
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Using Password Recovery Software Proactively

Blake Beller

March 26, 2004
Practical Assignment for GIAC GSEC Certification

Version 1.4b, Option 1

Abstract
The goal of this paper is to discuss the basics of password management and
how password recovery software can be used proactively to increase the security
in your environment. Additionally, demonstrations and discussion will reinforce
the weakness of Lan Manager (LM) hashes on the Windows platforms. Testing
the strength of passwords is an important component of internal audits and
should be an expected component of any external audits performed. If you are
unfamiliar with password recovery software, some of the examples and
demonstrations in this paper may help you get started.

Introduction
Username and password combinations are a common means of user
authentication. In some instances, a username and password combination is the
only line of defense to prevent unauthenticated users from gaining access to
certain data, such as an online website where you can purchase computer
equipment. In other cases where defense-in-depth strategy is more prevalent, a
username and password combination may only be one of several layers of
defense to authorize access. Password attacks are still a common method for a
malicious user to gain access to a system. Hopefully this paper will give
examples and discussion of software tools and methods to help you defend
against these types of attacks. The types of password hashes discussed will be
a subset of those that exist in the Windows and UNIX operating systems, for
which password recovery software already exists. Originally this paper was
intended to be a case study, but was changed to combine theory with the
demonstrations. If you are looking for examples of using password recovery
tools, you will find summaries of the demonstrations near the end of the paper,
with the full demonstrations in the appendices.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Best Practices
The System, Audit, Network, and Security (SANS) Institute provides, on its
website, a sample password policy. According to the website, all of the SANS
sample policies are sanitized versions of a large organization’s policies.
Focusing on the portion of the policy that relates to password rotation, section 4.1
states:

• All system-level passwords (e.g., root, enable, NT admin, application
administration accounts, etc.) must be changed on at least a quarterly
basis.

• All user-level passwords (e.g., email, web, desktop computer, etc.) must
be changed at least every six months. The recommended change interval
is every four months (Password Policy, p. 1)

A “strong” password is regarded as a password that is difficult to guess and is not
easy to recover. Section 4.2 of the same SANS policy, relevant to password
construction, states:

Strong passwords have the following characteristics:

• Contain both upper and lower case characters (e.g., a-z, A-Z)
• Have digits and punctuation characters as well as letters e.g., 0-9,

!@#$%^&*()_+|~-=\`{}[]:";'<>?,./)
• Are at least eight alphanumeric characters long.
• Are not a word in any language, slang, dialect, jargon, etc.
• Are not based on personal information, names of family, etc.
• Passwords should never be written down or stored on-line. Try to

create passwords that can be easily remembered. One way to do this
is create a password based on a song title, affirmation, or other
phrase. For example, the phrase might be: "This May Be One Way To
Remember" and the password could be: "TmB1w2R!" or "Tmb1W>r~"
or some other variation (Password Policy, p. 2)

To expand on the last bullet point, the password should have meaning to you,
making it easy to remember, but appear to be gibberish to anyone else. While
there are other important criteria, such as locking user accounts after multiple
unsuccessful logins, the paper will focus on implications of password
construction and types of password hashes. Here is a list of the password
management features built into the following operating systems: Solaris 8, AIX
4.3.3, and Windows 2000 Professional. Some operating systems offer more
management features than others.

The /etc/default/passwd file in Solaris 8 allows the root user to configure the
following password settings:

• Maximum age – time before the password must be changed
• Minimum age – time a password must be kept before it can be changed
• Minimum Password Length

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

In AIX 4.3.3, the System Management Interface Tool (SMIT) allows the following
password attributes to be configured by the root user.

• Dictionary checking
• Number of passwords remembered in password history
• Amount of time passwords are remembered in password history
• Weeks between password expiration and password lockout
• Maximum age
• Minimum age
• Minimum password length
• Minimum number of alpha characters
• Minimum number of other characters
• Maximum number of times a character can be repeated in the password
• Minimum number of characters that must differ from previous password

Microsoft Management Console (MMC) in Windows 2000 server has the
following password settings:

• Number of passwords remembered in password history
• Maximum age
• Minimum age
• Whether or not password complexity rules are enforced
• Whether or not passwords are stored using reversible encryption

Additionally, third-party products can be used to strengthen password
management capabilities. Examples include Npasswd, Password Policy
Enforcer, and Control-SA. Npasswd is specific to various flavors of UNIX.
Password Policy Enforcer runs on several Windows platforms and also as a
client on Novell Netware. Control-SA, being a user provisioning tool for the
enterprise, is a much broader cross-platform tool that, among other features,
gives the ability to impose password standards across those platforms.

Understanding Password Hashes
In addition to using the capabilities of the operating system or third party software
to adhere to password best practices, password recovery software can be used
as an additional check. Much of this paper will focus on discussing and
demonstrating the likelihood of obtaining your plain-text password if its
corresponding encrypted hash is known. The various Windows and UNIX
operating systems do not store user passwords in plain-text. Instead, the
operating system stores the result of a one-way hash of the plain-text password.
Webopedia.com defines a “one-way hash” as “an algorithm that turns messages
or text into a fixed string of digits, usually for security or data management
purposes. The ‘one way’ means that it's nearly impossible to derive the original
text from the string” (One-way hash).” When a user enters his password to
authenticate on a Windows or UNIX system, the one way hash algorithm is
performed. If the result of the one-way hash is identical to the hash stored by the
operating system for that user, it is assumed that the plain-text password entered
is correct, and the user is authenticated. To better understand how hashing

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

algorithms work, FIPS publication 180-1 gives a very thorough and descriptive
explanation of the popular hashing algorithm, SHA-1.

For discussion purposes, types of password hashes in the Windows and UNIX
operating systems will be limited to Lan Manager, NTLM (NT Lan Manager),
Traditional DES (Data Encryption Standard), and FreeBSD MD5 (Message
Digest 5). While these hashes may have other names associated with them, I
will use the terms in the previous sentence to identify the types of hashes. The
following is an example of a plain-text password and what its corresponding
hashes look like.
 Plain-text |n&Jnn37
 LM hash 9432179b4cb24cf97c3113b4a1a5e3a0
 NTLM hash c6302ff6fcd6df7bda813fc442908571
 Traditional DES hash MRRfw7BvTPR.Y
 FreeBSD MD5 hash 1QO72SDLf$PTGe.pbrKlEwR6tiAvxpY.

A “salt,” which is used by some hashing algorithms, is text which can be
combined with the original plain-text password before the hash is computed. The
first two characters of a DES hash are the salt. In the DES hash example above,
salting the plain-text password of “|n&Jnn37“ with “MR” produces
“Rfw7BvTPR.Y“. Similarly with the FreeBSD MD5 hash above, the “1” is
indicative of an MD5 hash and is always the first 3 characters of the salt. Neither
LM nor NTLM hashes use a salt in their hashing algorithm. For example, the
plain-text password of “|n&Jnn37” on any Windows server will always return the
LM hash of “9432179b4cb24cf97c3113b4a1a5e3a0“.

Adding a salt helps defend against dictionary attacks (explained later). It can
also significantly slow down the rate at which password recovery software like
John the Ripper (referred to as “John”), a freeware password recovery tool,
searches through potential passwords (also explained later). Rainbow Crack
(rcrack), another freeware software recovery tool, is an example of password
recovery software that takes the approach of generating tables of plain-text
passwords and their corresponding ciphertext. If you have the time, computing
power, and disk space, rcrack allows you to provide the type of hash, minimum
and maximum password length, and valid password characters to compute the
corresponding “rainbow tables.”

Why Use Password Recovery Software?
Theoretically, if given enough computing power and time, any password hash
would be recovered. Think about what the goals of your testing should be, and
make them realistic. If your systems can be configured to enforce best practices
through technology, then it can be a realistic goal to show with your testing that
1% or less passwords can be recovered in the amount of time before the
passwords would have to be rotated. If you are currently unable to enforce, with
technology, best practices on your system, the previously mentioned goal is not
necessarily realistic. Instead, your short-term goal may be to perform testing on

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

a more frequent basis to continue to educate users, whose passwords are
recovered, how to choose stronger passwords. While your goals may change
over time, do have a purpose to your testing. As you refine your testing and
goals, hopefully you will be able to gain confidence that your systems will be
relatively safe from malicious users or external auditors attacking the passwords.

Obtain Written Permission Before Testing
Determine which team or person(s) in your organization should be responsible
for password recovery testing. Regardless of who it is, it is imperative to get
written permission from an authorized party before testing. Being a system
administrator or a member of the security team does not give you free reign to do
whatever you want whenever you want. Define the scope of the testing that will
be performed, who is authorized to perform the testing, when it will occur, and
then obtain signature authority from the appropriate person or persons. While
performing password recovery testing is simply one type of act that can fall under
the larger umbrella of penetration testing, there are potential legal issues to
consider. The book Hack I.T. helps summarize:

A request from a company employee to perform a penetration test is not
necessarily a valid request. If that person does not have the authority to
request such actions and indemnify you if anything goes wrong, you may
incur fees related to court costs in addition to loss of fees for services.
Therefore, a legal agreement must be reached before the testing begins,
and the tester needs to make sure he or she has a signed “Get Out of Jail
Free Card” from a company officer authorized to enter the organization
into a legally binding agreement. The “Get Out of Jail Free Card”
generally entails a legal agreement signed by an authorized
representative of the organization outlining the types of activities to be
performed and indemnifying the test against any loss or damages that
may result from the testing (Klevinsky, p. 20).

Ed Skoudis provides a sample memo on his “Counter Hack Web Site” to obtain
such permission.

Obtaining Password Hashes
While the spirit of this paper is with regards to being proactive, a basic
understanding of how malicious users fit into the picture is needed. The following
list includes possibilities of how a person might obtain password hashes from one
or more UNIX or Windows hosts:

1) Sniffing your network for username and password hashes traveling to or
from a Network Information Services (NIS) master if running UNIX, or
username and password hashes traveling to a Windows domain
controller.

2) Using NIS in UNIX or not using a shadow password file allows regular
users to use the “ypcat passwd” or “cat /etc/passwd” commands,
respectively, to see the encrypted password hashes of all users in the NIS
domain or on the local host.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3) Someone has remotely compromised your host with administrative
privileges and now has access to the shadow password file in UNIX or can
now run a utility like pwdump2 in Windows to dump the LM and NTLM
hashes to a file.

4) Someone has physically compromised the host and could boot from
media to modify the Administrator password or simply move the hard drive
to another host and mount the root partition, etc.

Note that sniffing a network for unencrypted protocols like ftp and telnet is also a
possibility, but in these cases, there is no decryption to be performed as the
plain-text password has already been obtained.

Protect the Password Hashes During Testing
When obtaining encrypted hashes for proactive testing, be diligent about
protecting the data in transit and at rest. Otherwise, you will carelessly defeat the
inherent protection of files like /etc/shadow in UNIX or the SAM database in
Windows. If moving the encrypted hashes from one host to another is needed,
do not use unencrypted methods of transfer like ftp or email. If using a utility like
pwdump2 to dump the encrypted LM and NTLM hashes, make sure that
permissions are appropriate in the target directory and on the target file to
prevent non-privileged users from accessing the data. If using the pwdump3 tool
to pull the encrypted hashes from a remote machine, be aware that the hashes
are not inherently encrypted as they travel across the network to your local host.
If it is necessary to remotely pull the encrypted hashes for testing, consider using
pwdump3e (e for encryption) or tunnel the session through an encrypted protocol
like ssh. Further steps to protect the encrypted hashes can include running your
password recovery software on a non-networked machine, so that it may not be
remotely compromised. Also consider encrypting the area of storage containing
the input and output of your testing. It would be bad enough to let the encrypted
hashes get into the hands of an unauthorized party, and even worse to let the
decrypted hashes be viewed by an unauthorized party.

Using the Results of Password Recovery Testing
You should follow up with each user whose password was recovered in what you
deem too short an amount of time and require each user to change his/her
password. Help educate the users so they better understand how to choose a
strong password. Once all the users with weak passwords from the first round of
testing have updated their passwords, consider rerunning your testing on those
password hashes only. If your hosts, for any reason, cannot be configured to
impose complex password criteria, diligent testing with password recovery
software may be your only way to ensure that users are choosing strong
passwords. Once you are able to impose minimum password length and
password composition requirements consistent with best practices, it should be
unlikely that you will be able to recovery any passwords at all in a reasonable
amount of time.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Password Search Space
John defaults to 95 valid choices for each character in a password: 26 upper-
case letters, 26 lower-case letters, 10 numerals, and 33 printable special
characters (including space). Consequently, there exists 95^1 total one-
character passwords, 95^2 total two-character passwords, etc. to 95^8 eight-
character passwords. The total number of 1-8 character passwords is the sum of
the previous numbers. In analyzing the feasibility of brute-force attacks
(explained later), password length is important. While the worst-case scenario
may take 6 days to brute-force a certain type of password hash that is x
characters long, the same type of password hash that is (x+1) characters long
could take up to 6*95=570 days. With regards to search space only, reference
chart 1.

Number of characters in
password

Number of possible
passwords with printable

characters
1 95
2 9,025
3 857,375
4 81,450,625
5 7,737,809,375
6 735,091,890,625
7 69,833,729,609,375
8 6,634,204,312,890,625

Chart 1

It is important to understand that the numbers listed in the second column are
actually upper bounds for the total possible number of passwords given a
particular password length. If password complexity rules are imposed, the
number of possible passwords is actually reduced. To better illustrate this point
but keep the computations simple, we will use the example of a password with
the following criteria: it must be exactly 3 characters long and must contain
exactly one special character. Out of 95 possible characters, 33 are special
characters and 62 account for the other characters. Because the password
requires exactly one special character, it must go in the first, second, or third
position. Once the special character is chosen, there can be no other special
characters. The resulting computation is (33)(62)(62) + (62)(33)(62) +
(62)(62)(33) = 380,556. From Chart 1, out of 857,375 possible passwords with
no restrictions, we reduced the total number of valid passwords by over 50% in
this case. Though reducing the total number of possible passwords may sound
counterproductive, the tradeoff is that the passwords eliminated from the search
space will tend to be those simple passwords found quickly by an attacker and/or
password recovery software like John. Quantifying how much the search space
of a given password length will be reduced depends on the password complexity
rules imposed. Attempting to elegantly count, for instance, the number of valid 8-
character passwords that require at least one letter, one number, and one special
character with no character occurring more than three times in the password is,

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

unfortunately, a complex combinatorics problem beyond the scope of this paper.
Consequently, the numbers in Chart 1 above will be used in Appendix C and
theoretical computations in this paper.

Password Recovery Tools
John is the tool used in most examples in this paper. Related tools include,
Proactive Windows Security Explorer (PWSE), LC4 (formerly L0phtcrack), Cisilia,
Rainbow Crack, and Distributed John the Ripper (djohn). Several of these tools
are contained in the Knoppix Security Tools Distribution (STD). See Appendix A
for URLs to learn more about these tools.

John is freeware available on the Windows platform and several flavors of UNIX
and is capable of recovering passwords from several different types of hashes.
John is a fairly popular password recovery tool. References to John include the
United States General Accounting Office’s (GAO) Federal Information Systems
Controls Audit Manual (FISCAM) and a reference from the Jacksonville chapter
of Information Systems Audit and Controls Association (ISACA). John’s current
version of stable binaries is 1.6 and the latest development version is 1.6.36. In
addition to the significant performance improvements in the recent development
versions of John, as shown by Chart 2, the verbose logging contained in john.log
contains a lot of useful information, like a log entry for each password recovered.
Additionally, a timestamp is at the beginning of every log message. To use John,
an input file containing a list of usernames and the users’ corresponding
password hashes is needed. John comes with a utility to combine /etc/passwd
and /etc/shadow in UNIX into a single file. To extract the LM and NTLM hashes
from Windows for use with John, a utility like pwdump2 must be used. Similar to
the process that occurs when logging into a UNIX or Windows host explained
earlier, John hashes a string and compares it against all hashes in the text file of
hashes that you are trying to recover. If the hashes match, it is assumed that the
string used to create the hash is identical and therefore the password has been
recovered.

Using John can be very effective without making any configuration changes at
all. Reference the documentation that comes with version 1.6 of the software to
get started. Later examples will demonstrate certain configuration changes.
Simpler configuration changes include using different wordlists or tightening the
constraints on password length. A more complex example includes writing some
custom rules to add to John’s rule set.

The documentation that comes with John explains that John has four modes of
operation; the first three are executed sequentially by default if no options are
given. Summarizing the four modes:

1. Single-Crack – Rules relating to the text from the username and GECOS
fields are used. (The GECOS field is the third field in a UNIX password
file and commonly has a text description, such as the user’s full name.)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2. Wordlist – This starts with a simple dictionary attack. A list of words
(strings) is read in, creating a hash from each word. Additionally, several
simple rules like appending a character or forcing the word to all
lowercase are performed.

3. Incremental – This is far slower than the first two modes. It is not the
same as a simple brute-force attack, as it uses something called character
frequency tables to recover simpler passwords more quickly. Similar to a
brute-force attack, it should eventually find the password.

4. External – This mode allows the user to completely define and configure
an additional mode to recover passwords. For instance, you can
configure a mode to make John behave exactly like the brute-force
method in PWSE.

To compare and contrast, PWSE has three types of attacks for LM or NTLM
hashes only. Additionally, you must choose whether to attack the LM or NTLM
hashes. One type of attack is chosen at a time:

1. Dictionary – This is similar to the wordlist mode in John, but only tries the
words in the dictionary with no variations.

2. Password-Masking – This allows you to fix certain characters and brute-
force the other characters. If, for instance, you are trying to recover your
own password and remember that it was 7 characters, started with a
capital “E” and ended with an exclamation point, you could enter a mask
of “E?????!” where “?” corresponds to a character to brute-force. In this
example, such an attack reduces the search space from 7 characters to
only 5 characters.

3. Brute-force – You choose the minimum and maximum password length
and the possible character sets to use, and then all possible permutations
are methodically attempted.

When using software like PWSE, the time needed to recover a password with a
brute-force attack is primarily dependent on two factors: the length of the
unencrypted password and the number of passwords per second that the
software can hash. The length of the password will determine the total possible
search space, as seen in Chart 1. The number of passwords per second
processed, of which Chart 2 is an example, is largely dependent upon processor
speed of the computer and how computationally intensive it is for the computer to
generate the encrypted hash from the plain-text password. Referencing Chart 2,
of the four types of password hashes discussed in this paper, the same computer
running the same version of John in the same operating system can process LM
hashes roughly 1,000 times as fast as FreeBSD MD5 hashes. A mostly
insignificant factor is the number of passwords that you are trying to recover.
Meaning, the bulk of the processor’s work is to create the encrypted hash from
the plain-text password, not the string comparison of the encrypted hashes. For
instance, if John can compute roughly 100,000 NTLM hashes per second, it will
still achieve roughly that same rate whether you are trying to recover only one
password or even 1,000 passwords at the same time.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Some of the pros and cons of the different types of attacks are as follows. A
positive aspect of a dictionary attack is that it is performed very quickly. A
negative aspect of a dictionary attack is that if the original password came from a
system where any decent password complexity is imposed, you will likely not find
any passwords with this approach. The other extreme is a brute-force attack.
The good news is that assuming that the scope of password length and valid
character sets are accurate, a brute-force attack will eventually find any
password given enough time (eg. a brute-force attack can still fail, for instance, if
performing the attack of passwords 1-6 characters in length on a password that
is actually 8 characters). The bad news is that the time needed could be
prohibitively long, such as many years. Somewhere between the dictionary and
brute-force attacks are the built-in rule sets in John that intelligently attack
passwords or the password-masking attack in PWSE.

To help better understand how the brute-force attack in PWSE works, consider
attacking a 6-character password that could potentially consist of a mix of upper-
case letters, lower-case letters, numbers, and special characters. A visual
analogy is to picture the odometer of a car, but instead of each dial going from 0-
9 only, it goes from A-Z, then a-z, then 0-9, then through the remaining 33
special characters. In some sense, it is like counting in base 95 where A-Z=1-26,
a-z=27-52, 0-9=53-62, and the 33 special characters correspond to 63-95.

Benchmarks
John the Ripper comes with a built-in benchmark (syntax is “john –test”). Screen
Shot 1 is an example of the output from Config-3 (see Chart 2):

root@darkstar:/usr/local/src/john-1.6.36/ntlm# ./john -test
Benchmarking: Traditional DES [64/64 BS MMX]... DONE
Many salts: 543014 c/s real, 543014 c/s virtual
Only one salt: 482841 c/s real, 482841 c/s virtual

Benchmarking: BSDI DES (x725) [64/64 BS MMX]... DONE
Many salts: 18995 c/s real, 18995 c/s virtual
Only one salt: 18688 c/s real, 18688 c/s virtual

Benchmarking: FreeBSD MD5 [32/32]... DONE
Raw: 4072 c/s real, 4072 c/s virtual

Benchmarking: OpenBSD Blowfish (x32) [32/32]... DONE
Raw: 319 c/s real, 319 c/s virtual

Benchmarking: Kerberos AFS DES [48/64 4K MMX]... DONE
Short: 146790 c/s real, 146790 c/s virtual
Long: 378828 c/s real, 378828 c/s virtual

Benchmarking: NT LM DES [64/64 BS MMX]... DONE
Raw: 3856473 c/s real, 3856473 c/s virtual

Benchmarking: NT MD4 [TridgeMD4]... DONE
Raw: 616675 c/s real, 616675 c/s virtual

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Screen Shot 1

The “c/s” in each of the benchmarks is the “crypts per second”, corresponding to
the number of hashes that John is able to generate with that type of encryption in
one second. However, when running John against password hashes with no
different salts, the “c/s” rate can be far greater than that of the benchmark. The
number in this case is actually the product of multiplying the hashing rate by the
number of passwords that you are trying to recover. As discussed earlier in the
paper, most of the processor’s time is spent performing the password hash,
compared to the string comparisons of the hash just generated against the one
or more hashes that we are trying to recover. Looking at Screen Shot 2, the
value is not too much less than the benchmark from Screen Shot 1 (616,675)
multiplied by the number of passwords (50) in Screen Shot 2.

root@darkstar:/usr/local/src/john-1.6.36/ntlm# ./john -format:nt lm.txt
Loaded 50 password hashes with no different salts (NT MD4 [TridgeMD4])
guesses: 0 time: 0:00:01:15 (3) c/s: 28490485 trying: anC40
Screen Shot 2

The following chart was created by running John in three configurations on the
same physical laptop followed by a fourth configuration on a slower desktop PC.
Note that running the same version of John under Windows and Slackware
(Linux) had mostly comparable results. However, running the latest version of
John on the same hardware had a significant performance increase; even the
slower desktop with the newer version of John outperformed the faster desktop
with the earlier version of John.

 Config-1 Config-2 Config-3 Config-4
Processor speed P-4 2.2 GHz P-4 2.2 GHz P-4 2.2 GHz P-3 700MHz

Operating System Version
Windows

2000
Slackware

9.1
Slackware

9.1
Slackware

9.1
Version of John the Ripper 1.6 1.6 1.6.36 1.6.36

Traditional DES [64/64 BS
MMX]
Many salts 134,900 161,638 543,014 230,131
One salt 124,341 154,905 482,841 194,598

FreeBSD MD5 [32/32]
Raw 2,207 2,205 4,072 1,720

NT LM DES [64/64 BS MMX]
Raw 636,455 837,209 3,856,473 1,337,011

NT MD4 [TridgeMD4]
Raw N/A N/A 620,534 310,049
Chart 2

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Config-1, Config-3, and Config-4 were used in examples in this paper.
Theoretical examples will use the numbers in Config-3, which in turn are used in
Appendix C, for calculations. For reference, Appendix C shows the theoretical
time needed to completely brute-force the search space of passwords 6-8
characters in length using John, depending on the type of password hash. Keep
in mind that these are purely theoretical numbers and that John’s incremental
mode is not the same as a simple brute-force attack. Nonetheless, the numbers
can be used as estimations.

Weaknesses of LM hashes
In the SANS Top 20 list for 2002, one of the top 10 Windows-specific issues is to
disable the use of “LAN Manager Authentication – Weak LM Hashing”
(Kamerling, p. 4). Appendix C helps show mathematically why LM hashes are
considered to be weak by today’s standards. From the perspective of using a
password recovery software, there are four key issues which result in LM hashes
being weak:

1. High rate of passwords/second tested (from the benchmarks listed in
Chart 2, John the Ripper can process LM hashes approximately 1,000
times as quickly as FreeBSD MD5 hashes, for instance).

2. Windows passwords 8-14 characters in length are actually split into two 7-
byte passwords and are hashed separately. The LM hash is actually two
16-character hashes concatenated together. Any passwords shorter than
14 characters are padded with binary zeroes before hashing.

3. Windows passwords are converted to all uppercase before the LM hash is
performed, reducing the number from 95 down to 69 (no lowercase letters)
valid possibilities per character.

4. No salt. (Note that NTLM hashes do not have a salt either, but NTLM
hashes do not suffer from weaknesses 2 or 3, and are roughly one order
of magnitude slower to hash than LM).

The concept of a salt was introduced in the latter portion of “Understanding
Password Hashes” earlier in the paper. To better illustrate the effect that a salt
has on the speed of password recovery software like John, we will use the
following example. We will pretend that we are trying to recover 3 DES
password hashes with John, each of the 3 password hashes having salts “aY”,
“DH”, and “/X”, respectively. If the current string that John is testing is “hello5”
then John must generate the DES hashes of “hello5” with each of the three salts
and compare each hash against the 3 hashes that we are trying to recover.
Effectively, we are slowing the rate of passwords per second to something close
to 1/x where x is the number of salts, in this case 1/3. Bear this in mind when
doing any proactive testing. If the goal of your particular test, for instance, is to
try to recover the root password from a Solaris host, then create a file with the
root entries from /etc/passwd and /etc/shadow only. Do not include any other
user entries, unless they happen to have the same salt.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Because of items 2 and 3 above, the maximum search space, as seen in
Appendix C, is actually only 69^7 and does not increase as the password length
increases from 7 to 8 characters (or higher).
To better illustrate the third point from above, see Chart 3:

Plain-
Text LM hash NTLM hash
Wubba Ccdb46f1dde44902aad3b435b51404ee 81fd742d50b5e3e1e6e7c973e18685ae
WUBBA Ccdb46f1dde44902aad3b435b51404ee fdd691abd000d71d278c48beef82dece
WuBbA Ccdb46f1dde44902aad3b435b51404ee 98df8ba04308a24f7423f03f36c8ad72
wUBBa Ccdb46f1dde44902aad3b435b51404ee 1e9e62d1b3d1b4ca45d392a3874bbecc

Chart 3

Though the capitalization is varied, notice the first half of the LM hash remains
constant. Because of the padding with binary zeroes, any passwords 7
characters or shorter will all have the same second half of the LM hash. Well
explained on one of Lepton Crack’s web pages, “you can immediately know a
Windows® password is shorter than 8 characters by watching to the second half
of the hash: in this case it will be always AAD3B435B51404EE (the LM hash of 7
binary zeroes)” (Brunati). But also understand that trying to recover a password
from the LM hash does not necessarily give you the original password as it will
be in all uppercase. For every letter in the recovered LM hash, there are two
possibilities. If John recovers the password of “A3D6[RY” from the LM hash,
because there are four letters contained in the password, there are actually
2^4=16 possible passwords. From trial and error, when PWSE performs an
“LM+NTLM attack” it appears to first find the upper-case plain-text password from
the LM hash. Almost immediately after, PWSE then shows the case-sensitive
password. My guess on how this is accomplished is that PWSE probably uses
the case-insensitive password recovered from the LM hash and then brute-forces
all upper/lower case combinations against the NTLM hash. After all, even if the
plain-text password was 14 alpha characters, 2^14=16,384 possible passwords
and can be brute-forced against the NTLM hash very quickly.

Of the four types of hashes discussed in this paper, another weakness unique to
LM hashes is a consequence of issue 2 listed above. Certain passwords which
are composed of an entire dictionary word with other characters appended can
become trivial to recover from the LM hash. Even though basing a password on
a dictionary word goes against best practice, programs like John will have a
much more difficult time recovering those passwords if another hashing algorithm
is used. Demonstrations 1-3 will reinforce the weakness of LM hashes.

See Appendix E for Demonstration 1. The basic lesson learned from
Demonstration 1 is that in certain cases, basing a password on a dictionary word
can make the password trivial to recover from the LM hash. This is largely due to
the unique property mentioned earlier that the LM hash is really just two
concatenated hashes from 7-byte strings.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

See Appendix F, which references Appendix B, for Demonstration 2. This
demonstration contrasts recovering LM hashes versus recovering DES hashes.
50 plain-text passwords were used to create their corresponding LM and DES
hashes. All plain-text passwords were randomly generated, exactly 8 characters
in length, consisting of a mix of alpha, numeric, and special characters. The
main point of this exercise is to show that given a set of passwords with
composition that follows best practices, the DES hashes is relatively strong while
the LM hashes are comparatively weak.

See Appendix G for Demonstration 3. The purpose of this demonstration is to
intentionally go a bit overboard, trying to recover all passwords, not just one or
some. In retrospect, it would have been a bit more useful to do the same
experiment that had stricter password complexity rules enforced. Nonetheless, it
should give you cause for concern having demonstrated that all LM hashes on a
server were recovered in under 39 days on a single PC, and under 9 days on
that same PC running a newer version of John. The risk of using LM hashes on
this server, for instance, even if following the practice of rotating passwords every
four months, a malicious user that was able to obtain a password hash from this
host would have a (120 days – 9 days)/(120 days) = 92.5% chance of recovering
the password before it was rotated. Note that this requires no specialized
knowledge. All that is needed is a single PC with a fast processor, the most
recent version of John with its default configuration, and any LM hash from the
particular host. If you are still not convinced to move away from using LM
authentication, I encourage you to perform Demonstration 3 in your own
environment and to closely look at the demonstrations presented in the “Project
Rainbow Crack” web page or the recent announcement on the “Whitehat Project”
web page.

Hopefully the results of demonstrations 1-3 and the numbers presented in
Appendix C strongly reinforce the “SANS Top 20” recommendation to move
away from using LM authentication. Look into using NTLM or even NTLMv2 for
authentication, if possible. Additionally, Microsoft Knowledge Base Article
299656 provides an explanation of how to configure Windows not to store LM
hashes.

Shifting the focus from demonstrating the weaknesses of LM hashes, we will
move on to a couple of practical demonstrations that may be useful for internal
auditing in general. See Appendix H for Demonstration 4. Demonstration 4
shows the usefulness of using a larger dictionary with John to recover, more
quickly, a larger subset of weaker passwords. As mentioned in the
demonstration, should you be conducting your internal auditing in an
environment that historically has used a small number of simple passwords any
time that a new user account was created or when a password was reset, go
ahead and add those simple passwords directly to the dictionary that you are
using (if they are not already in your wordlist) to recover them more quickly.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

See Appendix I for Demonstration 5. Demonstration 5 gives an example of
taking password complexity rules imposed in your environment and then writing
some corresponding custom rules to perform a more focused password attack. If
you have password complexity requires posted as a policy on your company’s
Intranet, then it is not unreasonable to assume that a malicious attacker that is
sniffing your network also is able to see this policy and also create custom rules
in John to perform such a focused attack.

Hopefully Demonstrations 4 and 5 give you some ideas of how you might vary,
and consequently improve your own testing. If you can significantly enhance
your testing methods and still not recover any passwords, you are improving the
security of your environment.

Conclusion
Hopefully this paper has helped educate you regarding the basics and
importance of password management, demonstrated the use of password
recovery software to be used when internally auditing your environments, and
used math to reinforce key concepts. The use of the password management
capabilities of the operating system in addition to the proactive use of password
recovery software will make it much more difficult for a malicious user performing
a password attack in addition to better preparing your organization for a third-
party audit.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

List of References

Brunati, Piero, “An experiment with Lepton’s Crack”, June 22, 2003, URL:
http://www.nestonline.com/lcrack/lcexp1.html, (February 5, 2004).

“Computer and Network Hacker Exploits – Part 3”, URL:
http://www.sans.org/sans2004/description.php?course=t4&day=4, (February 9,
2004).

“Federal Information Processing Standards Publication 180-1, April 17, 1995,
URL: http://www.itl.nist.gov/fipspubs/fip180-1.htm, (February 7, 2004).

“Federal Information Systems Controls Audit Manual (FISCAM)”, June 13, 2000,
URL: http://csrc.nist.gov/ispab/june13-15/Heim.pdf, February 7, 2004.

“The Hack FAQ: 13.0 NT Passwords”, URL:
http://www.nmrc.org/pub/faq/hackfaq/hackfaq-13.html, (March 24, 2004).

Kamerling, Erik, “Top 20 Overview,” October 8, 2003, URL:
http://www.sans.org/top20/overview03.pdf, (February 3, 2004)

Klevinsky, T.J., Laliberte, Scott, and Gupta, Ajay, Hack I.T., Pearson Education,
Inc., 2002, p. 20-21.

“Microsoft Knowledge Base Article -299656”, October 13, 2003, URL:
http://support.microsoft.com/default.aspx?scid=KB;EN-US;q299656&, (February
7, 2004).

“One-way hash function”, URL:
http://www.webopedia.com/TERM/O/one-way_hash_function.html, (February 7,
2004).

 “Password Policy”, URL:
http://www.sans.org/resources/policies/Password_Policy.pdf, (February 3, 2004).

“Password Policy Enforcer: FAQ”, URL:
http://www.anixis.com/products/ppe/faq.htm, (March 16, 2004).

“Project Rainbow Crack,” January 25, 2004, URL:
http://www.antsight.com/zsl/rainbowcrack/, (February 5, 2004).

“Security Resource Document”, URL:
www.isaca-jax.org/Security%20Resources.doc, (February 9, 2004).

Skoudis, Ed, “Permission Memo”, URL:
http://www.counterhack.net/permission_memo.html, (February 8, 2004).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

“Whitehat Project”, URL: http://www.whitehat.co.il/forum_viewtopic.php?14.149,
(March 25, 2004).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix A:
Links to some of the tools referenced in this paper:

Name: Cisilia
URL: http://www.cisiar.org/proyectos/cisilia/home_en.php

Name: Control-SA
URL: http://www.bmc.com/products/proddocview/0,,0_0_0_1587,00.html

Name: djohn
URL: http://mobile.securiteam.com/tools/6R00E2K8UA.html

Name: John the Ripper
URL: http://www.openwall.com/john/

Name: Knoppix Security Tools Distribution (STD)
URL: http://www.knoppix-std.org/

Name: LC 4 (formerly L0phtcrack)
URL: http://www.atstake.com/products/lc

Name: Lepton’s Crack
URL: http://usuarios.lycos.es/reinob/

Name: Npasswd
URL: http://www.utexas.edu/cc/unix/software/npasswd/doc/
Dictionaries: http://www.utexas.edu/cc/unix/software/npasswd/dist/npasswd-
words.tar.gz

Name: Password Policy Enforcer
URL: http://www.anixis.com/products/ppe/default.htm

Name: Proactive Windows Security Explorer
URL: http://www.elcomsoft.com/pwsex.html

Name: pwdump2
URL: http://razor.bindview.com/tools/desc/pwdump2_readme.html

Name: Rainbow Crack
URL: http://www.antsight.com/zsl/rainbowcrack/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix B:

Plain-
text LM hash DES hash

Time to
find LM
hash

|n&Jnn37 9432179b4cb24cf97c3113b4a1a5e3a0 MRRfw7BvTPR.Y Not found
.cUJNQ$3 30ec11f5a8fc7c1f1aa818381e4e281b ZRXdGwGI8M43k 1:21:59:43
6KYK4,9g b8a9b7179731e499df128b2dd32bad07 jRyJgjd7M17BQ 6:22:41:33
6022sZh_ e763b954973d121912cf283a437f8859 sRik7Mde/u3Qo 0:12:07:43
r4Dl>:^M 55d22c7ab07810101486235a2333e4d2 0SoP9lCBmunEI Not found
8`$b;>8Z fafc84d05bb4f91d1d91a081d4b37861 8SYPJT4IljTBQ Not found
uQu`V522 7e0734a05919857c1d71060d896b7a46 KSB17uHqZaXjI Not found
0o4yR^.d 67174945192e338b4a3b108f3fa6cb6d aS.AGuW/uXLRQ 1:16:48:32
IYF93j1` 666af25efe19fff35f0f0b90039414f3 nSL6xVNKSNF.A 0:06:29:55
H,-;Y1q1 ce5d50fb1b5cf0afc2265b23734e0dac wSkclsExdui8M Not found
'#0H8qL` 78895c2d6f506d175f0f0b90039414f3 9TC17C1qIFz42 Not found
P/G`c$?0 28ba04fba55c2e3525ad3b83fa6627c7 NT63d6McmDzzE Not found
@@w3E&f} c3909886fb2c2e89487f15d729d904ea WTYIKqcUbiVKA 2:05:10:54
nA05H]85 cf2af2217453eb8c9c5014ae4718a7ee fTaxON.tR3XHw Not found
5&p9RDi, f1fa1da6e47bcac0873dadf71449719f nTUIQ4lSZAziA 2:01:23:24
#E5,r9?u dab277700c8942af613e9293942509f0 zT53Pd7CK9nrI Not found
u<7G0P5! bc20b9050d5d215f695109ab020e401c 6UOq1ORshdzMM Not found
V0@q!b9(45a9aed8c91ae10a57c147c060d0438a GU4fmQhW3MHC. 2:11:20:45
3t1EQ]7~ 6c0b82e6e1ec838c86bb3c2b4237a797 QU7EwGzYfDqD6 Not found
R~Xu1vCa 2e42b9907c508d527584248b8d2c9f9e bUGStfOkBefjk Not found
G3{@C+;n 838cb8e99ccbe9d5e72c57ef50f76a05 kUtT3WrXDSsnY Not found
Mh19$B8L d7b55cdc3109b0edf500944b53168930 rUZ1DnxYfF1Dk 1:11:12:22
e&P{1C3w ce4091d20a9913663832c92fc614b7d1 /VN.EO2p/l6C2 Not found
A_OKck;9 9af23ab9f98c8d0e09752a3293831d17 AVZT6hJecm47M 3:07:27:41
V6{m,wwS 1e702de9ac79759093e28745b8bf4ba6 MV8.Jh11THx/6 Not found
cFjW1*9M 67fcec4a0f567bd61486235a2333e4d2 YVbQmipWgo9BQ 4:18:57:47
15gvJm*" aaf67ed65018bc6da02baaa4a6ae5fea .Wf8UF9rXMTI2 0:03:50:50
R6<Z5g0? 74fad0f9e662efc28b4ddca42d5815ff 7W6IFZNM09cBk Not found
x&x)QC84 278a744902bd0d80ff17365faf1ffe89 GWRrFaHOu850A Not found
f6&4v<yY 350ce694cb95941eb79ae2610dd89d4c SWDMNjKfMXyDY Not found
k74EP-Hq 8f40e5e84d10b361d8f7f5860820ed3f bWCgNU.kuVffE 1:09:13:50
9&p\/igY 3320534257f86395b79ae2610dd89d4c nW7an5LS9ADks Not found
TjU^#1D9 ad243f31805ac38209752a3293831d17 /XCNiiqmUy8uw 4:20:54:25
}rWxHG74 47673e30c9fa096cff17365faf1ffe89 9XP8zLVf/1Tio Not found
Lt5e,_NJ d99db062b4da04ff7ca65f36030673dd GXe54LnpnjEYc Not found
2[0CR7<o 7f68e6b47b441e6ee68aa26a841a86fa NXudVV8fxNu4g Not found
57Aho=}9 31cef9be876b7f2909752a3293831d17 YXI5mz.YO1ZzE Not found
Q:O!5;`o 3d8553c34562900ce68aa26a841a86fa fXmX6NLeUepOc Not found
40S1Z\z$ 365d2155b6c8a661db2294261f598b4c oXNAposEQ.cHw Not found
Fv6@32?e 8093af02f1b7996717306d272a9441bb vXC18ytS0DyR. 1:03:05:45
kkYJe^N1 1370250dd9e0ee79c2265b23734e0dac 6YEhZ2bdZDJD2 1:04:03:13
sm\3xX|6 4c342e2e921cfbb3c81667e9d738c5d9 EYb5NXhZYlQPg Not found

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

yC!2v7-3 964b1be7bb9c81c61aa818381e4e281b LY15jO6R8wyJc 5:19:55:17
@/oLH7-P b47b32c603adf29c8b0ea5a7df135b03 SYaq6CfYymius Not found
05jOdQ(3 4d20fbc3c14491441aa818381e4e281b bY9XIY9WnYYzQ 5:05:49:29
94V2ah'Y 8f099644600b6d40b79ae2610dd89d4c mYKsXtnuWJmnA 2:14:11:59
^UI.y5W\ 1134dfec82c9664ed994ad8c40370504 yYQ6cSOesCrso Not found
t)FX1)'P cd1e88ba76e1224e8b0ea5a7df135b03 3ZhYcmtDa8ktg 6:15:10:20
tB$+P6F] f5f0d824efa93c765e314a31e03c844b BZJ6BdC.zF8og Not found
>7i30S*" cbcf87f7fcc6e212a02baaa4a6ae5fea IZoJjzDUiFhl. Not found

The above hashes were created by manually creating user accounts and
manually setting the user passwords so that the operating system would create
the password hashes. Since there was significant opportunity for human error
due to the manual copying and pasting, I had to verify the validity of all of the
hashes. To accomplish this, I created a text file that contained the 50 plain-text
passwords only and copied this file on top of the password.lst file. I then ran the
LM hashes against John, followed by the DES hashes and ensured that all
passwords were found very quickly. In case you are wondering how John quickly
recovered the passwords in wordlist mode considering all of the dictionary words
were 8 characters but LM hashes are only generated from 7 characters at a time,
John has a rule to truncate the words at 7 characters and to try those.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix C:
Total number of 6-character
passwords 107,918,163,081 735,091,890,625 735,091,890,625 735,091,890,625
Type of hash LM NTLM DES FreeBSD MD5
Passwords/second tested 3,856,473 620,534 543,014 4,072
Total seconds needed to brute-force
password 27,984 1,184,612 1,353,725 180,523,549
Total minutes 466.39 19,743.53 22,562.09 3,008,725.81
Total hours 7.77 329.06 376.03 50,145.43
Total days 0.32 13.71 15.67 2,089.39
Total years 0.00 0.04 0.04 5.72

Total number of 7-character
passwords 7,446,353,252,589 69,833,729,609,375 69,833,729,609,375 69,833,729,609,375
Type of hash LM NTLM DES FreeBSD MD5
Passwords/second tested 3,856,473 620,534 543,014 4,072
Total seconds needed to brute-force
password 1,930,871 112,538,120 128,603,921 17,149,737,134
Total minutes 32,181.19 1,875,635.33 2,143,398.68 285,828,952.23
Total hours 536.35 31,260.59 35,723.31 4,763,815.87
Total days 22.35 1,302.52 1,488.47 198,492.33
Total years 0.06 3.57 4.08 543.44

Total number of 8-character
passwords 7,446,353,252,589 6,634,204,312,890,625 6,634,204,312,890,625 6,634,204,312,890,625
Type of hash LM NTLM DES FreeBSD MD5
Passwords/second tested 3,856,473 620,534 543,014 4,072
Total seconds needed to brute-force
password 1930871.356 10691121378 12217372504 1.62923E+12
Total minutes 32,181.19 178,185,356.29 203,622,875.07 27,153,750,462.06
Total hours 536.35 2,969,755.94 3,393,714.58 452,562,507.70
Total days 22.35 123,739.83 141,404.77 18,856,771.15
Total years 0.06 338.78 387.15 51,627.03

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix D: Acronyms and abbreviations used in this paper

Acronym or
Abbreviation

Explanation

DES Data Encryption Standard
FAQ Frequently Asked Questions
FISCAM Federal Information Systems Controls Audit Manual
GAO General Accounting Office
GHz Gigahertz
ISACA Information Systems Audit and Controls Association
IT Information Technology
John John the Ripper
LC4 L0phtcrack 4
LM Lan Manager
MD5 Message Digest 5 – as defined in RFC 1321
MHz Megahertz
MMC Microsoft Management Console
NIS Network Information Service
NTLM NT Lan Manager
P-4 Pentium 4
PWSE Proactive Windows Security Explorer
RFC Request For Comments
SAM System Account Manager
SANS System, Audit, Network, and Security
SMIT System Management Interface Tool

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix E: Demonstration 1

Experiment: 6 Windows 2000 user accounts are set to 6 different passwords.
The first password is composed of a dictionary word plus one number. Each
successive password contains the exact previous password plus one more
character.
The pwdump2 utility is used to extract the LM and NTLM hashes. The LM
hashes are run against John. What sort of results might we expect?
Results:
Config-4 was used. The passwords get progressively more complex due to the
length of the password incrementing by one character each time and by there
being a mix of alpha, numeric, and special characters. To the naked eye, the
main weakness appears to be that all contain a complete dictionary word.
It took only 2 hours, 43 minutes, and 55 seconds to recover all of them. See
Chart 4:

Plain-text
password

First 7
characters

Time to
recover

first half
of hash

Second 7
characters

Time to
recover

second half
of hash

harley7 harley7 0:00:00:00 N/A
harley7$ harley7 0:00:00:00 $ 0:00:00:02
harley7$- harley7 0:00:00:00 $- 0:00:00:10
harley7$-E harley7 0:00:00:00 $-E 0:00:00:46
harley7$-E4 harley7 0:00:00:00 $-E4 0:00:12:42
harley7$-E4! harley7 0:00:00:00 $-E4! 0:02:43:55
Note that time is expressed in DAYS:HOURS:MINUTES:SECONDS logged in
john.log.
Chart 4

John has a built-in rule in wordlist mode that converts a pure alphabetic word to
lowercase and then appends a digit or simple punctuation. Because “harley”
happens to be in John’s default dictionary, the first half of all of the passwords
was recovered very quickly (in less than one second). Now all that is left is to
recover the second halves of passwords, the longest of which is 5 characters.
When the corresponding NTLM hashes were run against John, the first password
was still recovered very quickly (due to the same rule described in the first
sentence of the paragraph), but none of the other passwords were recovered, not
even “harley7$” after 72 hours of testing. By default, when John enters
incremental mode, it looks for passwords between 1 and 8 characters long,
inclusive. Unless any of the last 4 passwords were recovered in single-crack or
wordlist mode, John would never find them without the maximum length of the
password being increased. Appendix C shows that it could theoretically take the
single PC used in Config-4 approximately 338 years to recover an 8-character
password from its NTLM hash. As explained earlier, expanding the search space
to recover 9-character passwords increases the worst-case to 338 * 95 = 32,110
years.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

For a variation on demonstration 1, the “An Experiment with Lepton’s Crack” web
page gives a helpful walk-through of how to use that particular toolset with
regular expressions to attack LM hashes where a dictionary word is split across
the two halves of the LM hash and one half has been recovered.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix F: Demonstration 2

Experiment: A random password generator was used to generate 50
passwords, all 8 characters in length. The “space” character was omitted as a
valid character, so there were 94 instead of 95 possibilities per character.
Dummy accounts were created under Windows and UNIX so the LM and DES
hashes could be captured. The LM hashes were run against John with no
configuration changes for one week. The DES hashes were also run for one
week against John. Because the 1-7 character password search space for DES
hashes is still significant, I tried to help level the playing field by making one
modification to john.conf. In the “[Incremental:All]” stanza, I modified the “MinLen
= 1” to read “MinLen = 8” to restrict the length of the password guesses to exactly
8 characters. What were the results?

Results: Config-3 was used for both searches. None of the DES hashes were
recovered in one week. As for the LM hashes, John will quickly find any single-
character passwords; some from its word mangling rules in wordlist mode and
some from incremental mode. Consequently, the 8th character of all 50 LM
hashes was found very quickly. Additionally, 20 out of 50 (40%) complete
passwords were found in one week. See Appendix B for the list of plain-text
passwords, their corresponding LM and DES hashes, and also the timestamps
for the complete LM hashes that were recovered. Also note that if we extrapolate
these findings, they are fairly consistent with Appendix C. If 40% of the
passwords were recovered in 7 days, one would estimate that 7 * 2.5 = 17.5 days
would be needed to recover all passwords. This is within the boundaries of the
estimated 22 days. However, even though the 50 passwords in this exercise are
strong passwords, it is not a very large sampling of passwords.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix G: Demonstration 3:

Experiment: Just how long will it take to recover ALL (not just some) LM hashes
from a Windows server? For this demonstration, a Windows 2000 domain
controller was used. The only password restriction imposed at the time on the
server was a minimum length of 6 characters. How long did it take to recover all
of them?

Results: Config-1 was used. No configuration changes to John were made.

• There were 5,866 user accounts split into 11,178 7-byte chunks which will
be referred to as “fragments.”

• 5,424 fragments were found in the first minute. These were mostly the
single-character second-halves of passwords plus some dictionary words
found quickly in wordlist mode.

• Another 61 fragments were found in the first hour, making a total of 5,485
fragments that included 180 complete passwords in the first hour.

• All passwords were recovered in 38 days, 9 hours, 54 minutes, and 37
seconds. An interesting note here is that the last 7 of the 38 days were
spent finding a solitary fragment. To the naked eye, it did not appear very
complex, being three letters, followed by a special character, followed by
three more letters.

This experiment was rerun with Config-3. From Chart 2 we see that Config-3
should theoretically run approximately 6 times as fast as Config-1 for NTLM
hashes. In reality, the ratio was closer to 4.5 as fast, taking 8 days, 8 hours, 40
minutes, and 0 seconds to recover all NTLM hashes.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix H: Demonstration 4:

Experiment: John’s FAQ recommends finding a better wordlist and gives a link
to an ftp site. Because the link appears to be dead, wordlists from Npasswd’s
website (see Appendix A) were downloaded. The dump of LM hashes from
demonstration 3 will be used and run against each of these dictionaries in John’s
wordlist mode and again in wordlist mode with the word mangling rules enabled.
Does the use of different wordlists make much of a difference?

Results:
Config-1 was used. See Chart 5:

Name of
Wordlist

Number of
words in
wordlist

Fragments
recovered in

wordlist
mode

With word
mangling

rules
enabled

Antworth 89523 109 2557
CIS 8714 0 2676
Congress 740 889 1887
CRL-Words 44880 109 2557
Domains 514 0 1705
Dosref 535 0 1938
Ethnologue 42441 2 2676
Family-Names 13484 2 2567
Ftpsites 831 1 1674
Given-Names 8605 0 2368
Jargon 9460 2 2202
Koran 2678 1354 1889
Lcarrol 2158 0 1381
Movies 38137 3 2566
Muffet-Words 1450251 5260 5266
Paradise-Lost 6036 0 2432
Python 3444 1 2098
Roget-words 17474 107 2716
Trek 530 0 1670
Unabr-Dict 213557 111 2670
UNIX-Dict 25104 2781 2787
World-
Factbook 12441 1 2676
Zipcodes 15489 0 2478
<combined> * 1471706 5260 5266
Chart 5

Additionally, I ran all wordlists through the “cat * | sort | uniq” commands (which
concatenates all of the lists, sorts the resulting list alphabetically, and then
removes duplicate entries) from a UNIX shell and used the resulting file as a
wordlist. See the bottom entry in Chart 5. As you can see, it did not find any
more words than the “Muffet-Words” dictionary. Reminder that each “word” in
the wordlist is not limited to letters only, it is any string of characters. If you are

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

proactively testing in an environment where, historically, you are aware that new
user passwords tend to be simple passwords like “newuser” or “hello1”, simply
add these simple passwords to John’s default dictionary (password.lst). Even
though John would likely recover such passwords quickly anyway, this will
ensure that such passwords are recovered while John is still in wordlist mode.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix I: Demonstration 5:
Experiment: Because John enables you to add your own rules, in your testing,
consider writing some custom rules tailored to the password complexity rules of
your environments. If your passwords can still not be recovered even after
adding custom rules like in this example, you can have even more confidence
that a malicious user or auditor will be unable to recover the passwords either.
For instance, we will pretend that passwords must have at least one letter, one
number, and one special character. Given this criteria, it is not unreasonable to
expect lots of people to choose a dictionary word with a single digit and single
special character prefixed or appended or some combination thereof. Use the
RULES document that comes with John’s documentation for an explanation of
how to interpret existing rules or to write your own. John already has several
rules that prefix and append certain characters. In this example, we will cover all
possibilities of a dictionary word (with no capitalization changes) combined with a
single digit and single special character.
Results: Config-3 was used. See Chart 6 for the test bed of passwords.

Username Password
Rule that will recover

password
user0 tigger Default wordlist mode
user1 Tigger7- First custom rule
user2 Tigger!6 Second custom rule
user3 2tigger: Third custom rule
user4 ?tigger9 Fourth custom rule
user5 8<tigger Fifth custom rule
user6 [3tigger Sixth custom rule

user7 1tigger

Default wordlist mode
with file mangling rules

enabled
Chart 6

To show the progression, John will be run three different times.
Run 1: “tigger” is a word in John’s default dictionary. John is run in wordlist
mode only. The syntax of
./john –wordlist:password.lst tigger.txt
will run the hashes contained in tigger.txt against John in wordlist mode only
using the default dictionary. See Screen Shot 3:

root@darkstar:/tmp/demo5# ./john -wordlist:password.lst tigger.txt
Loaded 8 password hashes with 8 different salts (FreeBSD MD5 [32/32])
tigger (user0)
guesses: 1 time: 0:00:00:00 100% c/s: 400 trying: tigger
Screen Shot 3

Run 2: Now we will add the “-rules” option to enable the word mangling rules in
wordlist mode, one built-in rule being to prefix pure alphabetic words with “1” .
See Screen Shot 4:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

root@darkstar:/tmp/demo5# ./john -rules -wordlist:password.lst
tigger.txt
Loaded 8 password hashes with 8 different salts (FreeBSD MD5 [32/32])
tigger (user0)
1tigger (user7)
guesses: 2 time: 0:00:00:00 100% c/s: 1783 trying: Tiggering
Screen Shot 4

Run 3: Now we will add the following six rules to the john.conf file in the
[List.Rules:Wordlist] section to run before the other word mangling rules. The
same syntax as Run 2 will be used. See Screen Shot 5:

Append a single digit followed by a special character
$[0-9]$[`~!@#$%^&*()\-_=+\[{\]}\\|;:'",<.>/?]
Append a special character followed by a single digit
$[`~!@#$%^&*()\-_=+\[{\]}\\|;:'",<.>/?]$[0-9]
Prefix a single digit, then append a special character
^[0-9]$[`~!@#$%^&*()\-_=+\[{\]}\\|;:'",<.>/?]
Prefix a special character, then append a single digit
^[`~!@#$%^&*()\-_=+\[{\]}\\|;:'",<.>/?]$[0-9]
Prefix a single digit followed by a special character
^[0-9]^[`~!@#$%^&*()\-_=+\[{\]}\\|;:'",<.>/?]
Prefix a special character followed by a single digit
^[`~!@#$%^&*()\-_=+\[{\]}\\|;:'",<.>/?]^[0-9]

root@darkstar:/tmp/demo5# ./john -rules -wordlist:password.lst
tigger.txt
Loaded 8 password hashes with 8 different salts (FreeBSD MD5 [32/32])
tigger7- (user1)
tigger[6 (user2)
2tigger: (user3)
?tigger9 (user4)
8<tigger (user5)
\3tigger (user6)
tigger (user0)
1tigger (user7)
guesses: 8 time: 0:00:00:04 100% c/s: 2175 trying: 1tigger
Screen Shot 5

To explain the first rule, the “$” appends a single character (versus the “^” which
prefixes a character) and the “[0-9]” is a regular expression that tries the range of
single digits 0,1,...,8,9. The rest of the rule appends a single special character,
all 32 of which (no space) are enumerated within the square brackets. Worth
noting is that the four characters “[]-\“have special meaning with the regular
expressions and must be escaped by preceding the character with a “\”. That is
why “\” is listed multiple times in square brackets. Once the first custom rule is
understood, the other five rules simply vary the order and placement of the single
digit and special character with respect to the dictionary word. John actually has
a preprocessor that creates individual rules from the regular expressions.
Consequently, the first custom rule above generates 10 * 32 = 320 (number of

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

digits * number of special characters) rules. Now multiply 320 by 6 (total custom
rules with same criteria reordered), which gives 1,920 rules. Now multiply 1,920
by the number of words in the dictionary (default password.lst has 2,290),
resulting in 4,396,800 new hashes to try. Using the benchmarks from Config-3 in
Chart 2, this will take a couple of seconds when run against LM hashes, but
almost 17 minutes when run against FreeBSD MD5 hashes. Exercise caution in
writing rules with regular expressions or you might create a rule that would take
long enough to execute to make it impractical. For instance, modifying the
custom rules in this exercise to include any two characters (not just a digit and
special character), along with the merged dictionary from Demonstration 4, the
calculation would be (94 characters)(94 characters)(6 rules)(1,471,706 words) =
78,023,965,296 new hashes. From Chart 2, this might only take under 6 hours
against LM hashes, but would take roughly 226.5 days to complete against the
FreeBSD hashes.

