
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

A Genetic Algorithm Approach to Network Intrusion Detection

GSEC Practical Assignment Version 1.4 Option 1
Wei Li
November 5 2003

Abstract

This paper describes a technique of applying Genetic Algorithm (GA) to network
Intrusion Detection Systems (IDSs). A brief overview of the Intrusion Detection
System, genetic algorithm and related detection techniques is presented.
Parameters and evolution process for GA are discussed in detail. Unlike other
implementations of the same problem, this implementation considers both
temporal and spatial information of network connections in encoding the network
connection information into rules in IDS. This is helpful for identification of
complex anomalous behaviors. This work is focused on the TCP/IP network
protocols.

1. Introduction

In recent years, Intrusion Detection System (IDS) has become one of the hottest
research areas in Computer Security. It is an important detection technology and
is used as a countermeasure to preserve data integrity and system availability
during an intrusion.

When an intruder attempts to break into an information system, or performs an
action not legally allowed, we refer to this activity as an intrusion (Graham, 2002;
see also Jones and Sielken, 2000). Intruders can be divided into two groups,
external and internal. The former refers to those who do not have authorized
access to the system and who attack by using various penetration techniques.
The latter refers to those with access permission but wish to perform
unauthorized activities. Intrusion techniques may include exploiting software
bugs and system misconfigurations, password cracking, sniffing unsecured
traffic, or exploiting the design flaw of specific protocols (Graham, 2002). An
Intrusion Detection System is a system for detecting intrusions and reporting
them accurately to the proper authority. Intrusion Detection Systems are usually
specific to the operating system that they operate in and are an important tool in
the overall implementation an organization’s information security policy (Jones
and Sielken, 2000), which reflects an organization's statement by defining the
rules and practices to provide security, handle intrusions, and recover from
damage caused by security breaches.

There are two generally accepted categories of intrusion detection techniques:
misuse detection and anomaly detection. Misuse detection refers to techniques
that characterize known methods to penetrate a system. These penetrations are
characterized as a ‘pattern’ or a ‘signature’ that the IDS looks for. The

 1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

pattern/signature might be a static string or a set sequence of actions. System
responses are based on identified penetrations. Anomaly detection refers to
techniques that define and characterize normal or acceptable behaviors of the
system (e.g., CPU usage, job execution time, system calls). Behaviors that
deviate from the expected normal behavior are considered intrusions
(Bezroukov, 2002; see also McHugh, 2001).

IDSs can also be divided into two groups depending on where they look for
intrusive behavior: Network-based IDS (NIDS) and Host-based IDS. The former
refers to systems that identify intrusions by monitoring traffic through network
devices (e.g. Network Interface Card, NIC). Host-based IDS monitors file and
process activities related to a software environment associated with a specific
host. Some host-based IDSs also listen to network traffic to identify attacks
against a host (Bezroukov, 2002; see also McHugh, 2001). There are other
emerging techniques. One example is known as a blocking IDS, which combines
a host-based IDS with the ability to modify firewall rules (Miller and Shaw, 1996).
Another is called a Honeypot, which appears to be a ‘target’ to an intruder, but is
specifically designed to trap an intruder in order to trace down their location and
respond to attack (Bezroukov, 2002).

The Intelligent Intrusion Detection System (IIDS) is an ongoing project at the
Center for Computer Security Research (CCSR) in Mississippi State University.
The architecture combines a number of different approaches to the IDS problem,
and includes different AI techniques to help identify intrusive behavior (Bridges
and Vaughn, 2001). It uses both anomaly detection and misuse detection
techniques and is both a network-based and host-based system. Within the
overall architecture of the IIDS, some open-source intrusion detection software
tools are integrated for use as security sensors (Li, 2002), such as Bro (Paxson,
1998) and Snort (Roesch, 1999). Techniques proposed in this paper are part of
the IIDS research efforts.

Genetic Algorithm (GA) has been used in different ways in Intrusion Detection
Systems. The Applied Research Laboratories of the University of Texas at
Austin (Sinclair, Pierce and Matzner 1999) uses different machine learning
techniques, such as finite state machine, decision tree, and GA, to generate
artificial intelligence rules for IDS. One network connection and its related
behavior can be translated to represent a rule to judge whether or not a real-time
connection is considered an intrusion. These rules can be modeled as
chromosomes inside the population. The population evolves until the evaluation
criteria are met. The generated rule set can be used as knowledge inside the
IDS for judging whether the network connection and related behaviors are
potential intrusions (Sinclair, Pierce and Matzner 1999). The COAST Laboratory
in Purdue University (Crosbie and Spafford, 1995) implemented an IDS using
autonomous agents (security sensors) and applied AI techniques to evolve
genetic algorithms. Agents are modeled as chromosomes and an internal
evaluator is used inside every agent (Crosbie and Spafford, 1995).

 2

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

In the approaches described above, the IDS can be viewed as a rule-based
system (RBS) and GA can be viewed a tool to help generate knowledge for the
RBS. These approaches have some disadvantages. In order to detect intrusive
behaviors for a local network, network connections should be used to define
normal and anomalous behaviors. Sometimes an attack can be as simple as
scanning for available ports in a server, or a password guessing. But typically
they are complex and are generated by automated tools that are freely available
from the Internet. An example can be a Trojan horse or a backdoor that can run
for a period of time, or can be initiated from different locations. In order to detect
such intrusions, both temporal and spatial information of network traffic should be
included in the rule set. The current GA applications do not address these issues
extensively. This paper shows how network connection information can be
modeled as chromosomes, and how the parameters in genetic algorithm can be
defined in this respect. Some examples are used to show the implementation.

The rest of the paper is organized as follows. Section 2 provides a brief
introduction to genetic algorithm. Section 3 describes the detailed
implementation of applying genetic algorithm to intrusion detection. Section 4
discusses the architecture for the proposed implementation. Section 5 presents
the conclusion and future work.

2. Introduction to Genetic Algorithm

Genetic algorithm is a family of computational models based on principles on
evolution and natural selection. These algorithms convert the problem in a
specific domain into a model by using a chromosome-like data structure, and
evolve the chromosomes using selection, recombination and mutation operators.
The range of the applications that can make use of genetic algorithm is quite
broad (Sinclair, Pierce and Matzner 1999; see also Whitley, 1994). In computer
security applications, it is mainly used for finding optimal solutions to a specific
problem.

The process of a genetic algorithm usually begins with a randomly selected
population of chromosomes. These chromosomes are representations of the
problem to be solved. According to the attributes of the problem, different
positions of each chromosome are encoded as bits, characters or numbers.
These positions are sometimes referred to as genes and are changed randomly
within a range during evolution. The set of chromosomes during a stage of
evolution are called a population. An evaluation function is used to calculate the
‘goodness’ of each chromosome. During evaluation, two basic operators,
crossover and mutation are used to simulate the natural reproduction and
mutation of species. The selection of chromosomes for survival and combination
is biased towards the fittest chromosomes.

 3

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Figure 1 shows the structure of a simple genetic algorithm. It starts with a
randomly generated population, evolves through selection, recombination
(crossover), and mutation. Finally the best individual (chromosome) is picked out
as the final result once the optimization criterion is met (Pohlheim, 2001).

Figure 1. Structure of A Simple Genetic Algorithm (Pohlheim, 2001)

A genetic algorithm is quite straightforward in general but it could be complex in
most cases. For example, during the crossover operation, there could be one-
point crossover, or even multiple point crossovers. There are also parallel
implementations of genetic algorithms. Sometimes series of parameters (for
example, mutation rate, crossover rate, population size, chromosome size,
number of evolutions or generations, and how the selection is done) needs to be
considered with specific selection process. The final goal is to search the
solution space in a relatively short period of time (Pohlheim, 2001).

3. Genetic Algorithm Applied to Intrusion Detection

Applying genetic algorithm to intrusion detection seems to be a promising area.
We discuss in detail about the motivation and implementation details in this
section.

3.1 Overview

Genetic algorithms can be used to evolve simple rules for network traffic
(Sinclair, Pierce and Matzner 1999). These rules are used to differentiate normal
network connections from anomalous connections. These anomalous
connections refer to events with probability of intrusions. The rules stored in the
rule base are usually in the following form (Sinclair, Pierce and Matzner 1999):

if { condition } then { act }

 4

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

For the problems we presented above, the condition usually refers to a match
between current network connection and the rules in IDS, such as source and
destination IP addresses and port numbers (used in TCP/IP network protocols),
duration of the connection, protocol used, etc., indicating the probability of an
intrusion. The act field usually refers to an action defined by the security policies
within an organization, such as reporting an alert to the system administrator,
stopping the connection, logging a message into system audit files, or all of the
above. For example, a rule can be defined as:

if {the connection has following information: source IP address 10.0.0.18;
destination IP address: 192.168.0.55; destination port number: 21; connection
time: 10.1 seconds }
 then {stop the connection}

This rule can be explained as follows: if there exists a network connection
request with the source IP address 10.0.0.18, destination IP address
192.168.0.55, destination port number 21, and connection time 10.1 seconds,
then stop this connection establishment. This is because the IP address
10.0.0.18 is recognized by the IDS as one of the blacklisted IP addresses
therefore any service request initiated from it is rejected.

The final goal of applying GA is to generate rules that match only the anomalous
connections. These rules are tested on historical connections and are used to
filter new connections to find suspicious network traffic.

In this implementation, the network traffic used for GA is a pre-classified data set
that differentiates normal network connections from anomalous ones. This data
set is gathered using network sniffers (a program used to record network traffic
without doing something harmful) such as Tcpdump (http://www.tcpdump.com) or
Snort (http://www.snort.com). The data set is manually classified based on
expert’s knowledge. It is used for the fitness evaluation during the execution of
GA. By starting GA with only a small set of randomly generated rules, we can
generate a larger data set that contains rules for IDS. These rules are ‘good
enough’ solutions for GA and can be used for filtering new network traffic.

3.2 Data representation

In order to fully exploit the suspicious level, we need to examine all fields related
with a specific network connection. For simplicity, we only consider some
obvious attributes for each connection. The definition of rules (for TCP/IP
protocols) is shown in Table 1.

The corresponding rule for the “Example Value” attribute in Table 1 could be
translated as:

 5

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

if {the connection has following information: source IP address 10.0.??.??;
destination IP address: 192.168.176+?.??; source port number: 42335;
destination port number: 80; connection time: 482 seconds; the connection is
stopped by the originator; the protocol used is TCP; the originator sent 7320
bytes of data; and the responder sent 38891 bytes of data }
 then {stop the connection}

Attribute Range of Values Example Values Descriptions

Source IP address 0.0.0.0~255.255.255.255 0a.00.**.**
 (10.0.??.??)

A subnet with IP
address 10.0.0.0 to

10.0.255.255

Destination IP
address 0.0.0.0~255.255.255.255 c0.a8.b*.**

(192.168.176+?.??)

A subnet with IP
address

192.168.176.0 to
192.168.255.255

Source Port
Number 0~65535 42335 Source port number

of the connection

Destination Port
Number 0~65535 00080

Destination port
number, indicates

this is a http service

Duration 0~99999999 00000482
Duration of the

connection is 482
seconds

State 1~20 11

The connection is
terminated by the

originator, for internal
use

Protocol 1~9 2 The protocol for this
connection is TCP

Number of Bytes
Sent by Originator 0~9999999999 0000007320 The originator sends

7320 bytes of data

Number of Bytes
sent by Responder 0~9999999999 0000038891

The responders
sends 38891 bytes of

data

Table 1. Rule Definition for Connection and Range of Values of Each Field

We can convert the above example into the chromosome form, as described in
Figure 3.

 (0, a, 0, 0, -1, -1, -1, -1, c, 0, a, 8, b, -1, -1, -1, 4, 2, 3, 3, 5,

0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 4, 8, 2, 1, 1, 2,
0, 0, 0, 0, 0, 0, 7, 3, 2, 0, 0, 0, 0, 0, 0, 3, 8, 8, 9, 1)

Figure 3. Chromosome structure for example in Table 1

Altogether there are fifty-seven genes in each chromosome. For simplicity, we
use hexadecimal representations for the IP addresses. The rule can be
explained as follows: if a network connection with source IP address 10.0.??.??
(10.0.0.0 ~ 10.0.255.255), destination IP address 192.168.176+?.??

 6

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

(192.168.176.0 ~ 192.168.255.255), source port number 42335, destination port
number 80, duration time 482 seconds, ends with state 11 (the connection
terminated by the originator), uses protocol type 2 (TCP), and the originator
sends 7320 bytes of data, the responders sends 38891 bytes of data, then this is
a suspicious behavior and can be identified as an potential intrusion. The actual
validity of this rule will be examined by matching the historical data set comprised
of connections marked as either anomalous or normal. If the rule is able to find
an anomalous behavior, a bonus will be given to the current chromosome. If the
rule matches a normal connection, a penalty will be applied to the chromosome.
Clearly no single rule can be used to separate all anomalous connections from
normal connections. The population needs evolving to find the optimal rule set.

In the example shown in Table 1, some wild cards (the ‘*’ character and the ‘?’
character) are used and the corresponding genes within the chromosome are
shown as –1. These wild cards are used to represent an appropriate range of
specific values (Crosbie and Spafford, 1995). It is useful when representing a
network block (a range of IP addresses or port numbers) in a rule. Once the
spatial information is included in the rules, the capability of the IDS can be greatly
improved as an intrusion may initiate from many different locations. The
inclusion of the duration time of a network connection in the chromosome
ensures incorporation of temporal information for network connections. The
maximum value of duration time is 99999999 seconds, which is more than a
year. This is helpful for identifying intrusions because complex intrusions may
span hours, days or even months.

The genetic algorithm starts with a population that has randomly selected rules.
The population can evolve by using the crossover and mutations operators. Due
to the effectiveness of the evaluation function, the succeeding populations are
biased toward rules that match intrusive connections. Ultimately as the algorithm
stops, rules are selected and added into the IDS rule base.

3.3 Parameters in Genetic Algorithm

There are many parameters to consider for the application of GA. Each of these
parameters heavily influences the effectiveness of the genetic algorithm. We will
discuss the methodology and related parameters in the following section.

3.3.1 Evaluation function

The evaluation function is one of the most important parameters in genetic
algorithm. The proposed implementation differs from scheme used by (Crosbie
and Spafford, 1995) in that the definition on calculations of outcome and fitness
is different. The following steps are used to calculate the evaluation function.

 7

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

First the overall outcome is calculated based on whether a field of the connection
matches the pre-classified data set, and then multiply the weight of that field.
The Matched value is set to either 1 or 0.

Outcome= ∑
=

57

1
*

i
iWeightMatched

The order of weight values in the function is shown in Figure 4. These orders are
categorized according to different fields in the connection record as reported by
network sniffers. Therefore all genes representing destination IP address field
have the same weight. The actual values can be finely tuned at execution time.
The basic idea behind this order is the importance of different fields in TCP/IP
packets. This scheme is straightforward and intuitive. Destination IP address is
the target of an intrusion while the source IP address is the originator of the
intrusion. These are the most important information in order to capture an
intrusion. Destination port number indicates to applications that the target
system is running (for example, FTP service usually runs on port 21). Some IP
addresses are more probable targets for intrusions. For example, IP addresses
for military domains. Domain-specific information is less important comparing
with the source IP addresses. Other parameters like duration, bytes sent by the
originator, bytes sent by the receiver, and state are usually of less relative
importance compared with the above fields, but still useful. The protocol and
source port number fields are commonly dispensable and are used for identifying
some specific intrusions.

Bytes sent by the Receiver

Bytes sent by the Originator

Low

 High

State

Source Port Number

Destination Port Number

Protocol

Duration

Source IP address

Destination IP address

Figure 4. Order of Weights for Fields in The Evaluation Function

 8

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The absolute difference between the outcome of the chromosome and the actual
suspicious level is then computed using the following equation. The
suspicious_level is a threshold that indicates to the extent to which two network
connections are considered a ‘match’. The actual value of suspicious_level
reflects observations from historical data.

∆ = | outcome – suspicious_level |

Once a mismatch happens, the penalty value is computed using the absolute
difference. The ranking in the equation indicates whether or not an intrusion is
easy to identify.

)
100

*(rankingpenalty ∆
=

The fitness of a chromosome is computed using the above penalty:

fitness = 1- penalty

Obviously, the range of the fitness value is between 0 and 1. By defining
evaluation, we have incorporated both temporal and spatial information needed
for identification of network intrusions.

3.3.2 Crossover and Mutation

Traditional genetic algorithms have been used to identify and converge
populations of candidate hypotheses to a single global optimum. For this
problem, a set of rules is needed as a basis for the IDS. As mentioned earlier,
there is no way to clearly identity whether a network connection is normal or
anomalous just using one rule. Multiple rules are needed to identify unrelated
anomalies, which means that, several good rules are more effective than a single
best rule (Sinclair, Pierce and Matzner 1999). Another reason of finding multiple
rules is because there are so many network connection possibilities therefore a
small set of rules will be far from enough.

Using the genetic algorithm, we need to find local maxima (a set of ‘good-
enough’ solutions) as opposed to the global maximum (the best solution)
(Sinclair, Pierce and Matzner 1999). The niching techniques can be used to find
multiple local maxima (Miller and Shaw, 1996; see also Sinclair, Pierce and
Matzner 1999). It is based on the analogy to nature in that within each
environment, there are different subspaces (niches) that can support different
types of life. In a similar manner, genetic algorithm can maintain the diversity of
each population in a multimodal domain, which refers to domains requiring the
identification of multiple optima. Two basic methods, crowding and sharing can
be used for niching. The crowding method uses the most similar member for
replacement to slow down the population to converge towards a single point in

 9

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

the following generations. The sharing method reduces the fitness of individuals
that have highly similar members and forces individuals to evolve to other local
maxima that may be less populated. The similarity metrics used in these
techniques can be phenotype to genotype similarity such as Hamming distance
between bit representations, or phenotype similarity such as the relation between
two network connections in this problem. The latter one is more fitful for finding
rules used in IDS. The disadvantage of this approach is that it requires more
domain-specific knowledge (Miller and Shaw, 1996; see also Sinclair, Pierce and
Matzner 1999).

The mutation operation should be meaningful during evolution. For example,
each segment of the IP address should not exceed 255 (decimal representation).
Mutations should be done following the requirements specified in Table 1. These
limitations can be enforced by defining proper mutation rules.

3.3.3 Other parameters

There are also other parameters need to be considered, such as mutation rate,
crossover rate, number of populations, and number of generations. These
parameters should be adjusted according to the application environment of the
system and the organization’s security policy.

4 System Architecture

GANetwork
Sniffer

Rule
Base

Rule Set
DARPA
data set

Figure 5. Architecture of Applying GA into Intrusion Detection

Figure 5 shows the structure of this implementation. We need to collect enough
historical data that includes both normal and anomalous network connections.
The MIT Lincoln laboratory (http://www.ll.mit.edu/) dataset for testing IDSs, which
is represented in the Tcpdump binary format, is a good choice. This is the first
part inside the system architecture. This data set is analyzed by the network
sniffers and results are fed into GA for fitness evaluation. Then the GA is
executed and the rule set is generated. These rules are stored into a database to
be used by the IDS.

5 Conclusion and Future Work

In this paper we discussed a methodology of applying genetic algorithm into
network intrusion detection techniques. A brief overview of Intrusion Detection
System (IDS), genetic algorithm and related detection techniques are discussed.
The system architecture is also introduced. Factors affecting the GA are
addressed in detail. This implementation of genetic algorithm is unique as it

 10

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

considers both temporal and spatial information of network connections during
the encoding of the problem, therefore it should be more helpful for identifications
of network anomalous behaviors.

Future works include creating a standard test data set for the genetic algorithm
proposed in this paper and applying it to a test environment. Detailed
specification of parameters to consider for genetic algorithm should be
determined during the experiments. Combining knowledge from different
security sensors into a standard rule base is another promising area in this work.

Acknowledgements

The author wishes to thank Ambareen Siraj at the Center for Computer Security
Research (CCSR) in the Department of Computer Science and Engineering at
Mississippi State University for the review and suggestions during the
implementation of this paper.

 11

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

REFERENCES

Bezroukov, Nikolai. “Intrusion Detection (general issues).” Softpanorama: Open
Source Software Educational Society. 19 July 2003. Nikolai Bezroukov. URL:
http://www.softpanorama.org/Security/intrusion_detection.shtml (30 Oct. 2003).

Bridges, Susan, and Rayford B. Vaughn. Intrusion Detection Via Fuzzy Data
Mining. Proc. of 12th Annual Canadian Information Technology Security
Symposium, June 19-23, Ottawa, Canada, 2000: 109-122.

Crosbie, Mark, and Gene Spafford. Applying Genetic Programming to Intrusion
Detection. Proc. of 1995 AAAI Fall Symposium on Genetic Programming, Nov.
10-12, Cambridge, Massachusetts, 1995: 1-8. URL:
http://citeseer.nj.nec.com/crosbie95applying.html (30 Oct. 2003).

Graham, Robert. “FAQ: Network Intrusion Detection Systems.”
RobertGraham.com Homepage. Mar. 21, 2000. Robert Graham. URL:
http://www.robertgraham.com/pubs/network-intrusion-detection.html (30 Oct.
2003).

Jones, Anita. K. and Robert. S. Sielken. “Computer System Intrusion Detection:
A Survey.” Technical Report. Department of Computer Science, University of
Virginia, Charlottesville, Virginia, 2000.

Li, Wei. “The integration of security sensors into the Intelligent Intrusion Detection
System (IIDS) in a cluster environment.” Master’s Project Report. Department of
Computer Science, Mississippi State University. 2002.

McHugh, John, “Intrusion and Intrusion Detection.” Technical Report. CERT
Coordination Center, Software Engineering Institute, Carnegie Mellon University.
2001.

Miller, Brad. L. and Michael J. Shaw. Genetic Algorithms with Dynamic Niche
Sharing for Multimodal Function Optimization. Proc. of IEEE International Conf.
on Evolutionary Computation, May 20-22, Nagoya University, Japan, 1996: 786-
791.

Paxson, Vern. Bro: A System for Detecting Network Intruders in Real-time. Proc.
of 7th USENIX Security Symposium, Jan. 26-29, San Antonio, Texas, 1998: 31-
51.

Pohlheim, Hartmut. “Genetic and Evolutionary Algorithms: Principles, Methods
and Algorithms.” Genetic and Evolutionary Algorithm Toolbox. July 2001.
Hartmut Pohlheim. URL: http://www.geatbx.com/docu/algindex.html (30 Oct.
2003).

 12

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 13

Roesch, Martin. Snort - Lightweight Intrusion Detection for Networks. Proc. of
13th Systems Administration Conf. (LISA ’99), Nov. 7-12, Seattle, Washington,
1999: 229-238.

Sinclair, Chris, Lyn Pierce, and Sara Matzner. An Application of Machine
Learning to Network Intrusion Detection. Proc. of 1999 Annual Computer
Security Applications Conf. (ACSAC), Dec. 6-10, Phoenix, Arizona 1999: 371-
377. URL: http://www.acsac.org/1999/papers/fri-b-1030-sinclair.pdf (30 Oct.
2003).

Whitley, Darrell. “A Genetic Algorithm Tutorial.” Statistics and Computing 4
(1994): 65-85.

