
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Secure Mailing Lists using GnuPG

Protima Chhabra

GIAC Security Essentials Certification (GSEC)
Practical Assignment Version 1.4

April 19, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Secure Mailing Lists using GnuPG Page 2 of 34

Abstract

Electronic mail has become an essential means of communication. Businesses have
come to rely on it for their day to day operations. However, security vulnerabilities in
clear text email, is a major obstacle in email becoming the preferred channel, especially
for exchanging sensitive information. Email signature and encryption with PGP/GPG
can provide a feasible method for secure communication. Signing emails can protect
against tampering, and encrypting them can prevent eavesdropping. Any given situation
may demand one or the other, or both.

In order to use GnuPG to communicate securely, the involved parties must first
exchange their public keys securely. The sender of the email then signs it with his
private key and encrypts it with the receiver’s public key. The receiver upon receiving
the email, decrypts it with his private key and verifies the signature with the sender’s
public key. This works well when there is only one receiver. However, in order to send
the email to multiple people, the email needs to be encrypted with every receiver’s
public key, which can be quiet cumbersome. This implies that the email cannot be sent
to a mailing list, unless the mailing list server is capable of performing the authentication
and encryption operations on behalf of the sender. This paper discusses the design and
implementation of such a server.

1. Introduction

Clear text email is susceptible to many security problems. Messages may be
intercepted in transit, where they may be read, altered, and/or dropped. Authentication
and encryption of email is one practical method used to minimize the risk posed by
these vulnerabilities. Encryption of email between individuals has been a common
practice for some years. However, there are currently no standardized techniques, or
readily available applications, to allow for encrypting email addressed to mailing lists.
This paper will outline a simple technique for implementing secure mailing lists.

Following are the requirements for implementing a system, handling secure mailing
lists:

Cryptography
First and foremost is strong cryptography. GnuPG, GNU Privacy Guard, GNU's open
source tool for secure communication and data storage, can be used to encrypt data
and create digital signatures. GnuPG uses hybrid ciphers, which requires users to
provide their public-key to the server. See http://www.gnupg.org/gph/en/manual.html for
more information on GnuPG.

Authentication
Users should be able to sign up for a list and submit their public-key to the server as
automatically as possible. They should also be able to download public key of the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Secure Mailing Lists using GnuPG Page 3 of 34

mailing lists from the server. System needs to have a method to verify the identities of
the potential members who submit their keys.

The system should also be able to ensure the authenticity of all incoming messages. All
incoming messages to the list need to be digitally signed by the sender. Any mail that is
not should be dropped or returned.

Subscribers should be able to ensure the authenticity of the messages coming from the
system (i.e, system should sign all messages with its private-key).

Encryption and Transport
System should provide a means to transmit signed and/or encrypted mailing list
messages.

2. BEFORE SNAPSHOT

2.1 Mailing list and List server

Typical mailing lists are managed by computer programs, referred to as mailing list
servers. Mailing list servers interconnect to the global email system as an MTA, Mail
Transfer Agent. A list server reads the messages, and copies them to everyone
subscribed to the list. Most list servers manage a minimal of two email addresses for
each mailing list. specifically:

• Server address. The server address is used to process administrative
commands, such as list subscriptions and un-subscriptions.

• List address. The list address is used for the list itself. When the server receives
an email sent to the list address, it automatically copies it to everyone currently
subscribed to the list.

There are three general types of mailing lists, each with a different type of operation:

• Unmoderated lists. These allow any subscriber to send an email to the mailing
list for distribution to all subscribers, in real-time without any screening. Most lists
are unmoderated.

• Moderated lists. These lists have a “moderator” a human being that checks all
email sent to the list to make sure it does not contain inappropriate content
before the server distributes it to subscribers.

• One-way lists. These lists are used to distribute information from a central
source. Only one person or organization can send email to the list for distribution
to all subscribers. These types of lists are often used by organizations to
distribute information.

There are a number of list server implementations in common use, including:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Secure Mailing Lists using GnuPG Page 4 of 34

• Listserv is one of the most widely used list servers on the Internet, with a
commercial version used by many large organizations.

• Majordomo is widely used in its freeware version by community and small
organizations.

• Mailman is an open source GNU mailing list manager.
• Listproc is widely used, primarily as a commercial product.

2.2 Mailing Lists in Sendmail

There are several ways to manage a mailing list. A simple and very common approach
in Unix is direct use of aliases in the MTA; often Sendmail. This method works well for a
smaller number of recipients that do not change often, as every change in the list
involves human intervention. Secure mailing lists will typically have a small group of
people who trust each other, such a system is adequate for our study.

Creating a mailing list using Sendmail simply involves creating some new aliases. There
are usually three addresses associated with the list:

• The alias for the list itself; for example, listname
• listname-request: This is the address to which subscription, unsubscribe, and

list information requests should be sent. It points to the person or persons that
manage the list

• owner-listname: This is the address used by sendmail to return errors about the
list. This usually points to the same addresses as listname-request

Detailed configuration of the ‘aliases’ file is beyond the scope of this paper, but typically
when there are more than a few members in the list, aliases file includes a file
containing the list of all the members.

<listname>: “:include:/<path to the list file>/<list file>”

<listname>-request: <user>

owner-<listname>: <listname>-request

Once the aliases file is set up, aliases database is created by running the command
‘newaliases’.

2.3 Flow of unsigned/unencrypted Email

When an email for the list comes in, the list server reads the message and copies it to
everyone subscribed on the list.

2.4 Flow of GPG signed/encrypted Email

To understand why a typical list server will not be able to do GPG signed/encrypted
email, let us first understand the exchange of secure email between two people.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Secure Mailing Lists using GnuPG Page 5 of 34

In order to exchange emails securely with a person, the sender and the receiver first
need to exchange public keys securely. Thereafter the sender will encrypt the message
with the receiver’s public key, and sign it with his own private key. Upon receiving the
email, the receiver verifies the signature on the email with the sender’s public key and
then decrypts it with his own private key.

To send the same email to multiple people, the sender first needs to exchange public
keys securely with every receiver. He will then have to encrypt the same email for each
receiver separately, and sign it with his private key before sending it. Clearly this is very
cumbersome and time consuming.

The mailing list server as described above doesn’t know anything about keys,
encryption, decryption, etc. The objective of this study is to impart to the server the
capabilities it will need to handle such emails, and educate the client with the working of
the system.

3. DURING SNAPSHOT

3.1 Operation Theory

Every list on the list server, in addition to having a list of members, has a pair of private
and public keys. To subscribe to this list, every member needs to get the public key of
the list, and provide his own public key to the server. Thereafter the keys are validated
and signed. Key signing and establishing a web of trust are key to the success of this
system. In a small network of people, the administrator of the server could simply call
the user and verify the fingerprint of the key submitted, and then sign the user key, and
add the user to the mailing list. However this would not work for a larger group. For a
larger network, the email address and the key of the subscriber could be put on a web
page accessible only to the members of the mailing list. Members can then cast a vote
of trustworthy or untrustworthy for the prospective member. If enough number of
trustworthy votes are received, the subscriber can then become a member of the
mailing list. For more details on key signing, refer to
http://www.cryptnet.net/fdp/crypto/gpg-party.html.

Once the subscriber becomes a member, he can send signed and encrypted messages
to all the members on the list. This is how it works:

• The sender encrypts the message with the public key of the mailing list, signs it
with his own private key, and sends it

• The server upon receiving the message verifies the signature with the sender’s
public key, and then decrypts with the list’s private key

• The server then encrypts the message with every receiver’s public key, signs
with the lists private key, and sends it

• Each receiver then verifies the signature with the list’s public key, and decrypts
the message with his own private key.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Secure Mailing Lists using GnuPG Page 6 of 34

The system can handle signed, encrypted, signed and encrypted, and unsigned and
unencrypted message.

If the sender is not a member of the list, he can download the public key of the list, and
send encrypted messages to the list, provided the server has validated his public key.
Note that the sender will not receive those messages.

3.2 System Architecture

When an email for the list comes in, the server invokes a script. The script then gets the
list of recipients from the appropriate file, keys from the appropriate keyring(s), verifies
and/or decrypts the message, signs and/or encrypts the message appropriately and
forwards the message to all the members of the list.

The system can also include a web based interface which allows creation of new lists,
deletion of lists, subscription to a list, and un-subscription to a list. Subscription to a list
involves being able to securely submit your public key, and download the public key of
the list. Screenshots of such an interface are presented in Appendix C.

3.3 Step by Step Guide

In this section I will go through all the pieces of the system in detail. Some of the details
might be specific to the system used for testing.

3.3.1 Getting the system ready

3.3.1.1 Operating System

Red Hat is the most commonly used Linux distributions, and is the choice of many
system administrators for mail. However, Red Hat will soon begin charging a license fee

aliases file

script list members

secret-
keyring

MTA

get list members

public-
keyring

get private key
of the list and
decrypt the
message

get public key of
each member,
encrypt for each

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Secure Mailing Lists using GnuPG Page 7 of 34

for patches and upgrades. As a result, I selected Gentoo 1.4.3 for my development and
testing. However, the system works well on Red Hat 9 as well. I have not tested it on
other flavors of UNIX, but I expect that it will work well on those as well, except there
may be some issues getting various PERL modules to work.

Installation instructions for Gentoo on X86 systems can be found at
http://www.gentoo.org/doc/en/gentoo-x86-install.xml

Installation instructions for Red Hat 9 can be found at
https://www.redhat.com/docs/manuals/linux/RHL-9-Manual/install-guide/

3.3.1.2 SMTP Server

There is a wide variety of SMTP servers available out there, but Sendmail is by far the
most widely used. Exim is another one that is becoming quite popular. For the purposes
of testing the system, sendmail-8.12.8-4 was used. Details on secure configuration of
MTA are beyond the scope of this paper.

Installation and configuration information for Sendmail can be found at
http://www.sendmail.org

3.3.1.3 GNU Privacy Guard (GnuPG)

GnuPG or Gnu Privacy Guard is GNU’s tool for secure communication and data
storage.

GnuPG or GPG source and/or binaries can be downloaded from
http://www.gnupg.org/(en)/download/index.html

Installation and configuration information can be found at
http://webber.dewinter.com/gnupg_howto/english/GPGMiniHowto.html

It is fully compatible with the newer versions of PGP. To communicate with old versions
of PGP 2.x, check out
http://www.gnupg.org/gph/en/pgp2x.html

Installation and configuration steps for GnuPG on the system are outlined below

Please note that you have to be logged in as root to install GnuPG.

$ su
Password:
$ cd /usr/local/src
$ wget ftp://ftp.gnupg.org/gcrypt/gnupg/gnupg-1.2.4.tar.gz
$ tar xzvf gnupg-1.2.4.tar.gz
$./configure
$ make
$ make install

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Secure Mailing Lists using GnuPG Page 8 of 34

Important: GPG should be installed as setuid(root). This is necessary to lock memory
pages. Locking memory pages prevents the operating system from writing them to disk
and thereby keeping the secret keys really secret. If you get no warning message about
insecure memory your operating system supports locking without being root. The
program drops root privileges as soon as locked memory is allocated. To setuid(root)
permissions on the gpg binary, do either

$ chmod u+s /path_to_gpg/gpg

OR

$ chmod 4755 /path_to_gpg/gpg

3.3.1.4 PERL

Typical install of PERL-5.8.0.

3.3.1.5 PERL modules

The following PERL modules need to be installed. All these modules can be
downloaded from http://search.cpan.org..Essentially 8 modules need to be installed,
and the process is very simple and same for all of them. For details of the PERL
modules, check Appendix B.

Module Name Module Description Dependencies Version

Mail::GnuPG To process email with
GPG

GnuPG::Interface Mail-GnuPG-0.07

GnuPG::Interface Perl Interface to
GnuPG

Class:MethodMaker GnuPG-Interface-0.33

Class:MethodMaker Generic methods for
object oriented PERL

 Class-MethodMaker-
2.00

MIME::Entity Class for parsed-and-
decoded MIME
message

MIME::Parser Class for parsing
MIME messages

Mail::Field
Mail::Header
Mail::Internet
Unicode::Map
Unicode::String
IO::Stringy

MIME-tools-6.200_02

Mail::Field

Base class for
manipulation of mail
header fields

Mail::Header For manipulationof
mail RFC822
compliant headers

Mail::Internet For manipulation of
Internet format (RFC
822) mail messages

MailTools-1.60

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Secure Mailing Lists using GnuPG Page 9 of 34

Unicode::Map

For mapping
character sets from
and to utf16 unicode

 Unicode-Map-0.112

Unicode::String String of Unicode
characters
(UCS2/UTF16)

 Unicode-String-2.07

IO::Stringy I/O on in-core objects
like strings and
arrays

 IO-stringy-2.109

Download the tar files for all the modules, and start installing in the order reversed from
the one in the table.

$ su
Password:
$ cd /usr/local/src
$ tar xzvf <module_name>.tar.gz
$ cd <module_name>
$ perl Makefile.PL
$ make
$ make test
$ make install

3.3.1.6 Apache

The system was running a typical install of apache-1.3.28. You can download the
sources from
http://www.apache.org.

The documentation on the site is more than adequate, but to make sure that you can
run PHP, follow the instructions at:
http://www.php.net/manual/en/install.apache.php

3.3.1.7 PHP

The system was running php-4.3.3. No special configurations were made.

3.3.2 Installing and configuring the custom software

The source code for the scripts can be found in Appendix A. The scripts in themselves
are configurable, but it is easier to explain the setup with an example.

The list that will be created here is gpglist@bar.com, and the members are,
webctl@bar.com, pchhabra@bar.com, mlg@bar.com.

Important: Steps below require you to be logged in as root

File/Directory Structure: The directory structure can be configured differently in the
scripts.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Secure Mailing Lists using GnuPG Page 10 of 34

File/Directory Description
/etc/mail/smail Base directory
/etc/mail/smail/scripts Directory containing scripts

/etc/mail/smail/scripts/smail Script that processes the email

/etc/mail/smail/keyrings Directory containing keyrings. Note
that it is not the default
directory, /root/.gnupg

/etc/mail/smail/lists Directory containing files with the
list members. Each list has its own
file with the members belonging to
it. The filename is the same as the
listname.
For our example list, the file will
be called “gpglist@oak.bbn”

/usr/local/apache/htdocs

Directory containing the PHP based
web interface for list and key
management. The files are index.php
and Common.php

/tmp/smail Directory used by the web interface
for saving information needed to
process requests for list creation
or deletion, member subscription or
un-subscription.
Note: It is important that this
directory and all the sub-
directories and files be owned by
the user the web server is running
as.

/tmp/smail/<delete_requests> File containing requests to delete
list(s) or member(s).

/tmp/smail/<listname> File containing information about
the list owner, number of members,
email addresses of the members, etc.
Note: This file is created by the
web interface when a request for a
list or new members comes in.

/tmp/smail/d_<listname> Directory containing the public keys
of the members belonging to the list
<listname>, submitted through the
web interface.
Note: The directory is created by
the web interface.

/tmp/smail/lists Directory containing the public keys
of all the lists available. These
keys are served through the web
interface for people to download.

3.3.2.1 Script setup

Create the top level directory and the directory for the script. Copy the script in the
appropriate directory.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Secure Mailing Lists using GnuPG Page 11 of 34

$ mkdir /etc/mail/smail
$ mkdir /etc/mail/smail/scripts
$ cp smail /etc/mail/smail/scripts/
$ cp wrapper /etc/mail/smail/scripts/

Set the setuid bit of the wrapper so that it executes as root. This is important because
the keyring is owned by root

$ chmod u+s /etc/mail/smail/scripts/wrapper

Ownership and permissions can be an issue if not handled carefully.

In order for the script to get executed when an email comes in, two important changes
need to be made.

3.3.2.1.1 Update aliases database
As root, edit the aliases file to call the script. It is usually located in /etc or /etc/mail.

gpglist:”|/etc/mail/smail/scripts/wrapper /etc/mail/smail/scripts/smail”

Next, update the aliases database by executing the following command

$ newaliases

3.3.2.1.2 Make the script available to Sendmail

Sendmail uses a restricted shell ‘smrsh’ to execute programs, which are limited to be in
a single directory. Check the manpage for smrsh for the directory location. Once in the
directory, create a link to the script.

$ cd /usr/adm/sm.bin
$ ln –s /etc/mail/smail/scripts/smail smail

3.3.2.2 List Setup

3.3.2.2.1 Create ‘lists’ directory

$ mkdir /etc/mail/smail/lists

3.3.2.2.2 Create the lists file

Create a separate file for each list. This step will have to be repeated for every new
list that is created.

$ cd /etc/mail/smail/lists
$ vi gpglist@bar.com

gpglist@bar.com should contain the following

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Secure Mailing Lists using GnuPG Page 12 of 34

webctl@bar.com
pchhabra@bar.com
mlg@bar.com

3.3.2.3 Keyring(s) Setup

The assumption is that you are setting up a server to do GPG based mailing lists, so
you should be familiar with the workings of GPG. If not, refer the link below for details.
http://webber.dewinter.com/gnupg_howto/english/GPGMiniHowto.html

For even more understanding, refer to http://www.gnupg.org/gph/en/manual.html

Important: Remember we are not using the default keyring. This implies that in every
gpg command, we have to include the option

--homedir /etc/mail/smail/keyrings

3.3.2.3.1 Create ‘keyrings’ directory

Create the keyrings directory.

$ mkdir /etc/mail/smail/keyrings
$ chmod 700 /etc/mail/smail/keyrings

3.3.2.3.2 Generate key pair for a list

As mentioned earlier, we need a key pair for each list. So lets generate one for
gpglist@bar.com. This step will have to be repeated for every new list that is
created.

$ gpg –homedir /etc/mail/smail/keyrings –gen-key

When prompted for a passphrase, hit enter i.e. no passphrase.

Next, generate a revocation certificate for the key. Though the revocation certificate is
not needed for the functioning of this system, but if your private key is compromised or
lost, this revocation certificate may be published to notify others that the public key
should no longer be used.

$ gpg –homedir /etc/mail/smail/keyrings –gen-revoke gpglist@bar.com

This would be a good time to export the public key of the list for members to download.
By default, the key is exported in a binary format, but this can be inconvenient when the
key is to be sent though email or published on a web page. So lets generate one in ascii
format. We want to save it in the /tmp/smail/lists directory, so that the web interface can
access it and allow potential members to download it.

$ gpg –homedir /etc/mail/smail/keyrings –-armor –-output
/tmp/smail/lists/gpglist@bar.com –export gpglist@bar.com

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Secure Mailing Lists using GnuPG Page 13 of 34

Make sure that the permissions on the public key file allow everyone to read it, or the
web interface will not be able to read it. If not, do

$ chmod a+r /tmp/smail/lists/gpglist@bar.com

3.3.2.3.3 Add a member to the list

Adding a member to the list involves getting their key and validating it before trusting.
Earlier we briefly touched the subject of key signing, but the issues there are beyond the
scope of this paper. We are going to assume that we trust the subscriber, so we will
sign it with our own key.

Import subscriber’s public key

$ gpg –homedir /etc/mail/smail/keyrings -–import
/tmp/smail/gpglist@bar.com/<members_public_key_file>

Sign subscriber’s public key

$ gpg –homedir /etc/mail/smail/keyrings –-sign-key <members_email_id>

3.3.3 Front End Setup

There are two main PHP scripts – index.php and Common.php. Install them in
/usr/local/apache/htdocs or whatever is the ServerRoot directory on your system.

Create the following directories.

$ mkdir /tmp/smail
$ mkdir /tmp/smail/lists

Change the ownership of the directory to that of your webserver e.g. nobody or apache.
Assuming it is running as nobody

$ chown –R nobody:nobody /tmp/smail

The screenshots of the front end are available in Appendix C.

4. AFTER SNAPSHOT

Mail components just like the rest of the Internet were developed in an ad-hoc fashion.
As a result the mail servers can be configured in numerous ways. For this study, I have
chosen a single configuration. However the scripts that do the real work do not depend
on the configuration of the server.

To make matters worse, between windows and UNIX, we have seemingly infinite mail
clients. These mail clients differ in the way they handle MIME, PGP, GPG, etc. We also
have versions of PGP that are not compatible with GPG.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Secure Mailing Lists using GnuPG Page 14 of 34

4.1 Caveats
Before I discuss the results of this study, I would like to go over some caveats on the
way.

4.1.1 Ownership and Permissions

A word about ownership and permissions is in order here. Sendmail does privileged
tasks as root, and other tasks as the user, typically ‘mail’, configured through the
‘DefaultUser’ directive in the Sendmail configuration file. For GPG to work properly, it is
important that the script is executed as the user who owns the keyring, which in this
case would have to be mail. So the following options were available:

Option 1: Grant user ‘mail’ shell access. Since home directory for mail is typically
/var/spool/mail, the keyring would be in /var/spool/mail/.gnupg. This setup is clearly not
very secure.

Option 2: No shell access for mail, but set ‘mail’ as the owner of the keyring. This would
mean that every time the administrator added a new list or a member to the keyring, he
would have to reset the permissions on the keyring. This can be quite cumbersome for
the administrator.

Option 3: Run the script as a different user than mail i.e. set the setuid bit of the script to
run it as whatever user you choose. For security reasons Sendmail usually uses
‘smrsh’, a restricted shell, for executing programs. The programs that smrsh can
execute have to be explicitly specified. Setuid can be made available to smrsh, but
allowing Sendmail scripts to change user for execution, without proper environment
checking, is not a secure practice. So we insert a layer of protection in the form of a
wrapper. The wrapper sets the appropriate secure environment for executing the script.

I went with option 3 for setting up the system, and chose ‘root’ as the user to execute
the script. I chose ‘root’, because all my mailing lists include files are in /usr/MailingList,
which is owned by root. If you want to setup a separate user to do this, all you need to
do is create a user, and configure the script to point to user’s home directory as the
base directory.

4.1.2 Passphrase for the Private Keys of the Lists

Lets talk about passphrases for a bit. Remember in section 3.3.2.3.2, Generate key pair
for a list, I asked you to leave the passphrase blank. From the perspective of security, a
passphrase is essentially the weakest points in public encryption systems, but it is still a
lock for the private key. If someone gets a hold of your private key, they need your
passphrase to unlock it. So why did I not set one for the private key of the list? Well in
order for the script to decrypt messages sent to it, it would need to use the lists private
key. If the key was locked, it would need the passphrase. For the script to have the
passphrase, I would need to have them on the hard drive somewhere, where the script
can access it. In the event the system gets hacked, and someone gets the private key,

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Secure Mailing Lists using GnuPG Page 15 of 34

I am going to assume, they got my passphrase as well, and will discard all the keys.
Hence I chose not to have any, at least until I can figure out a better way of providing
the passphrase to the script.

All said and done, the email encryption and/or signing is an added step towards
security, and it is only as secure as your system. If your operating system, or the MTA,
or any other piece of software that you are using provides a backdoor, none of this is
any use. If the system ever gets hacked, you will have to regenerate all list keys, and all
the members of all the lists, will have to update their key rings.

4.2 Setup and Results

Now that we have gone through various caveats, let me talk about the test setup and
results.

As mentioned before, the mailing list server is running Gentoo-1.4.3, and Sendmail-
8.12.8-4.

Mail clients used for testing were Pine and Kmail. The results were great. I could send
signed, encrypted, signed and unencrypted, and of course plain emails, with and
without attachments, flawlessly. I have not forgotten windows, and will test some
windows email clients some time soon.

I also setup a list server on Red Hat 9. PERL that comes as a Red Hat rpm may not
support setuid and setguid. In that case you can get perl-suid at
ftp://216.254.0.38/linux/redhat/updates/9/en/os/i386/perl-suidperl-5.8.0-88.3.i386.rpm

This package allows for more secure running of PERL setuid scripts by checking for
tainted code.

5. Further Improvements

There is always room for improvement, especially in something which is at this point is
still being brainstormed. In addition there is a learning curve for the average user, who
needs to be able to generate and manage keys, and setup their clients to use
PGP/GPG.

Some key conceptual issues that I think need to be addressed are incompatibility
between GPG and versions of PGP-2.x and key authentication for larger groups.

This module is really a first cut at doing something like this. The list passphrase problem
discussed earlier needs to be addressed. Also the module needs to be tested with other
MTAs. Also some testing with windows mail clients need to be done.

Some minor improvements to this module can be a script for automating the set up of
the system, an interactive script which makes it easier to create new lists, add new

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Secure Mailing Lists using GnuPG Page 16 of 34

members, and allows importing and signing of keys belonging to the subscribers. One
could definitely write a more secure wrapper.

References
[1] Robbins, Daniel, Gentoo Linux 1.4 Installation Instructions, January 23, 2004.
URL: http://www.gentoo.org/doc/en/gentoo-x86-install.xml

[2] Moore, Sandra A, Red Hat Linux 9: Red Hat Linux x86 Installation Guide, 2003
URL: https://www.redhat.com/docs/manuals/linux/RHL-9-Manual/install-guide/

[3] Costales and Allman, Sendmail, Third Edition, O’Reilley, December 2002

[4] Mathew Copeland, Joergen Grahn, and David A. Wheeler, The GNU Privacy
Handbook, Version 1.1
URL: http://www.gnupg.org/gph/en/manual.html

[5] Brenno J.S.A.A.F. de Winter, Gnu Privacy Guard (GnuPG) Mini Howto (English),
Version 0.1.3 May 17, 2002
http://webber.dewinter.com/gnupg_howto/english/GPGMiniHowto.html

[6] Spier, Rober, Mail::GnuPG, Version: 0.07
URL: http://search.cpan.org/~rspier/Mail-GnuPG-0.07/GnuPG.pm

[7] Eryq [ZeeGee Software Inc], MIME::Entity, Version: 5.404
URL: http://search.cpan.org/~eryq/MIME-tools-5.411a/lib/MIME/Entity.pm

[8] Several other PERL modules
URL: http://search.cpan.org

[9] Details of installing PHP with Apache on Unix, Jan 30, 2004
URL: http://www.php.net/manual/en/install.apache.php

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Secure Mailing Lists using GnuPG Page 17 of 34

Appendix A: Source Code

#!/usr/bin/perl

Name: smail #
Author: Protima Chhabra <pchhabra@bbn.com> #
Version: 0.1 #
Last updated: 02/09/2004 #
Function: Script to do GPG based mailing lists. #

use strict;

use MIME::Parser;
use GnuPG::Interface;
use IO::Handle;
use Mail::GnuPG;

use vars qw($basedir $keydir $listdir $scriptdir $dbgfile $ent $head $subject $dmg @recp
$DEBUG);

Configurable portion of the script

#$basedir = ""; # base directory
#$keydir = ""; # directory containing the keyrings
#$listdir = ""; # directory containing files with the
 # lists of members belonging to each list
#$scriptdir = ""; # directory containing the scripts
#$dbgfile = ""; # debug file

$DEBUG = 0; # set to 1 for debugging

Default directories
$basedir = "/etc/mail/smail";
$keydir = "$basedir/keyrings";
$listdir = "$basedir/lists";
$scriptdir = "$basedir/scripts";
$dbgfile = "$scriptdir/debug";

sub send_signed_and_encrypted;
sub send_signed;
sub send_encrypted;
sub send_plain;
sub send_error;
sub send_mail;

open(D, ">$dbgfile") if($DEBUG);

Create a new MIME parser:
my $parser = new MIME::Parser;
$parser->output_to_core(1);

Read the MIME message:
$ent = $parser->read(*STDIN) or die "couldn't parse MIME stream";

extract the header
$head = $ent->head;

get the subject if provided
$subject = $head->get('Subject') || "";

create a new mail entity
$dmg = new Mail::GnuPG(keydir => $keydir);

construct the name of the file containing the list of the members
my $rcvr = $head->get('To');

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Secure Mailing Lists using GnuPG Page 18 of 34

chomp($rcvr);
$rcvr =~ s/(.*)\<(.*)\>(.*)/$2/;
my $file = $listdir . "/" . $rcvr;

print D "list file -- $file\n" if $DEBUG;

now get the members belonging to this list from the list file
open(F, $file);
@recp = <F>;
close(F);
if($DEBUG) {
 print D "Members of list $file\n";
 print D @recp;
}

if($dmg->is_encrypted($ent)) {
 # encrypted message
 # success is set to 0 if the message can be successfully decrypted
 # if the message is both signed and encrypted, then keyid and email
 # are defined
 my ($success, $keyid, $email) = $dmg->decrypt($ent);
 if($DEBUG) {
 print D "$success, $keyid, $email\n";
 # last_message contains the error message if there was
 # trouble decrypting
 print D "\n******* last_message after decryption ************\n";
 print D @{$dmg->{last_message}};
 print D "\n******* end last_message after decryption ********\n";
 }
 if(!$success) {
 # successfully decrypted the msg. now see if the message
 # is signed
 if($keyid && $email) {
 print D "++ signed and encrypted\n" if $DEBUG;
 send_signed_and_encrypted();
 } else {
 # message was not signed
 print D "++ encrypted only\n" if $DEBUG;
 send_encrypted();
 }
 } else {
 my $error = "Your message did not reach some or all of the intended
recipients.\nThe message could not be decrypted.";

 send_error($head->get('From'), $error, "@{$dmg->{last_message}}");
 }
} else {
 if($dmg->is_signed($ent)) {
 print D "++ signed only\n" if $DEBUG;
 my ($success, $keyid, $email) = $dmg->verify($ent);
 if($DEBUG) {
 print D "$success, $keyid, $email\n";
 print D "\n******* last_message after signature verification *\n";
 print D @{$dmg->{last_message}};
 print D "\n******* end last_message after verification ******\n";
 }
 send_signed();
 } else {
 # message is neither encrypted, nor signed
 print D "++ Plain\n" if $DEBUG;
 send_plain();
 }
}

sub send_signed_and_encrypted() {
 print D "++ Sign and Encrypt\n" if $DEBUG;
 foreach my $recp(@recp) {
 chomp($recp);
 my $deme = MIME::Entity->build(Type => "Multipart/Mixed",
 From => $head->get('From') ,
 To => $head->get('To'),

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Secure Mailing Lists using GnuPG Page 19 of 34

 Subject => $subject);
 $deme->add_part($dmg->{'decrypted'});
 my $mg = new Mail::GnuPG(keydir => $keydir);
 if(!$mg->mime_signencrypt($deme, $recp)) {
 # message successfully signed and encrypted
 $deme->smtpsend(To => $recp);
 } else {
 # problems encrypting the message
 if($DEBUG) {
 print D "\n******* $recp: last_message after encryption ****\n";
 print D @{$mg->{last_message}};
 print D "\n**\n";
 }
 my $error = "There is an encrypted message for you, but I cannot send it
to you for the reason below.";
 send_error($recp, $error, "@{$mg->{last_message}}");
 }
 }
}

sub send_signed() {
 # sign only
 foreach my $recp(@recp) {
 chomp($recp);
 my $deme = $ent->dup;
 my $mg = new Mail::GnuPG(keydir => $keydir);
 $mg->mime_sign($deme);
 $deme->smtpsend(To => $recp);
 }
}

sub send_encrypted() {
 # encrypt only
 foreach my $recp(@recp) {
 chomp($recp);
 my $deme = MIME::Entity->build(Type => "Multipart/Mixed",
 From => $head->get('From') ,
 To => $head->get('To'),
 Subject => $subject);
 $deme->add_part($dmg->{'decrypted'});
 my $mg = new Mail::GnuPG(keydir => $keydir);
 if(!$mg->mime_encrypt($deme, $recp)) {
 # message was successfully encrypyed
 $deme->smtpsend(To => $recp);
 } else {
 # problems encrypting the message
 if($DEBUG) {
 print D "\n******* $recp: last_message after encryption ****\n";
 print D @{$mg->{last_message}};
 print D "\n**\n";
 }
 my $error = "There is an encrypted message for you, but I cannot send it
to you for the reason below.";
 send_error($recp, $error, "@{$mg->{last_message}}");
 }
 }
}

sub send_plain() {
 # send plain message
 foreach my $recp(@recp) {
 chomp($recp);
 my $deme = $ent->dup;
 $deme->smtpsend(To => $recp);
 }
}

sub send_error() {
 my ($recp, $err, $lastmsg) = @_;

 my $contents = $err;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Secure Mailing Lists using GnuPG Page 20 of 34

 $contents .= "\n\tSubject: " . $subject ."\tSent: " . $head->get('Date');
 $contents .= "\n\n-------------- Details are included ----------------\n";
 $contents .= $lastmsg;
 my $deme = MIME::Entity->build(
 From => $head->get('To') ,
 To => $head->get('From'),
 Subject => "Undeliverable: " . $subject,
 Data => [$contents]);

 $deme->smtpsend(To => $recp);
}
<?php
 /***
 * Name: index.php *
 * Author: Protima Chhabra <pchhabra@bbn.com> *
 * Version: 1.0 *
 * Last Updated: 02/16/2004 *
 * Supporting files: Common.php *
 * *
 * PHP based script that interacts with subscribers/members.*
 * It provides the following functions: create a new list, *
 * delete an existing list, add members to an exisitng list,*
 * delete members from an existing list, and allow users to *
 * download public keys of lists. *
 * *
 * NOTE: By design the frontend itself WILL NOT CHANGE *
 * anything. It is only a means to gather information. Every*
 * change requires human intervention *
 ***/

 include "Common.php";

 $params = $_REQUEST;
 $action = $params[action];
 switch($action) {
 case 'add_list':
 /* display the page to gather information about
 a new list. once we have some basic information
 about the list like list name, owner, number of
 members, etc, we will display the form to gather
 email addresses and the public keys of the members */
 disp_header($params, NULL);
 disp_sec_header();
 disp_add_new_list($params);
 disp_submit("Add List");
 break;
 case 'Add List':
 /* we have basic information about the list, now
 gather member information. But before that,
 validate the information gathered so far */
 $return = validate_add_new_list($params, $ERROR);
 if(!empty($return)) {
 /* the data had some errors. display the
 form again to fix it. */
 disp_header($params, $return);
 disp_sec_header();
 disp_add_new_list($params);
 disp_submit("Add List");
 } else {
 /* no errors. get member email addresses,
 and their public keys */
 disp_header($params, NULL);
 disp_sec_header();
 disp_add_new_list($params);
 disp_get_list_members($params);
 disp_submit("Add List Members");
 }
 break;
 case 'Add List Members':
 /* now we have basic and member information
 about the list. validate everything */

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Secure Mailing Lists using GnuPG Page 21 of 34

 $return = validate_add_new_list($params, $ERROR);
 if(!empty($return)) {
 disp_header($params, $return);
 }
 $ret = get_list_members($params, $tmpdir, $ERROR);
 if(!empty($ret)) {
 disp_header($params, $ret);
 disp_sec_header();
 disp_add_new_list($params);
 disp_get_list_members($params);
 disp_submit("Add List Members");
 } else {
 /* everything looks good. send an email to
 the admin about a request for a new mailing list*/
 disp_header($params, "Your request for a new list has been
submitted. Someone will contact you shortly.");
 disp_sec_header();
 send_mail("Request for a new list", $params, $admin);
 }
 break;
 case 'delete_list':
 /* request to delete a list. display form to
 get information */
 disp_header($params, NULL);
 disp_sec_header();
 disp_get_list($params);
 disp_submit("Delete List");
 break;
 case 'Delete List':
 /* have information to delete. verify it */
 $ret = del_list($params, $delreqfile, $ERROR);
 if(!empty($ret)) {
 /* problems with information. get it fixed */
 disp_header($params, $ret);
 disp_sec_header();
 disp_get_list($params);
 disp_submit("Delete List");
 } else {
 /* all good. send an email to the admin
 with this delete list request */
 disp_header($params, "Your request for deleting list
'$params[lname]' has been noted. Someone will contact you about the request before any
action is taken upon it.");
 send_mail("Request for deleting a list", $params, $admin);
 disp_sec_header();
 }
 break;
 case 'add_member':
 /* request to add a member. display form
 to get relevant information */
 disp_header($params, NULL);
 disp_sec_header();
 disp_get_list($params);
 $params[num] = 1;
 disp_get_list_members($params);
 disp_submit("Add Member");
 break;
 case 'Add Member':
 /* have information to add a member. verify it */
 $ret = add_member($params, $tmpdir, $ERROR);
 if(!empty($ret)) {
 /* problems with information. get it fixed */
 disp_header($params, $ret);
 disp_sec_header();
 disp_get_list($params);
 $params[num] = 1;
 disp_get_list_members($params);
 disp_submit("Add Member");
 } else {
 /* all good. send an email to the admin
 with this new member request */

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Secure Mailing Lists using GnuPG Page 22 of 34

 disp_header($params, "Your request for subscription to list
'$params[lname]' has been noted. Someone will contact you about the request before any
action is taken upon it.");
 disp_sec_header();
 send_mail("Request for subscribing to list $params[lname]",
$params, $admin);
 }
 break;
 case 'delete_member':
 /* request to delete a member. display form
 to get information */
 disp_header($params, NULL);
 disp_sec_header();
 disp_del_member($params);
 disp_submit("Delete Member");
 break;
 case 'Delete Member':
 /* have information to delete. verify it */
 $ret = del_member($params, $delreqfile, $ERROR);
 if(!empty($ret)) {
 /* problems with information. get it fixed */
 disp_header($params, $ret);
 disp_sec_header();
 disp_del_member($params);
 disp_submit("Delete Member");
 } else {
 /* all good. send an email to the admin
 with this delete member request */
 disp_header($params, "Your request for un-subscription from list
'$params[lname]' has been noted. Someone will contact you about the request before any
action is taken upon it.");
 disp_sec_header();
 send_mail("Request for un-subscribing from list $params[lname]",
$params, $admin);
 }
 break;
 case 'disp_list_keys':
 /* show page public keys of all the lists */
 disp_header($params, NULL);
 disp_sec_header();
 disp_list_keys($tmpdir);
 break;
 default:
 disp_header($params, NULL);
 disp_sec_header();
 break;
 }
 disp_footer();

 function del_member($params, $delreqfile, $ERROR) {
 if(empty($params[lname])) {
 return($ERROR['mandatory']);
 }
 if(!preg_match("/^[A-z0-9\-_@.]+$/", $params[lname])) {
 return($ERROR[invalid_list]);
 }
 $fh = fopen($delreqfile, "a");
 $date = `date`;
 fwrite($fh, $date);
 fwrite($fh, " ++ Delete member $params[mememail] from $params[lname]\n");
 fclose($fh);
 }

 function add_member($params, $tmpdir, $ERROR) {
 if(empty($params[lname])) {
 return($ERROR['mandatory']);
 }
 if(!preg_match("/^[A-z0-9\-_@.]+$/", $params[lname])) {
 return($ERROR[invalid_list]);
 }
 $keydir = $tmpdir . "/d_" . $params[lname];

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Secure Mailing Lists using GnuPG Page 23 of 34

 if(!is_dir($keydir)) {
 mkdir($keydir);
 }
 $lstfile = $tmpdir . "/" . $params[lname];
 $fh = fopen("$lstfile", "a");
 $email = "email_0";
 $key = "key_0";
 if(!empty($params[$email])) {
 if(!empty($params[$key])) {
 if(!preg_match("/^[A-z0-9\-_@.]+$/", $params[$email])) {
 return($ERROR[invalid_email]);
 }
 fwrite($fh, "$params[$email]\n");
 $keyfile = "$keydir/$params[$email]";
 $kfh = fopen("$keydir/$params[$email]", "w");
 fwrite($kfh, "$params[$key]");
 fclose($kfh);
 } else {
 return($ERROR[missing_key]);
 }
 } else {
 if(!empty($params[$key])) {
 return($ERROR[missing_email]);
 }
 }
 fclose($fh);
 return;
 }

 function del_list($params, $delreqfile, $ERROR) {
 if(empty($params[lname])) {
 return($ERROR['mandatory']);
 }
 if(!preg_match("/^[A-z0-9\-_@.]+$/", $params[lname])) {
 return($ERROR[invalid_list]);
 }
 $fh = fopen($delreqfile, "a");
 $date = `date`;
 fwrite($fh, $date);
 fwrite($fh, " ++ Delete list $params[lname]\n");
 fclose($fh);
 }

 function get_list_members($params, $tmpdir, $ERROR) {
 $keydir = $tmpdir . "/d_" . $params[lname];
 if(is_dir($keydir)) {
 if($dh = opendir($keydir)) {
 while(($file = readdir($dh)) !== false) {
 if(is_file("$keydir/$file")) {
 unlink("$keydir/$file");
 }
 }
 closedir($dh);
 }
 } else {
 # make directory for storing keys
 mkdir($keydir);
 }
 $lstfile = $tmpdir . "/" . $params[lname];
 $fh = fopen("$lstfile", "w");
 fwrite($fh, "#$params[ownername], $params[owneremail],
$params[ownerphone]\n");

 for($cnt = 0; $cnt < $params[num]; $cnt++) {
 $email = "email_" . $cnt;
 $key = "key_" . $cnt;
 if(!empty($params[$email])) {
 if(!empty($params[$key])) {
 if(!preg_match("/^[A-z0-9\-_@.]+$/", $params[$email])) {
 return($ERROR[invalid_email]);
 }

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Secure Mailing Lists using GnuPG Page 24 of 34

 fwrite($fh, "$params[$email]\n");
 $keyfile = "$keydir/$params[$email]";
 $kfh = fopen("$keydir/$params[$email]", "w");
 fwrite($kfh, "$params[$key]");
 fclose($kfh);
 } else {
 return($ERROR[missing_key]);
 }
 } else {
 if(!empty($params[$key])) {
 return($ERROR[missing_email]);
 }
 }
 }
 fclose($fh);
 return;
 }

 function validate_add_new_list($params, $ERROR) {
 /* make sure that all essential information, like listname, number of members,
 owner of the list, and owners email, has been obtained */
 if((empty($params[lname])) || (empty($params[num])) ||
(empty($params[ownername])) || (empty($params[owneremail]))) {
 return($ERROR['mandatory']);
 }
 /* validate form data */
 /* list name is a valid email address */
 if(!preg_match("/^[A-z0-9\-_@.]+$/", $params[lname])) {
 return($ERROR[invalid_list]);
 }
 /* number of members is an integer */
 if(!is_numeric($params[num])) {
 return($ERROR['integer']);
 }
 /* owner's email address is valid */
 if(!preg_match("/^[A-z0-9\-_@.]+$/", $params[owneremail])) {
 return($ERROR[invalid_email]);
 }
 /* phone number is valid */
 if(!empty($params[ownerphone])) {
 if(!preg_match("/^[0-9-\(\)]+$/", $params[ownerphone])) {
 return($ERROR[invalid_phone]);
 }
 }
 return;
 }

 function send_mail($action, $params, $admin) {
 $subject = $action;
 foreach ($params as $key => $value) {
 if((! empty($value)) && ($key)){
 $content .= "$key\t\t$value\n";
 }
 }
 mail($admin, $subject, $content);
 }
?>
<?php
 /**
 * Name: Common.php
 * Author: Protima Chhabra <pchhabra@bbn.com>
 * Version: 1.0
 * Last updated: 02/16/2004
 * Supports index.php
 **/

 /**/
 /* Configurable part of the script */

 /* directory to save all incoming requests */

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Secure Mailing Lists using GnuPG Page 25 of 34

 $tmpdir = "/tmp/smail";

 /* file to save all delete requests */
 $delreqfile = "$tmpdir/delete_requests";

 /* admin who will receive email about all requests */
 $admin = "pchhabra@bar.com";
 /**/

 $ERROR = array(
 'mandatory' => "ERROR: All fields marked * are mandatory",
 'integer' => "ERROR: # members should be an integer",
 'invalid_list' => "ERROR: Invalid characters in list name",
 'invalid_email' => "ERROR: Invalid characters in email address",
 'invalid_phone' => "ERROR: Invalid characters in phone number",
 'missing_key' => "ERROR: No key given for a member",
 'missing_email' => "ERROR: Key provided for a member with no email address",
);

 function disp_list_keys($tmpdir) {
?>
<tr><td>
<table border=1 cellpadding=8 cellspacing=4 align=center><tbody>
<?php
 $keydir = $tmpdir . "/lists";
 if(is_dir($keydir)) {
 if($dh = opendir($keydir)) {
 while(($file = readdir($dh)) !== false) {
 $str = file_get_contents("$keydir/$file");
 if(strlen($str) > 0) {
 print "<tr valign=top><td font
class=tile>$file</td>";
 print "<td><pre>$str</td></tr>";
 }
 }
 }
 }
?>
</tbody></table></td></tr>
<?php
 }
 function disp_del_member($params) {
?>
<tr><td>
<table border=0 cellpadding=8 cellspacing=4 align=center><tbody>
<tr valign=top>
 <td font class=caption>List*</td>
 <td font class=caption><input type=text name=lname value="<? print $params[lname]
?>"></td>

 <td font class=caption>Member [email address]*</td>
 <td font class=caption><input type=text name=mememail value="<? print
$params[mememail] ?>"></td>
</tr>
</tbody></table></td></tr>
<?php
 }
 function disp_get_list($params) {
?>
<tr><td>
<table border=0 cellpadding=8 cellspacing=4 align=center><tbody>
<tr valign=top>
 <td font class=caption>List*</td>
 <td font class=caption><input type=text name=lname value="<? print $params[lname]
?>"></td>
</tr>
</tbody></table></td></tr>
<?php
 }

 function disp_add_new_list($params) {

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Secure Mailing Lists using GnuPG Page 26 of 34

?>
<tr><td>
<table border=0 cellpadding=8 cellspacing=4 align=center><tbody>
<tr valign=top>
 <td font class=caption>List*</td>
 <td font class=caption><input type=text name=lname value="<? print $params[lname]
?>"></td>
 <td font class=caption># Members*</td>
 <td font class=caption><input type=text name=num size=3 value="<? print $params[num]
?>"></td>
</tr><tr valign=top>
 <td font class=caption>Owner of the List*</td>
 <td font class=caption><input type=text name=ownername value="<? print
$params[ownername] ?>"></td>
 <td font class=caption>Email*</td>
 <td font class=caption><input type=text name=owneremail value="<? print
$params[owneremail] ?>"></td>
 <td font class=caption>Phone</td>
 <td font class=caption><input type=text name=ownerphone value="<? print
$params[ownerphone] ?>"></td>
</tr>
</tbody></table></td></tr>
<?php
 }

 function disp_submit($value) {
?>
<table border=0 cellpadding=8 cellspacing=4 align=center><tbody>
<tr><td font class=caption>
<input type=submit name=action value="<? print $value ?>">
</td>
</tbody></table></td></tr>
<?php
 }

 function disp_get_list_members($params) {
?>
<tr><td>
<table border=0 cellpadding=8 cellspacing=4 align=center><tbody>
<tr valign=top>
 <td font class=caption>Please provide below the email address(s) and the public
key(s)</td>
</tr>
</tbody></table></td></tr>

<tr><td>
<table border=1 cellpadding=8 cellspacing=4 align=center><tbody>
<tr>
 <td font class=caption>Email</td>
 <td font class=caption>Public Key</td>
</tr>
<?php
 for($cnt = 0; $cnt < $params[num]; $cnt++) {
 $email = "email_" . $cnt;
 $key = "key_" . $cnt;
 print "<tr>
 <td font class=content><input type=text name=$email
value=$params[$email]></td>
 <td font class=content colspan=4><textarea name=$key rows=5
cols=45>$params[$key]</textarea></td>
 </tr>\n";
 }
?>
</tbody></table></td></tr>
<?php
 }

 function disp_avail_lists($tmpdir) {
?>
<tr><td>
<table border=0 cellpadding=8 cellspacing=4 align=center><tbody>

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Secure Mailing Lists using GnuPG Page 27 of 34

<tr><td font class=caption colspan=2>Available Lists</td></tr>
<?php
 if($dh = opendir($tmpdir)) {
 while(($file = readdir($dh)) !== false) {
 if(is_file("$tmpdir/$file")) {
 print "<tr><td font class=content>$file</td></tr>";
 }
 }
 closedir($dh);
?>
</tbody></table></td></tr>
<?php }

 }

 function disp_sec_header() {
?>
<tr><td>
<table border=0 cellpadding=4 cellspacing=4 align=center><tbody><tr>
<td font class=bcontent>Lists[Add/Delete]</td>
<td font class=bcontent>Members[Add/Delete]</td>
<td font class=bcontent>Download List Keys</td>
</tr></tbody></table>
</td></tr>
<?php
 }

 function disp_header($params, $error) {
 $str = "
<HTML>
 <HEAD>
 <TITLE>Secure List Management </TITLE>
 <meta http-equiv=\"Content-Type\" content=\"text/html; charset=iso-8859-1\">
 <style type=\"text/css\">
 <!--
 BODY {
 BACKGROUND-COLOR: #ffffff
 }
 A { TEXT-DECORATION: none }
 A:visited { COLOR: #0000cf; TEXT-DECORATION: none }
 A:link { COLOR: #0000cf; TEXT-DECORATION: none }
 A:active { COLOR: #0000cf; TEXT-DECORATION: underline }
 A:hover { COLOR: #0000cf; TEXT-DECORATION: underline }
 OL { COLOR: #333333; FONT-FAMILY: tahoma,helvetica,sans-serif }
 UL { COLOR: #333333; FONT-FAMILY: tahoma,helvetica,sans-serif }
 P { COLOR: #333333; FONT-FAMILY: tahoma,helvetica,sans-serif }
 BODY { COLOR: #333333; FONT-FAMILY: tahoma,helvetica,sans-serif }
 TD { COLOR: #333333; FONT-FAMILY: tahoma,helvetica,sans-serif }
 TR { COLOR: #333333; FONT-FAMILY: tahoma,helvetica,sans-serif }
 TH { COLOR: #333333; FONT-FAMILY: tahoma,helvetica,sans-serif }
 FONT.title { BACKGROUND-COLOR: white; COLOR: #363636; FONT-FAMILY:
 tahoma,helvetica,verdana,lucida console,utopia; FONT-SIZE: 12pt; FONT-WEIGHT: bold
}
 FONT.sub { BACKGROUND-COLOR: white; COLOR: #000000; FONT-FAMILY:
 tahoma,helvetica,verdana,lucida console,utopia; FONT-SIZE: 10pt }
 FONT.layer { COLOR: #ff0000; FONT-FAMILY: courrier,sans-serif,arial,helvetica; FONT-
SIZE: 8pt; TEXT-ALIGN: left }
 FONT.error { COLOR: #ff0000; FONT-FAMILY: courrier,sans-serif,arial,helvetica; FONT-
SIZE: 10pt; TEXT-ALIGN: left }
 TD.title { BACKGROUND-COLOR: #FFFFFF; COLOR: #555555; FONT-FAMILY:
 tahoma,helvetica,verdana,lucida console,utopia; FONT-SIZE: 12pt; FONT-WEIGHT:
bold; HEIGHT: 20px; TEXT-ALIGN: center }
 TD.subtitle { BACKGROUND-COLOR: #FFFFFF; COLOR: #555555; FONT-FAMILY:
 tahoma,helvetica,verdana,lucida console,utopia; FONT-SIZE: 10pt; FONT-WEIGHT:
bold; HEIGHT: 20px; TEXT-ALIGN: left }
 TD.error { BACKGROUND-COLOR: #FFFFFF; COLOR: #000000; FONT-FAMILY:
 tahoma,helvetica,verdana,lucida console,utopia; FONT-SIZE: 10pt; HEIGHT: 20px;
TEXT-ALIGN: left }

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Secure Mailing Lists using GnuPG Page 28 of 34

 TD.sub { BACKGROUND-COLOR: #DCDCDC; COLOR: #555555; FONT-FAMILY:
 tahoma,helvetica,verdana,lucida console,utopia; FONT-SIZE: 10pt; FONT-WEIGHT:
bold; HEIGHT: 18px; TEXT-ALIGN: center }
 TD.caption { BACKGROUND-COLOR: #FFFFFF; COLOR: #555555; FONT-FAMILY:
 tahoma,helvetica,verdana,lucida console,utopia; FONT-SIZE: 10pt; FONT-WEIGHT:
bold; HEIGHT: 18px; TEXT-ALIGN: left }
 TD.bcontent { BACKGROUND-COLOR: white; COLOR: #000000; FONT-FAMILY:
 tahoma,arial,helvetica,verdana,lucida console,utopia; FONT-SIZE: 10pt; FONT-
WEIGHT:bold; TEXT-ALIGN: left; VERTICAL-ALIGN: top }
 TD.content { BACKGROUND-COLOR: white; COLOR: #000000; FONT-FAMILY:
 tahoma,arial,helvetica,verdana,lucida console,utopia; FONT-SIZE: 10pt; TEXT-ALIGN:
left; VERTICAL-ALIGN: top }
 TD.one { BACKGROUND-COLOR: white; COLOR: #000000; FONT-FAMILY:
 tahoma,arial,helvetica,verdana,lucida console,utopia; FONT-SIZE: 10pt; TEXT-ALIGN:
left; VERTICAL-ALIGN: top }
 TD.two { BACKGROUND-COLOR: #E0E0E0; COLOR: #000000; FONT-FAMILY:
 tahoma,arial,helvetica,verdana,lucida console,utopia; FONT-SIZE: 10pt; TEXT-ALIGN:
left; VERTICAL-ALIGN: top }
 TD.default { BACKGROUND-COLOR: WHITE; COLOR: #000000; FONT-FAMILY:
 tahoma,arial,helvetica,verdana,lucida console,utopia; FONT-SIZE: 8pt; }
 TD.border { BACKGROUND-COLOR: #cccccc; COLOR: black; FONT-FAMILY:
 tahoma,helvetica,verdana,lucida console,utopia; FONT-SIZE: 10pt; HEIGHT: 25px }
 TD.border-HILIGHT { BACKGROUND-COLOR: #ffffcc; COLOR: black; FONT-FAMILY:
 verdana,arial,helvetica,lucida console,utopia; FONT-SIZE: 10pt;
HEIGHT: 25px }
-->
-->
</style>
</HEAD>
<BODY bgcolor=\"#ffffff\">
<form>

<table bgcolor=\"#ffffff\" border=0 cellpadding=0 cellspacing=0 width=90%\"><tbody>
<tr><td>
 <table border=0 cellpadding=2 cellspacing=1 width=\"90%\" align=\"center\"><tbody>
 <tr><td class=title align=center>Secure List Management</td></tr>
 </tbody></table>
</td></tr>\n";
 print $str;
 if($params[email])
 fwrite($params[fh], $str);
 if(isset($params[subtitle])) {
 $str = "
<tr><td>
<table border=0 cellpadding=2 cellspacing=1 width=100% align=center><tbody>
<tr><td font class=subtitle>$params[subtitle]</td></tr>
</tbody></table></td></tr>";
 print $str;
 if($params[email])
 fwrite($params[fh], $str);
 }
 if(isset($error)) {
 $str = "
<tr><td>
<table border=0 cellpadding=2 cellspacing=1 width=100% align=center><tbody>
<tr><td font class=error>$error</td></tr>
</tbody></table></td></tr>";
 print $str;
 if($params[email])
 fwrite($params[fh], $str);
 }
 print "<tr><td><hr></td></tr>\n";
 if($params[email])
 fwrite($params[fh], "<tr><td><hr></td></tr>\n");
 } /* end of disp_header */

 function disp_footer() {
 print "</form></body></html>";
 }
?>

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Secure Mailing Lists using GnuPG Page 29 of 34

Appendix B: PERL Modules

Module Name Module
Description

Also Provides Dependencie
s

Version

Mail::GnuPG To process email
with GPG

 GnuPG::Interf
ace

Mail-GnuPG-
0.07

GnuPG::Interface Perl Interface to
GnuPG GnuPG::Fingerprint GnuPG Fingerprint Objects

GnuPG::Handles GnuPG handles bundle

GnuPG::Interface Perl interface to GnuPG

GnuPG::Key GnuPG Key Object

GnuPG::Options GnuPG options embodiment

GnuPG::PrimaryKey GnuPG Primary Key Objects

GnuPG::PublicKey GnuPG Public Key Objects

GnuPG::SecretKey GnuPG Secret Key Objects

GnuPG::Signature GnuPG Key Signature Objects

GnuPG::SubKey GnuPG Sub Key objects

GnuPG::UserId GnuPG User ID Objects

Class:Method
Maker

GnuPG-
Interface-0.33

Class:MethodMak
er

Generic methods
for object oriented
PERL

Class::MethodMake
r Create generic methods for OO Perl

Class::MethodMake
r::Constants

Class::MethodMake
r::Engine

The parameter passing, method installation & non-
data-structure methods of Class::MethodMaker.

Class::MethodMake
r::OptExt Constants for C::MM's option extension mechanism

Class::MethodMake
r::V1Compat V1 compatibility code for C::MM

 Class-
MethodMaker-
2.00

MIME::Entity Class for parsed-
and-decoded MIME
message

MIME::Parser Class for parsing
MIME messages

MIME::Body the body of a MIME message

MIME::Decoder
an object for decoding the body part of a MIME
stream

MIME::Decoder::Ba
se64 encode/decode a "base64" stream
MIME::Decoder::Bin
ary perform no encoding/decoding
MIME::Decoder::Gzi
p64 decode a "base64" gzip stream
MIME::Decoder::NB
it encode/decode a "7bit" or "8bit" stream

MIME::Decoder::Qu
otedPrint encode/decode a "quoted-printable" stream

Mail::Field
Mail::Header
Mail::Internet
Unicode::Map
Unicode::Strin
g
IO::Stringy

MIME-tools-
6.200_02
MIME-tools-
6.200_02

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Secure Mailing Lists using GnuPG Page 30 of 34

MIME::Entity class for parsed-and-decoded MIME message
MIME::Field::ConTr
aEnc a "Content-transfer-encoding" field
MIME::Field::ContDi
sp a "Content-disposition" field
MIME::Field::ContT
ype a "Content-type" field

MIME::Field::Param
Val subclass of Mail::Field, for structured MIME fields

MIME::Head
MIME message header (a subclass of
Mail::Header)

MIME::Parser experimental class for parsing MIME streams

MIME::Parser::Filer manage file-output of the parser
MIME::Parser::Rea
der a line-oriented reader for a MIME::Parser
MIME::Parser::Resu
lts results of the last entity parsed

MIME::Tools

MIME::WordDecode
r

decode RFC-1522 encoded words to a local
representation

MIME::Words deal with RFC-1522 encoded words

Mail::Field

Base class for
manipulation of
mail header fields

Mail::Header For manipulationof
mail RFC822
compliant headers

Mail::Internet For manipulation of
Internet format
(RFC 822) mail
messages

Mail::Address Parse mail addresses

Mail::Cap Parse mailcap files

Mail::Field
Base class for manipulation of mail header
fields

Mail::Field::AddrList object representation of e-mail address lists

Mail::Field::Date

Mail::Filter Filter mail through multiple subroutines

Mail::Header manipulate mail RFC822 compliant headers

Mail::Internet
manipulate Internet format (RFC 822) mail
messages

Mail::Mailer
Simple interface to electronic mailing
mechanisms

Mail::Mailer::qmail

Mail::Mailer::rfc822
Mail::Mailer::sendm
ail

Mail::Mailer::smtp

Mail::Send Simple electronic mail interface

Mail::Util mail utility functions

 MailTools-1.60

Unicode::Map

For mapping
character sets from
and to utf16
unicode

 Unicode-Map-
0.112

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Secure Mailing Lists using GnuPG Page 31 of 34

Unicode::String String of Unicode
characters
(UCS2/UTF16)

Unicode::CharNam
e Look up Unicode character names

Unicode::String String of Unicode characters (UCS2/UTF16)

 Unicode-String-
2.07

IO::Stringy I/O on in-core
objects like strings
and arrays

IO::AtomicFile write a file which is updated atomically

IO::Clever

IO::InnerFile define a file inside another file

IO::Lines
IO:: interface for reading/writing an array of
lines

IO::Scalar IO:: interface for reading/writing a scalar

IO::ScalarArray
IO:: interface for reading/writing an array of
scalars

IO::Stringy

IO::Wrap wrap raw filehandles in IO::Handle interface

IO::WrapTie wrap tieable objects in IO::Handle interface

 IO-stringy-2.109

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Secure Mailing Lists using GnuPG Page 32 of 34

Appendix C: Screenshots

C.1 Add List

C.1.1 Get Basic List Information

C.1.2 Get List Member Information

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Secure Mailing Lists using GnuPG Page 33 of 34

C.2 Delete List

C.3 Add Member

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Secure Mailing Lists using GnuPG Page 34 of 34

C.4 Delete Member

C.3 Display Public Keys of Lists for Download

