values in the function is shown in Figure 4.  These orders are 
categorized according to different fields in the connection record as reported by 
network sniffers.  Therefore all genes representing destination IP address field 
have the same weight.  The actual values can be finely tuned at execution time.  
The basic idea behind this order is the importance of different fields in TCP/IP 
packets.  This scheme is straightforward and intuitive.  Destination IP address is 
the target of an intrusion while the source IP address is the originator of the 
intrusion.  These are the most important information in order to capture an 
intrusion.  Destination port number indicates to applications that the target 
system is running (for example, FTP service usually runs on port 21).  Some IP 
addresses are more probable targets for intrusions.  For example, IP addresses 
for military domains.  Domain-specific information is less important comparing 
with the source IP addresses.  Other parameters like duration, bytes sent by the 
originator, bytes sent by the receiver, and state are usually of less relative 
importance compared with the above fields, but still useful.  The protocol and 
source port number fields are commonly dispensable and are used for identifying 
some specific intrusions. 
 
 

Bytes sent by the Receiver

Bytes sent by the Originator

Low 

  High 

State 

Source Port Number

Destination Port Number

Protocol

Duration

Source IP address

Destination IP address 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Order of Weights for Fields in The Evaluation Function 
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The absolute difference between the outcome of the chromosome and the actual 
suspicious level is then computed using the following equation.  The 
suspicious_level is a threshold that indicates to the extent to which two network 
connections are considered a ‘match’. The actual value of suspicious_level 
reflects observations from historical data.   
 

∆ = | outcome – suspicious_level | 
 
Once a mismatch happens, the penalty value is computed using the absolute 
difference.  The ranking in the equation indicates whether or not an intrusion is 
easy to identify. 
 

)
100

*( rankingpenalty ∆
=  

 
The fitness of a chromosome is computed using the above penalty: 
 

fitness = 1- penalty 
 
Obviously, the range of the fitness value is between 0 and 1. By defining 
evaluation, we have incorporated both temporal and spatial information needed 
for identification of network intrusions.  
 
3.3.2 Crossover and Mutation 
 
Traditional genetic algorithms have been used to identify and converge 
populations of candidate hypotheses to a single global optimum.  For this 
problem, a set of rules is needed as a basis for the IDS.  As mentioned earlier, 
there is no way to clearly identity whether a network connection is normal or 
anomalous just using one rule.  Multiple rules are needed to identify unrelated 
anomalies, which means that, several good rules are more effective than a single 
best rule (Sinclair, Pierce and Matzner 1999).  Another reason of finding multiple 
rules is because there are so many network connection possibilities therefore a 
small set of rules will be far from enough.  
 
Using the genetic algorithm, we need to find local maxima (a set of ‘good-
enough’ solutions) as opposed to the global maximum (the best solution) 
(Sinclair, Pierce and Matzner 1999).  The niching techniques can be used to find 
multiple local maxima (Miller and Shaw, 1996; see also Sinclair, Pierce and 
Matzner 1999).  It is based on the analogy to nature in that within each 
environment, there are different subspaces (niches) that can support different 
types of life.  In a similar manner, genetic algorithm can maintain the diversity of 
each population in a multimodal domain, which refers to domains requiring the 
identification of multiple optima.  Two basic methods, crowding and sharing can 
be used for niching.  The crowding method uses the most similar member for 
replacement to slow down the population to converge towards a single point in 
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the following generations.  The sharing method reduces the fitness of individuals 
that have highly similar members and forces individuals to evolve to other local 
maxima that may be less populated.  The similarity metrics used in these 
techniques can be phenotype to genotype similarity such as Hamming distance 
between bit representations, or phenotype similarity such as the relation between 
two network connections in this problem.  The latter one is more fitful for finding 
rules used in IDS.  The disadvantage of this approach is that it requires more 
domain-specific knowledge (Miller and Shaw, 1996; see also Sinclair, Pierce and 
Matzner 1999). 
 
The mutation operation should be meaningful during evolution.  For example, 
each segment of the IP address should not exceed 255 (decimal representation).  
Mutations should be done following the requirements specified in Table 1. These 
limitations can be enforced by defining proper mutation rules.  
 
3.3.3 Other parameters 
 
There are also other parameters need to be considered, such as mutation rate, 
crossover rate, number of populations, and number of generations. These 
parameters should be adjusted according to the application environment of the 
system and the organization’s security policy.  
 
4 System Architecture  
 
 
 
 

 

GANetwork 
Sniffer 

Rule 
Base 

Rule Set
DARPA 
data set 

Figure 5. Architecture of Applying GA into Intrusion Detection 
 

Figure 5 shows the structure of this implementation. We need to collect enough 
historical data that includes both normal and anomalous network connections.  
The MIT Lincoln laboratory (http://www.ll.mit.edu/) dataset for testing IDSs, which 
is represented in the Tcpdump binary format, is a good choice.  This is the first 
part inside the system architecture.  This data set is analyzed by the network 
sniffers and results are fed into GA for fitness evaluation. Then the GA is 
executed and the rule set is generated. These rules are stored into a database to 
be used by the IDS. 
 
5 Conclusion and Future Work 
 
In this paper we discussed a methodology of applying genetic algorithm into 
network intrusion detection techniques.  A brief overview of Intrusion Detection 
System (IDS), genetic algorithm and related detection techniques are discussed.  
The system architecture is also introduced.  Factors affecting the GA are 
addressed in detail.  This implementation of genetic algorithm is unique as it 
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considers both temporal and spatial information of network connections during 
the encoding of the problem, therefore it should be more helpful for identifications 
of network anomalous behaviors.   
 
Future works include creating a standard test data set for the genetic algorithm 
proposed in this paper and applying it to a test environment.  Detailed 
specification of parameters to consider for genetic algorithm should be 
determined during the experiments.  Combining knowledge from different 
security sensors into a standard rule base is another promising area in this work.  
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