
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 1

Muath Al-Khalaf
February 18, 2004
GIAC Security Essentials Certification (GSEC)
Practical Assignment Version 1.4 b, Option 1

Introduction to Java Cryptography

Abstract
In this paper I am going to introduce cryptography libraries in Java. First I will
explain general cryptography concepts from a programmer's point of view.
Then I will give a general overview of the architecture of Java cryptographic
libraries. After that I will go through well-known cryptographic operations and
show how to implement them using Java programs. Finally I will discuss some
cryptographic scenarios that a programmer may deal with in his/her programs.
This paper is the gateway for any programmer who wants to enter the
cryptography world of Java.

Introduction
People are very concerned about information security and how to protect their
systems and PCs. There are several kinds of attacks on networks and
computers exploiting different types of vulnerabilities. Reasons behind these
attacks differ ranging from denial of service only to stealing the organization's
or people important data such as credit cards' numbers. Security engineers
and experts use a mixture of hardware, software, procedures and practices in
a layered approach to build security infrastructure to defend against these
attacks in what is known as "Defense in Depth". In the heart of the
infrastructure is cryptography but "Cryptography by itself is fairly useless" [1]
so it is always used in conjunction with other security tools and practices.

"Cryptography is the art and science of encryption" [1]. Encryption was the
start which then leads to other things including digital signatures and
authentication. The two major contexts in which cryptography is used are
during data exchange or storage. The main goals behind using cryptography
in these two contexts are confidentiality, authentication and data integrity [7].

• Confidentiality means to hide your important and secret data from
unauthorized entities either during exchanging it or when you store it.
This is achieved by encryption.

• Data integrity means to make sure that data has not been changed by
unauthorized entities after transfer or retrieval from storage. This is
achieved by digital signature.

• Authentication is to assure that data originated from authorized
entities when you receive it. This is also achieved by a digital signature.

"Cryptography is an extremely varied field" [1] in which you will find
mathematicians, electrical engineers, system analysts and designers,
programmers, politicians, ...etc. In this paper we will discuss cryptography

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 2

from a programmer point of view. In particular we will discuss Java
Cryptography and how to use Java Cryptography Architecture (JCA) to
develop cryptography related modules in your programs. We will not discuss
in details PKI related topics such as keys and certificates management in
Java programs. Also, when we discuss cryptographic operations and methods
used to accomplish them, we will only give a subset of methods and you can
refer to "Java 2 Standard Edition (J2SE) API Documentation" [6] for more
details.

Before discussing Java cryptography we will give a theoretical overview of
cryptographic primitives that you could use as a programmer in your programs
regardless of the chosen programming language.

Cryptographic Primitives
When you deal with cryptography in any program you will find yourself using a
mixture of four cryptographic primitives which are symmetric encryption,
asymmetric encryption, message digest and digital signature [7]. These
primitives are combination of mathematical cryptographic algorithms and
practices. All cryptographic operations are centralized around these primitives
so it is very important to understand them.

Symmetric Encryption

Symmetric encryption is a transformation of data bits from an understandable
useful plain format into a non understandable and encrypted format. This is
done by a combination of mathematical symmetric encryption algorithm and a
secret key. You can then use this secret key along with the algorithm to
decrypt the data i.e. transform it to the original plain format. Because of the
usage of the same key to encrypt and decrypt data it is sometimes called
shared or secret key encryption. Suppose that Alice wants to send a message
to Bob without letting Eve (who is listening to them) read it. Then Alice will use
a secret shared key which they have in common, encrypt this message using
symmetric encryption and send it to Bob. Bob then will get the encrypted
message from Alice, decrypt the message using the shared key and read it. If
Eve intercept the transmission and get the message she can not read it
because she does not have the shared key.

Message + key + algorithm
è Encrypted Message

Encrypted Message + key
+ algorithm è Message

Encrypted Message ? !!

Alice Bob

Eve

Encrypted message

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 3

Symmetric encryption is very fast. There are many algorithms used here such
as RC4, Rijndael and TripleDES which uses different key sizes. They are
called block ciphers because they encrypt any amount of data block by block.
This means that you can divide a huge amount of data into a stream of
chained blocks and then encrypt them one block at a time. The most well-
known chaining mode is cipher block chaining (CBC) in which you feed the
algorithm data along with an initialization vector (IV) – number of bits fetched
randomly - to get more randomization [1] [2] [7]. IV will be used with first block
and then the second block will use an IV from the output of the first block. You
will get the same size output as the input block after encrypting it so there is
no overhead in storage or bandwidth. The only problem with the symmetric
encryption is the exchange of the shared key. How will Alice and Bob
exchange the shared secret key?

Asymmetric Encryption

The major problem of symmetric encryption is sharing the key. This problem
is solved by asymmetric encryption. Asymmetric encryption does the same
thing as symmetric encryption in which it transforms bits of data from plain
format to non-useful encrypted format and then returns them into useful plain
one. But the difference here is that it uses two - mathematically linked - keys
for encryption and decryption such that when you encrypt a message with one
of the keys you can only decrypt it with the other one. These two keys are
called public key and private key. So when you encrypt the message with
public key you can only decrypt it with private and vice versa. According to
this, each entity should have two keys; public and private and one should only
distribute his/her public key and keeps his/her private key secret.

Now lets go back again to Alice and Bob. Alice can create a random secret
key for each message or set of messages (connection session), encrypt this
key with Bob's public key and send it to Bob. Bob, then, decrypts the message
with his private key and obtains the secret key to decrypt the future
messages. This is called session key exchange and it is the way used today
to exchange secret keys through Internet. You may wonder why not to use
asymmetric encryption directly and encrypt the whole message with the Bob's
public key. This is due to the fact that asymmetric encryption is too slow
compared to symmetric and is not designed to be used with large amounts of
data. So we encrypt the message with the secret key and then exchange the
secret key using asymmetric encryption.

Certificates and CAs

Another problem arises now which is how Alice makes sure that what she has
is really Bob's public key? What if Eve sent faked public key to Alice and
claimed that it is Bob's? This is solved by digital certificates. Bob's certificate
is his public key along with some additional information about him in a file
which is digitally signed by a third party (called a Certificate Authority, CA) to
be for him. A CA is a well known organization (such as VeriSign or Microsoft)
which has its public key distributed to all people by trusted means in a self
signed certificate called root certificate or a certificate signed by a higher CA

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 4

in the CA chain (hierarchy). Some of the trusted means are web browsers and
operating systems which prepackage these CA certificates. So Bob will send
his certificate to Alice including his public key which then she could use to
encrypt the session key.

Message Digest

There is special one way mathematical function which "takes as input an
arbitrarily long string of bits (or bytes) and produces a fixed-size result" [1]. If
you change any bit of input then all the output will be changed (but the size
will remain fixed). This function is called a hash function or a message digest
function and the output is called hash value or digest. SHA-1 and MD5 are the
two most well-known hash functions. MD5 for example outputs a 128 bit string
as a digest. Hash functions are used mainly for data integrity either alone or
with digital signature (along with asymmetric encryption).

Digital Signature

Digital signature is a method used to assure the identity of the entity that
sends data (authentication). The idea here is to use the sender private key to
encrypt data so that no one can decrypt this data without the sender public
key. Suppose that Alice wants to send some data to Bob so that no one
including Eve can change this data. When she encrypts this data using her
private key Bob will make sure that it is from Alice by using her public key to
decrypt it. If Eve intercepts this data, decrypts it and changes it, she can not
encrypt it again with Alice private key. If she changes the encrypted version
then Bob will not be able to decrypt it.

In real world, when we want to sign a message we do not encrypt them all
using private key because asymmetric encryption is too slow. Instead, we
hash the message first and then encrypt the digest (which is very small
compared to the original message). After the receiver gets the message, he
hashes it, decrypts the original digest and compares the two digests.

Java Cryptography Architecture
Java Cryptography Architecture (JCA) is a cryptography framework inside
Java Security API (java.security package and its sub packages) which allows
Java programmers to implement and use cryptographic operations inside their
programs [3]. It was first introduced with in JDK 1.1 and implements only
massage digests and digital signatures. Due to some US export laws,
encryption, key exchange and some other security operations were
implemented separately in another API called Java Cryptography Extension
(JCE). JCE was not packaged with JDK prior to 1.4 but now it comes by
default with 1.4.x versions. In the following sections I will explain both JCA
and JCE and how to use them in your programs.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 5

Security Provider Infrastructure

When you implement cryptography in your programs you will find your self
doing it as "a set of consequence cryptographic operations". Cryptographic
operations include creating random secret keys, reading certificates and
extracting keys from them, producing message digest, producing digital
signature, encrypting a message, ...etc. when I say that they are done
sequentially I mean that for example you first create a secret key (an
operation) and then use it to encrypt a message (another operation). Also,
you may first read certificate and extract the public key from it (an operation),
hash the received message (second operation), decrypt the digital signature
and get the digest (third operation) and then compare the two digests (final
one). In JCA these operations are done using "cryptographic engines" such
that each cryptographic engine is used to do a cryptographic operation-.

Cryptographic engines

Cryptographic engines are abstract classes which come by default with JCA
API and represent the programmer's interface to cryptographic operations [2].
For example, java.security.MessageDigest is the cryptographic engine
that you could use to implement message digests in JCA. Now you may ask
how to use specific algorithm in an engine (to do an operation)? For example,
how to use SHA algorithm or MD5 algorithm to do message digest? This is
very easy; you only have to mention the name of the cryptographic algorithm
(which you want to use) when you create the engine class. For example,

 MessageDigest md = MessageDigest.getInstance("SHA");

creates a message digest engine which uses SHA algorithm implementation.
(Notice that you can not instantiate an engine class directly but instead you
have to use the getInstance() method.) The beauty here is that designers
of JCA have separated the conceptual cryptographic operations from their
corresponding algorithmic implementation form different vendors to let you
use any algorithm implementation from any vendor (either the default form
Sun or other third parties such as IBM) through only one interface which is
engine class.

Cryptographic Service Provider

This separation is done using the concept of Cryptographic Service Provider
This term refers to a package (or a set of packages) that supply a concrete
implementation for all (or a set) of cryptographic engines (operations) [4].
When you use any cryptographic engine you really use an implementation of
it from one of the registered providers in your Java VM. This gives you a
choice among different providers according to your business requirements
(budget, HW fast encryption ...etc) without changing your code (we will
show this). Sun's version of the Java runtime environment (VM) comes
standard with a default provider, named "SUN" which implemented many of
the engines. There are also other providers out there such as IBM Common
Cryptographic Architecture (CCA) which uses a hardware implementation [8]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 6

and open source free provider Bouncy Castle [5] which we will use in this
paper (because it is rich with features and free to be used by any one).

Choosing provider implementation

At runtime, the Java VM has a registered set of cryptographic service
providers which you can use along with engine classes. When you use a
specific algorithm in an engine class (such as SHA for MessageDigest) the
implementation for this algorithm from the default registered provider will be
used. If this provider does not have an implementation then the other
registered providers will be asked, in order according to their priority, if they
have implementation (we will see how to set priority later). The first one found
to have implementation for this algorithm will be used to accomplish the
operation. If no registered provider implements this algorithm then a
NoSuchAlgorithmException is raised. You, instead, can directly mention the
provider to be used for this cryptographic operation along with the algorithm in
your code. For example,

 MessageDigest md = MessageDigest.getInstance("SHA", "BC");

means that you want the SHA algorithm implemented by Bouncy Castle
provider to be used for message digest.

Adding a new security provider

You can specify the security providers that you want to be registered with your
Java VM and their priorities (preferences) through a configuration file called
$JAVA_HOME/jre/lib/security/java.security. In this file you will find lines
containing providers to be registered at runtime which are similar to the
following:

security.provider. priority_number =provider_master_class_name

In my VM, configuration file has the following lines (default with J2SE 1.4):

#List of providers and their preference orders (see above :(

security.provider.1=sun.security.provider.Sun
security.provider.2=com.sun.net.ssl.internal.ssl.Provider
security.provider.3=com.sun.rsajca.Provider
security.provider.4=com.sun.crypto.provider.SunJCE
security.provider.5=sun.security.jgss.SunProvider

Each line of these tells the VM to register a provider with the given priority–
the number - and the master class. For example, first line means to register
SUN security provider (its master class is sun.security.provider.Sun)
and give it the highest priority (preference). When you have a new provider
and want it to be registered just do two steps:

1- Place the package (jar or zip file) you get from vendor inside your
CLASSPATH.

2- Insert a line in the previous file java.security which has the priority
you want for the provider and the master class name. The master class
name could be found at documentation.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 7

For example, we will use Bouncy Castle as our provider for examples in this
paper so we will register it as following:

1- Download the provider package from www.bouncycastle.org which is
named bcprov-jdk14-122.jar and add it to your CLASSPATH (Bouncy
Castle has additional classes in other jar file which are not part of JCA
so we will not discuss them).

2- Insert the following line in java.security

security.provider.<n>=org.bouncycastle.jce.provider.BouncyCastleProvider

Here <n> is the priority and I will give it 1 which is the highest priority.
Remember to change other priorities of providers.

From now on, all engine classes in your programs will use the implementation
from the Bouncy Castle provider as first choice whenever it is possible.

Security Class

In the previous discussion we mentioned how to add new security provider to
be used in your programs, how to specify priorities (preferences) for security
providers and how to specify a specific provider during runtime to be used for
a security operation (engine). The remaining question is how to register a
security provider in the VM at runtime either from java.security file or
programmatically? (Before we answer this question remember that what we
did with java.security file is only mentioning the providers to be registered
but not registering them.) A class called java.security.Security is the
one responsible for registering and managing installed providers at runtime
(and managing other security properties for your program). When you run
your program, Security class will load all the available providers from
java.security file and register them with the VM. This class is also
responsible for choosing the provider at runtime to do a cryptographic
operation when you call getInstance(String algorithm, String
provider) method of the engine class. For example, suppose you have two
providers Provider_1 and Provider_2 such that:

1- Provider_1 implements SHA and MD5 for message digest.
2- Provider_2 implements MD5 only but has a higher priority than

Provider_1.
When you ask for a message digest with MD5 the engine class will ask the
Security class for this and Security class will answer with the implementation
from Provider_2. If you ask for SHA algorithm then Security class will return
Provider_1 implementation because Provider_2 does not have one. You can
enforce using MD5 from provider_1 by telling this to the Security class
through getInstance method. Finally, you can use Security class to register
a provider at runtime even if it is not written in java.security file using
addProvider(Provider provider); method. For example,

 Java.security. Security.addProvider(new BouncyCastlePr ovider());

will add the Bouncy Castle provider at runtime even if we did not write it in
java.security file. Note that these methods for adding or removing

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 8

providers in security class can only be executed by a trusted program. A
"trusted program" is either

• a local application not running under a security manager, or
• an applet or application with permission to execute the specified

method.
Configuring these permissions is done using Security Manager and policy files
and they are part of the Java Security in general which is out of the scope of
this paper.

Putting it all together

Now let us see how to prepare for encryption operations you want to do.
1- Choose the cryptography service provider you want to use in your

program.
2- Register this provider in your program's VM either by adding it to

java.security file or at runtime using security class.
3- Import all JCA and JCE packages you will use. These include many

packages but the most important are java.security.* and
javax.crypto.*. You may also import some additional packages
such as utilities from providers.

4- Decide which operation you will use and use the corresponding engine
class and algorithm using EngineClass.getInstance(String
algorithm, String provider) method of engine class.
(Remember that you can not create an engine object directly but
instead you will instantiate one using this method.)

The remaining steps depend on the specific engine class and how does it
work which we will discuss in the following chapters.

What is happening behind the sense?
Up to now we have completed the discussion of Security Provider
Infrastructure that you need to know to start cryptography in Java and you
could proceed to next chapters. But you may wonder how this works. How
could an engine class have many implementations for algorithms and how
does it tell the security class about them? How to instantiate an engine class
in my program? All of this is achieved through the interaction between
different types of classes including Service Provider Interface (SPI) classes,
Engine classes, Security class and Provider class. We will first explain the SPI
and then proceed to the process of instantiating an engine class.

Service Provider Interface

Each engine class has a corresponding abstract class called Service Provider
Interface (SPI). This class allows the separation between engine classes and
their implementations from different vendors. Any provider wants to implement
a particular engine class needs to implement the engine's SPI. You may find
two different classes implementing SHA algorithm for message digest engine
from two different providers. This is achieved by allowing each class to
implement SPI of message digest engine class. We will not discuss how to
implement an SPI class because this is out of scope of this document
(developer does not need to do it but a cryptographic provider needs to).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 9

Instantiating an Engine Class

Engine class is the interface to the programmer to cryptographic operations.
You can not declare an engine class directly in you program but instead you
have to use getInstance() method. When you use it you will give the
algorithm to be used to accomplish the operation. After that the engine class
name along with the algorithm used will be send as a string by engine class to
Security class to do the real instantiation. For example,
MessageDigest.SHA will be sent to security class to ask for a message
digest with SHA algorithm.

Security class is the one responsible for registering providers with the VM and
instantiating objects from engine classes. When security class receives the
message from engine class, it will search the array of registered providers it
manages to find an implementation for the requested algorithm. It will ask
them one by one according to their priority if they have an implementation for
this engine class using this algorithm. In fact it will send the string from the
engine class (such as MessageDigest.SHA) to the provider class to see if
there is an implementation.

Provider class is the glue between the engine classes and their
implementations (of their SPIs). Each vendor implements his own provider
subclass (such as XYZProvider extends Provider) and indexes all of
his implementations of algorithms of engine classes in this class. Provider
class extends properties class and it contains a table of engine-algorithm
pairs along with their implementation classes. For example,

 MessageDigest.SHA è XYZProvider.MessageDigets.SHA

says that the class that implements message digest engine using SHA
algorithm in this provider is XYZProvider.MessageDigets.SHA.
So, when provider finds an implementation it will send the name of the class
that implements it. Then security class will instantiate an object from this class
and give it back to the programmer as an engine class instance. For example,
when security class sends MessageDigest.SHA to XYZProvider it will
answer with XYZProvider.MessageDigets.SHA class. Then Security will
create an instance of this class and return it to programmer through engine
class.

Creating a Message Digest
The first engine class we will discuss is the message digest. The operations
we want to do here is either to create a message digest or verify a given
digest. Before we do any of the operations we first have to prepare as
following:

1- Import the message digest engine class.
import java.security.MessageDigest

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 10

2- Create an instance of this engine class with the algorithm you want to
use using

public static MessageDigest getInstance(String algorithm) or
public static MessageDigest getInstance(String algorithm, String
provider)

If algorithm was not found then NoSuchAlgorithmException is
raised. If provider was not found then NoSuchProviderException is
raised.

Now if we want to create a message digest then we do the following:
1- Input the message that we want to hash using

public void update(byte input)
public void update(byte[] input)
public void update(byte[] input, in offset, int length)

The first one input a single byte, the second an array of bytes and the third
one a subset of an array. Consecutive calls to these methods append data
to the internal one.
2- Get the digest of the message using

public byte[] digest()
public byte[] digest(byte[] input)

the second one allows you optionally to load the message you want to
hash.

Here a code snippiest which creates a message digest.

package GSECExamples;
import java.security.MessageDigest;
public class CreateMessageDigest {
 public static void main(String args[]) {
 try {

String message = new String("This is a sample message");
MessageDigest md = MessageDigest.getInstance("SHA");

 md.update(message.getBytes());
 System.out.println(md.digest());
 } catch (Exception e) {
 System.out.println(e);
 }
 }
}

Normally when verifying a message digest you will receive the original
message along with the computed digest. If you want to verify the message
digest you do the following:

1- Create the digest of the received message that you want to verify using
the same algorithm which created the first as explained previously.

2- Compare the two digests, the received one and the created one using

public static boolean isEqual(byte[] digestA, byte[] digestB);

3- If they are equal then the message has not been changed else you

have to receive this message again.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 11

The message digest engine has other methods for additional work and you
can get the documentation of the full API from JCA documentation and
javadoc.

Keys and Certificates Creation and Usage
The remaining three other cryptographic primitives (which are symmetric
encryption, asymmetric encryption and digital signature) depend on the
presence of keys and certificate before they can be used. So, before we
discuss their usage in JCA and JCE, we have first to discuss how to create
keys and certificates, how to manage them in our programs and how to
prepare them for encryption or signing. There are two operations which
developers need when dealing with keys and certificates:

1- Creating new keys and certificates from scratch.
2- Importing or exporting keys and certificates from and to different types

of storage (special type files or special key stores).

When you deal with keys, two concepts should be understood well; the
difference between creating new keys and importing or exporting ones at
runtime and the difference between the internal representation of keys which
is used by code implementation and external portable one which is used to
store and exchange keys between different systems.

Internal and external representation of keys

There are two types of key classes:
1- Internal representation classes (object classes) which are used with

encryption and digital signature engines.
2- External ones (specification classes) which are used to read or write

keys from and to storage and then transform them into internal
representation.

java.security.Key interface is the top-level interface for all internal
representation classes (key objects). When you want to use a key with an
encryption or digital signature engine class you have to use a key object or a
subclass of it. These types of keys are also called opaque keys because they
are not transparent and you can not get material that constitutes the key.
These keys have three characteristics which are:

1- The name of the algorithm of this key (such as RSA, DSA). This is
retrieved using public String getAlgorithm() method.

2- An external encoded form which is used to represent the key outside
Java VM such as PKCS#8 encoding. This is retrieved using public
byte[] getEncoded()

3- The name of the format for external encoding which is retrieved using
public String getFormat()

There are subclasses or sub interfaces for Key interface. Some of them are
for asymmetric keys such as PublicKey, PrivateKey, and others are for
symmetric keys such as SecretKey.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 12

Java.security.spec.KaySpec interface is the root for all classes used to
store keys from external storage. It is called Key Specification class and it has
two types of subclasses EncodedKeySpec class and
AlgorithmParameterSpec interface. Some keys are encoded using some
of the encoding standards such as PEM and PKCS#8. With these we use
EncodedKeySpec class or its subclasses. Some other keys may be stored
using the parameters which they consists of such as public key which is a
result of multiplying some mathematical numbers and these numbers are
stored. With these keys we use AlgorithmParameterSpec interface or its
subinterfaces.

Creating a New Key and loading it from an External Storage

When you want to use a key in an encryption or digital signature engine you
have to either create a new Key object from scratch or load one from storage
using KeySpec and then transform it into Key object. To create a new key
from scratch you have to use a generator engine class. Generator engine
classes are used only with Key objects. There are two generators:

1- java.security.KeyPairGenerator engine class which is
responsible for creating two asymmetric keys public and private.

2- javax.crypto.KeyGenerator engine class which is responsible for
creating a secret random key.

To load a key from storage you have to use KeySpec class. Then you have to
transform the KeySpec (which you can not use with engine classes) into a
key object. To do so you have to use one of two classes;
java.security.KeyFactory for asymmetric (public and private) keys or
javax.crypto.SecretKeyFactory for secret keys.

Random Numbers

Before generating a key we have to use a random number generator to
generate a random number to be used when generating keys. The class
responsible for this is java.security.SecureRandom. This class works as
a wrapper for the generator either hardware or a pseudo one depending on
provider.

Generating asymmetric keys

To generate two asymmetric keys you have to use
java.security.KeyPairGenerator class. This class will give a
java.security.KeyPair object which is a simple data structure used to
store public and private keys. The reason behind creating both keys at once is
that public and private keys are mathematically related (they are created by
applying different mathematical operations on a shared parameters). You
instantiate this class using getInstance() like other engines. Two
important methods are used here which are:

1- public void initialize(int strength)
public abstract void initialize(int strength, SecureRandom random)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 13

this method initializes the generator with the strength which is number
of bits that are used as input to the engine to create keys and random
which is an optional random number. Strength varies among algorithms.
For example, RSA strength could be 512, 1024, 2048 …etc and this
depends on the provider for RSA. Sometimes you may not create key
objects from scratch but instead initialize a generator from storage through
key specification using

 public void initialize(AlgorithmParameterSpec params)

public void initialize(AlgorithmParameterSpec params, SecureRandom
random)

We will talk about these specification classes later.

2- public abstract K eyPair generateKeyPair()

This method will generate a KeyPair object containing the two keys
(public and private) parameters.

Now, using the previous two methods it is very easy to create two asymmetric
keys from scratch (remember to import the corresponding classes). For
example,

KeyPairGenerator kpg = KeyPairGenerator.getInstance("RSA");
kpg.initialize(1024);
KeyPair kp = kpg.generateKeyPair();

will generate a pair of public and private keys stored into KeyPair object.
Using KeyPair object you can use the only two methods it provides to get
the public and private keys which are:

1- public PublicKey getPublic()
2- public PrivateKey getPrivate()

Now to complete the previous example we extract the two keys as following
 PublicKey PuK = kp.getPublic()
 PrivateKey Prk = kp.getPrivate()

Generating symmetric keys

To generate a symmetric key you have to use
javax.crypto.KeyGenerator class. This class is very similar to the
previous one except that it outputs one key only which is a
javax.crypto.SecretKey. You instantiate this class using
getInstance() like other engines and feed it the block cipher you want a
key for (like AES). Two important methods are used here which are:

1- public final void init (int strength)
public final void init (int strength, SecureRandom random)

this method initializes the generator with the strength which is number
of bits of the created key and random which is an optional random number
(if not specified it will be created internally by the VM). Strength varies
among algorithms and providers. For example, AES strength could be

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 14

0..256 using Bouncy Castle provider with 192 as a default length [5].
Sometimes you may not create key objects from scratch but instead
initialize a generator from storage through key specification using

 public final void init(AlgorithmParameterSpec params)

public final void init(AlgorithmParameterSpec params, SecureRandom
random)

but not all algorithms keys could use this (DES key for example).

2- public final SecretKey generateKey()

This method will generate a SecretKey object.

Now, using the previous two methods it is very easy to create a symmetric
key from scratch (remember to import the corresponding classes). For
example,

 KeyGenerator kg = KeyGenerator.getInstance ("AES","BC");
 kg.init(256);

SecretKey sk = kg.generateKey();

will generate a 256 secret key for AES block cipher using Bouncy Castle
provider (Note that Sun does not have an implementation for AES).

Importing and Exporting Keys from and to Storage

In the previous section we have seen how to create a key from scratch. Now
we want to export and import a key. To export an asymmetric key we have
two choices:

1- Use the getEncoded() method of the key object. For example, for the
public key created in the previous example PuK we use
PuK.getEncoded(). This method will output an X509 encoding of the
public key in a byte array. We then could store this array in a file using
FileOutputStream. Here is the code for this

//We have created the public key PuK using KeyPairGenerator
FileOutputStream fos = new FileOutputStream("c:/ GSECSamples/key");

 fos.write(PuK.getEncoded());

2- Transform a Key object into a KeySpec object which is an exportable
format using KeyFactory engine class. The method you will use from
the KeyFactory class is
public final KeySpec getK eySpec(Key key, Class keySpec)

 For example, for the public key from the previous example

//This is the class pf the KeySpec that we will use to export the key
Class spec = Class.forName("java.security.spec.RSAPublicKeySpec");

 KeyFactory kf = KeyFactory .getInstance("RSA");
 //Change the Key object into its correspondence KeySpec
 RSAPublicKeySpec PukSpec = (RSAPublicKeySpec)kf.getKeySpec(PuK, spec);
 //Now PukSpec could be exported using its components (parameters)

To import an asymmetric key into your program you have only one choice
which is to use KeySpec along with key factory (you may find some special

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 15

utilities to import keys but we here are talking about standard way). The
methods from KeyFactory engine class to be used here are

public final Pub licKey generatePublic(KeySpec ks)
public final PrivateKey generatePrivate(KeySpec ks)

For example,

//Reading key from storage
FileInputStream fis = new FileInputStream("c:/GSECSamples/key");
byte[] key = new byte[400];
fis.read(key);
// Loading key into KeySpec object
X509EncodedKeySpec keyspec = new X509EncodedKeySpec(key);
//Transforming KeySpec into Key object
KeyFactory kf = KeyFactory.getInstance("RSA");
PublicKey PuK = kf.generatePublic(keyspec);

Importing and exporting symmetric keys uses SecretKeyFactory with the
same concept as the asymmetric. But it is rare to export or import symmetric
keys compared to asymmetric ones.

Working with certificates

As we mentioned before, certificates are used to store public keys along with
the public key owner's information signed from a trusted third party. The most
well-known and the standard certificate format which we will deal with is X.509
(which is downloaded normally from secure web sites and distributed by CAs).
To use certificate in programs we will use java.security.cert package.
This package contains three main abstract classes which are:

1- java.security.cert.Certificate to deal with certificate
objects. We will deal with an X.509 implementation of it which is
java.security.cert.X509Certificate which is used to store
X.509 format certificates.

2- java.security.cert.CRL to deal with revocation lists of
certificates. An implementation class for X.509 is
java.security.cert.X509CRL which is used to deal with X.509
CRL. We will not discuss this issue as it is more PKI related and
considered advanced one.

3- java.security.cert.CertificateFactory which an engine
class to import certificates from storage.

Now using the first and last classes it is very easy to generate an X.509
certificate object from storage (using the same concepts as in importing keys
from storage). You have to use

 public final Certificate generateCertificate(InputStream inStream)

method from CertificateFactory engine class to generate a certificate. For
example,

CertificateFactory cf = CertificateFactory.getInstance("x509");
FileInputStream fis = new FileInputStream("c:/GSECSamples/certificate");
X509Certificate x509cert = (X509Certificate) cf.generateCerti ficate(fis);

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 16

will generate an X.509 certificate object which you can use to mainly get the
public key. You can do this using

public abstract PublicKey getPublicKey()

method. Before using a certificate you have to check its validity which means
you have to check its date and time to make sure that it has not expired and
check its issuer to make sure that it is trusted. These topics are out of scope
of this paper but you can go to documentation from Sun ti get detailed
information.

Key Storage in Java

Most of times when you work a lot with asymmetric keys and certificates,
especially in a PKI system, you need to use some kind of key and certificate
storage designed especially for this purpose. It is almost encrypted and very
secure and it has secure access rights. Java comes with a default key storage
from Sun which is called key store and a tool called keytool to manipulate this
key store. You can access this key store from your programs using KeyStore
class and you can store or retrieve private keys and certificates into and from
it. Key store is out of scope of this document and you can refer to its
documentation to get more information.

What is next?

Now after discussing keys and certificates; their generation, importing and
exporting, it is time to discuss when to use them and how. This includes
discussion of digital signature, asymmetric and symmetric encryption and how
to use keys and certificates there.

Digital Signature
Digital signature is used to authenticate the source of received data and
check its integrity by first hashing the message and then encrypting the hash
value with asymmetric encryption and then verifying it when received using
the reverse. Digital signature operations are done using
java.security.Signature engine class. This class does three things:

1- It hashes any message implicitly before signing it using a hashing
function such as SHA1 or MD5 (without a need for MessageDigest).

2- It signs the entered message.
3- Or it verifies a digital signature for an entered message.

When you want to use the digital signature engine class you have to create a
new instance of it (as previous engines) using getInstance(). This method
should be given the hashing function along with the asymmetric algorithm to
do the signature in the following format hashfunctionwithalgorithm. For
example, the following

 Signature s = Signature.getIns tance("SHA1withRSA" , "BC");

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 17

will give a digital signature engine instance from Bouncy Castle provider using
SHA1 as a hash function and RSA as an encryption algorithm. After this you
have two choices; either to sign a message or to verify the signature.

Signing a message

To sign a message you have first to prepare the Signature engine class.
Preparation includes two methods:

1- public final void initSign(PrivateKey privateKey)

this method is used to initialize the signature engine class with the private key
for encryption.

2- public final void update(byte b)
public final void update(byte[] data)
public final void update(byte[] data,int off,int len)

this method is used to give the message to be signed to the signature class. It
is the same as update method of the MessagDigest.
Now it is time to sign the message using

public final byte[] sign()

method which will return the signature as a byte array. The following example
will illustrate the whole method of singing.

//creating a signature instance for SH A1 has function and RSA algorithm
Signature s = Signature.getInstance("SHA1withRSA", "BC");
//use the previous created private key Prk for encryption
s.initSign(Prk);
//inserting message to be signed
s.update(new String("This is a message to be signed and verified using SHA1
and RSA").getBytes());
//singing the message
byte[] signature = s.sign();

Verifying a Signature

To verify a signature of a message you also have to prepare the Signature
engine class. Preparation includes two methods:

1- public final voi d initVerify(Certificate certificate)
public final void initVerify(PublicKey publicKey)

this method is used to initialize the signature engine class with the public key
for decryption either directly or from a certificate.

2- The same update() method used before to enter the message to be
verified.

Now to verify the message signature we use

public final boolean verify(byte[] signature)

method which will return a boolean indicating wether the signature matches
the message or not. The following example will illustrate how to verify a
message digital signature.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 18

//use the previous created public key PuK for decryption
s.initVerify(PuK);
s.update(new String("This is a message to be signed and verified using SHA1
and RSA").getBytes());
//verifying the signature from the previous example which is an array of
bytes
if (s.verify(signature))

System.out.println("Message has been authenticated");
else
 System.out.println("SORRY, this message has been corrupted");

Encrypting and Decrypting Data
Now it is time to talk about the final cryptographic operation in this paper and
the most complex one which is encryption. The engine used here and all
discussion could be applied to both symmetric and asymmetric encryption as
well but with some small differences. For example, asymmetric algorithms
such as RSA are only used with small amount of data (RSA block size must
be less than modulus size [9]) such as symmetric keys and digests . Also,
there is only one mode used with RSA which is ECB (see next section for
more information about modes). Before talking about encryption engine and
how to use we have to discuss some information necessary for initializing it
which are modes and padding schemes.

Different modes and padding schemes

As we mentioned before, symmetric algorithms are called block cipher
algorithms because they encrypt data in blocks one by one (i.e. 8 bytes at a
time). There are many ways to divide the original data into blocks independent
from the block cipher and they are called modes. Also, these blocks should be
of the same size so we have to add some bits to some of the blocks to
achieve this and this is called padding scheme. Some of the modes used are:

1- ECB, electronic cookbook mode. This is the simplest one and “it takes
a simple block of data and encrypt the entire block at once” [2]. It does
not try to add any additional data to the original and rearranging blocks
will not affect it (RSA uses this mode because it has only one block of
data). The standard block size is 8 bytes (64 bits). The problem arising
here is lack of randomness especially when data has patterns such as
text (binary data such as compressed may not have). When you
encrypt two similar blocks with the same block cipher and key then it is
easier for a cryptanalysis attack to find the key using some statistical
calculations.

2- CBC, cipher block chaining. This mode will divide data into chain of
blocks (8 bytes each) so that the next block will get some of input data
from the output of the previous one (which is encrypted). This will help
hiding patterns because even if two blocks have the same data they
will have additional data different from the each other. For the first
block we use a random data called initialization vector (IV). This mode
can only operate on full blocks of data so you have to use a padding
scheme with it [2].

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 19

One of the padding schemes used is PKCS5Padding which “ensures that the
input data is padded to a multiple of 8 bytes” [2]. You can use NoPadding but
you have to make sure that the input is a multiple of 8 byte or you will have an
error.

Using Cipher Engine Class for Encryption and Decryption

The encryption and decryption engine used in JCE is
javax.crypto.Cipher class. Using this class is similar to using Signature
class; first you create an instance of an encryption algorithm, initialize it with
key and other parameters and then do the encryption or decryption.

When you want to create an instance of Cipher engine you feed the
getInstance() method with the algorithm name using the following format
algorithm/mode/padding such as DES/CBC/PKCS5Padding [4]. Mode and
padding here are not necessary and if you leave them the default ones will be
used. To get the whole available algorithms, modes, padding schemes and
their different combinations refer to the documentation of the specific JCE
provider you are using (for example, [5] will give full reference information
about Bouncy Castle provider).

After that you initialize the engine with the type of operation (either encryption
or decryption), key, and algorithm parameters using the following method [6]

public void init(int opmode, Key key)
public void init(int opmode, Certificate certificate)
public void init(int opmode, Key key, AlgorithmParameters params)
opmode is either Cipher.ENCRYPT_MODE or Cipher.DECRYPT_MODE which means
either to encrypt or decrypt. Algorithm parameters include parameters that are
used to initialize the algorithm such as IV. These parameters may not be
necessary for encryption (if you did not supply them, random or provider
specific ones will be created) but they are necessary for decryption because
you have to use the same that were used for encryption [4].

Finally you do the encryption/decryption using one of the two ways: [2] [4]

• One step single-part operation using

 public final byte[] doFinal(byte[] input)

This method will do the operation (encrypt/decrypt) on the input byte
array and output the result to a byte array at one step. One step here
means to operate on the input data (and any data buffered before) at
once and give all the output immediately (Note that this data is still
divided into blocks). If there is any padding scheme then it will be used
here when length of data is not an integral number of blocks.

• Multiple steps or multiple part operation using

 public final byte[] update(byte[] input) throws IllegalStateException

This method will be used to encrypt the input data in input byte array
along with data remaining from the previous call. If data length is not an
integral number of blocks then no padding will be used, but instead the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 20

remaining will be buffered for the next call (step) of this method. When
you want to finish encryption you call

 public final byte[] doFinal()

which will encrypt/decrypt the remaining and pad it if necessary.

The following example will encrypt a small message using
DES/CBC/PKCS5Padding and then decrypt it. We will not give any IV for
encryption but instead let the engine itself create it. For decryption we have to
get this IV and give it to the engine.

//This is message to be encrypted using Bouncy Castle provider
String msg = new String("This is the sample message");

//generating a 256bit DES random symmetric key (for more info revise the previous
chapter for creating and managing keys)
KeyGenerator kg = KeyGenerator.getInstance("DES","BC");
kg.init(256);
SecretKey sk = kg.generateKey();

//Instantiating a cipher object for encryption/decryption using DES algorithm
//with CBC mode and PKCS5Padding scheme
Cipher c = Cipher.getInstance("DES/CBC/PKCS5Padding","BC");
//Initializing the cipher object for encryption with secret key. Note that
//IV will be created by the engine internally depending on Bouncy Castle
//implementation
c.init(Cipher.ENCRYPT_MODE, sk);
//Encrypting message in one step
byte[] EncryptedMsg = c.doFinal(msg.getBytes());
System.out.println("Encrypted Message: " + new String(EncryptedMsg));

//Getting the IV to use it with decryption
byte[] IV = c.getIV();

//Now we have to use IV along with the key to decrypt data

//We put IV in an algorithm parameter spec object to feed it to decryption engine
IvParameterSpec IvParamSpec = new IvParameterSpec(IV);

//Initializing the cipher object for decryption with key and IV
c.init(Cipher.DECRYPT_MODE, sk, IvParamSpec);
//Decrypting the message in one step and printing it out
System.out.println("Decrypted Message: " + new String(c.doFinal(EncryptedMsg)));

Other Encryption and Decryption Operations in JCE

There are some other encryption types you can use with cipher engine.
Password based encryption (PBE) [2] is used to extract the key from a
password you feed to the engine so you can create this key again in any other
place using this password. This is used to protect private keys by encrypting
them using your password so if somebody has the key he can not use it
without the password. Also you can wrap (encrypt with for example PBE) a
key into bytes so that key can be securely transported and then unwrapped
(decrypted). Also you can use cipher streams [4] which are similar to normal
input/output streams but with a cipher engine associated with them to do the
encryption. This should make encrypting large amount of data from files or
network done while you are reading or writing them.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 21

Cryptographic scenarios
When you want to use cryptography in your system you will find many usage
scenarios depending on your requirements. Sometimes you will use digital
signature to authenticate messages between different clients in your system.
Sometimes you will use symmetric encryption to encrypt some important data.
A typical scenario that you may find in many systems is called "Signed-and-
enveloped-data" which is part of PKCS#7 standard [11]. The scenario is as
following:

• We will have an important message which should be signed, encrypted
and then sent to another client through network.

• The first step is to sign the message using digital signature and
sender's private key.

• The second step is to encrypt the signature using the symmetric
encryption.

• The third step is to encrypt the message using the symmetric
encryption.

• The forth step is to encrypt the random secret key using receiver's
public key.

• The forth step is to combine these all; encrypted digital signature,
encrypted message and encrypted key and send them to the receiver.

• On the receiver side we will do the reverse steps to decrypt and
authenticate the message.

References
[1] Schneier, Bruce, Niels Ferguson. Practical Cryptography. Indianapolis:
Wiley Publishing, Inc. 2003.

[2] Oaks, Scott. Java Security. Sebastopol: O'Reilly & Associates, Inc. 2001

[3] Sun Microsystems, Inc. JavaTM Cryptography Architecture API
Specification & Reference. 8 February 2002. URL:
http://babbage.clarku.edu/java/docs/guide/security/CryptoSpec.html (10
December 2003).

[4] Sun Microsystems, Inc. JavaTM Cryptography Extension (JCE) Reference
Guide
 10 January 2002. URL:
http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefGuide.html (25
December 2003).

[5] Legion of Bouncy Castle. Bouncy Castle Crypto Package Specification.
URL: http://www.bouncycastle.org/specifications.html (10 January 2004).

[6] Sun Microsystems, Inc. JavaTM 2 Platform, Standard Edition, v 1.4.2
API Specification. Version 1.4.2. URL: http://java.sun.com/j2se/1.4.2/docs/api/
(12 December 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 22

[7] Microsoft Corp. Cryptography Overview. .NET Framework Developer's
Guide. URL: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpguide/html/cpconCryptographyOverview.asp (20 November 2003)

[8] Benjamin, Tom. JavaTM Cryptography Architecture using Hardware
cryptography. 12 August 2001. URL: http://www-
106.ibm.com/developerworks/eserver/articles/java_crypto.html (15 January
2004)

[9] OpenSSL Project. RSA_public_encrypt man page. OpenSSL library
documentation. 14 July 2003. URL:
http://www.openssl.org/docs/crypto/RSA_public_encrypt.html (10 Febuary
2004)

[10] RSA Laboratories. PKCS #7 - Cryptographic Message Syntax Standard.
PKCS Standards. Version 1.5. 1 November 1993. URL:
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-7/ (11 Febuary 2004)

