
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Considerations for Securing Data in Oracle Databases

GIAC Security Essentials Certification
Practical Assignment Version 1.4b Option 1

Abdur-Rahman Husain, OCP
April 23, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Abstract

Data represents one of the most valuable assets of an organization; some may
say the most valuable. Most organizations store their valuable data in
databases. In the security industry in general, a lot of attention is given to
securing networks and hosts, less on securing applications and databases.
However, in keeping with the principal of defense-in-depth, database security is a
vital component of the overall security strategy of an organization.

This paper attempts to highlight the security considerations in securing data
within Oracle databases. Oracle provides a variety of features to ensure the
availability, integrity and accessibility of the data. This paper will present a
number of elements related to Oracle databases, which individually mitigate a
subset of security threats, but when applied together, provide a more
comprehensive level of protection. These elements or layers of security include
software installation, authentication, access control, encryption, source code
control, auditing, penetration testing, availability, application interface, human
interface and security plan. Although there are many considerations in securing
the network related to the database and the database host, these issues are
generally better understood and there is a fair amount of literature that covers
these topics so they will not be discussed in this paper.

Most of the security elements are available across recent Oracle versions.
However, Oracle 9i Release 2 Enterprise Edition is the reference database
version for this paper.

Software Installation

In keeping with the general trend in the software industry to provide better “out-
of-the-box” default security, Oracle has implemented better default security for a
database installed with the Oracle Database Configuration Assistant (DBCA).
There are four main considerations in the installation of an Oracle database.

1. Minimizing the database components that are installed to only those that
are required [1]. Oracle offers many features that are available at
installation time. It is recommended to install only those that are required
immediately. Installing unused features only increases the administrative
burden and increases the security risk. The DBCA makes it very simple to
install any additional feature on an existing installation if required as well
as to remove any existing feature which is no longer required [1].

2. Controlling usernames and passwords, especially those with

administrative privileges [1]. By default, installing a database with the
DBCA locks and expires all default accounts that are created by the
installer except for the SYS, SYSTEM, DBSNMP and SCOTT accounts
[1]. At installation time, the administrator is prompted to provide a

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

password for SYS and SYSTEM, the two main administrative accounts.
However, DBSNMP and SCOTT maintain the default password and are
left open by default [1]. This is a very common and prevalent security
hole. These default passwords should be changed at installation time
using a strong password [11]. Any time a default account is unlocked and
opened, the default password should be changed accordingly. It is
important to note that some of these restrictions are not enforced when
the database is installed using script files rather than the DBCA.

3. Using a standard industry benchmark. There are several industry

benchmarks and checklists for Oracle installations available freely on the
internet. Using such standards is an excellent starting point for securing
an Oracle installation. Examples of these benchmarks and checklists are
available at
http://www.sans.org/score/checklists/Oracle_Database_Checklist.pdf as
well as http://www.cisecurity.org/bench_oracle.html 1. It is important to
note that these checklists are a starting point only and should be adapted
to individual installations.

4. Keeping up to date on security vulnerabilities and patches [1]. This is one

of the keys to maintaining a secure installation and protecting against
buffer overflow vulnerabilities and other software bugs. Oracle provides a
full listing of security alerts at
http://otn.oracle.com/deploy/security/alerts.htm as well as a way to register
for e-mail security alerts. Other security sites such as
http://www.securityfocus.com/bid/vendor/ should also be monitored
regularly for security advisories. Applying security patches should be
done in as timely and safe a manner as possible. As usual, it is good
practice to implement the patches in a test environment before applying
them to a production environment in order to verify that the patch does not
have any unforeseen side effects.

Authentication

Any authentication system seeks to verify the identity of the user; to make sure
that the user is who he claims to be [2]. Oracle provides a basic form of
authentication to the database via usernames and passwords. The password
management functionality allows the administrator to set password policies such
as password format, password expiration, and password re-use. The password
policy is implemented through profiles which are a named set of resource
restrictions that can be assigned to user accounts. One of the elements of a
profile is the password policy. By default, every user created in the database is
assigned the DEFAULT profile. A good strategy is to create different profiles
based on the requirements for different types of user accounts and assign these

1 This site requires a free registration and agreement on Terms of Use before the document can be
downloaded.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

explicitly to each user account. The user accounts themselves can be defined at
the operating system level or in the database [2].

In order to handle the case of multi-tier web applications where users log in the to
web or application tier which in turn logs in to the database with a single
database user account, Oracle provides what is called proxy authentication [2].
This means that a users session information from the web or application tier –
which identifies the user uniquely – can be attached to the database user
account in a context which is then applied to any existing access control policy
defined at the database level. Essentially, this allows some level of access
control even for multi-tier web applications where the actual user’s login is not
known to the database.

For larger organizations that have investments in 3rd party authentication systems
that are used centrally to authenticate users to all networked resources, Oracle
provides the ability to leverage these systems through an additional product
offering called Oracle Advanced Security [2]. With Oracle Advanced Security,
authentication to the database can be done via mechanisms such as RADIUS,
Kerberos, Smart Cards, Biometrics, Public Key Infrastructure (PKI) and Token
Cards. This type of authentication makes a lot of sense in reducing the
administrative overhead, having a consistent authentication policy across an
environment and possibly even making life simpler for the end user with the
single sign-on capabilities that some of these authentication mechanisms provide
[2].

Access Control

Once a user has been authenticated to a database and a user session has been
established, the problem now becomes how to limit that user to see only those
database objects and that data that he is authorized to see [2]. This is the role of
access control. Access control is the heart and soul of database security. It is
comprised of two parts – managing privileges for users of the database and
controlling access to database objects based on those privileges even down to
the level of rows and columns of a particular table [2].

There are two types of privileges in an Oracle database – system and object
privileges. System privileges refer to privileges at the entire database level such
as backing up the database whereas object privileges refer to actions on
particular database object such as being able to select from a particular table or
execute a particular stored procedure [2]. From a security perspective, the rule
of least privilege should be followed. This means that especially in a production
environment, all privileges should be initially revoked from all users and roles and
then assigned explicitly to users as they require them. Also, system privileges
should be controlled very carefully in a production environment as opposed to a
development environment where developers may be given these privileges more
freely to, for example, create and drop objects as required.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Managing privileges for many users individually can become a large
administrative burden. Fortunately Oracle provides the concept of roles which
are basically a named group of privileges that can be assigned directly to users
or even to other roles. These roles can be enabled and disabled on demand and
can be protected by passwords or even procedural logic. An administrator can
dynamically add or remove privileges from a role and that change will take effect
on all user accounts that have been assigned that role. This gives the
administrator much more manageability on user privileges and therefore better
access control administration. In cases where there are multiple Oracle
databases, Oracle provides global and enterprise roles which can be applied
across different databases [2].

Database views and stored procedures can also be used to enhance access
control. The idea is to grant privileges on views and stored procedures without
giving any access to the underlying database objects [2]. Thus, if a user has the
execute privilege on a stored procedure that updates specific columns of a table,
the user cannot update other columns of that table because that user account
does not have any privileges on the table itself. Similarly, a select privilege on a
view will give access to those columns and rows in the view without giving
access to the underlying tables. Oracle extends this concept with Virtual Private
Database (VPD). VPD simplifies the task of creating multiple access control
policies on the same database object so that the appropriate policy is applied
based on the security context of a particular user at the row level [10]. This
functionality is especially useful when there are diverse applications or user
communities accessing the same base database objects. With VPD an
administrator is required to build the access policy, so there is a degree of
programming involved in order to implement this properly.

Oracle does supply a pre-built VPD solution as a separate product called Oracle
Label Security which requires only customization of existing policies rather than
building them from scratch [2].

Encryption

Encryption can be applied to data at the network level in the transport of data
between a client application and the database. This topic would be covered
under database networking which is not the scope of this paper [6].

Encryption, as applied to stored data, supplements access control and provides a
further layer of protection [6]. It helps to ensure that data is accessible to only
the holder of an electronic key that is used to encrypt and decrypt the data.
Encryption of data inside the database can also be used to “hide” data from
privileged users such as DBAs. Encryption provides a measure of data integrity.
It does not guarantee that data cannot be changed, but it does provide a method
to detect if unauthorized changes have been made [6].

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Oracle provides the standard DBMS_OBFUSCATION_TOOLKIT package to
implement encryption of data within the database. This package supports Data
Encryption Standard (DES) and Triple DES (3DES) as well as MD5
checksumming which provides the ability to digitally sign data so that any
unauthorized change can be detected [7].

There are several issues in implementing encryption within the database.

1. Encryption is a resource intensive operation. Care should be taken to
encrypt only very sensitive data such as credit card information which is
highly sensitive and not accessed frequently [6]. Data access controls are
much more efficient and should be implemented first before determining if
a further layer of security is really required.

2. Key management is not provided by Oracle. The encryption key can be

generated by using the GetKey function of the
DBMS_OBFUSCATION_TOOLKIT package which complies with the
Federal Information Processing Standards (FIPS)-140. However the
transmission of the key over the network and its storage are not provided
for by Oracle [7]. These can be implemented on a custom basis or they
can be delivered by 3rd party products that are compatible with Oracle.

3. Encryption keys, like passwords, should be changed regularly. This can

have an impact on database availability if large amounts of data need to
be decrypted and encrypted again using new keys [6].

One of the very appropriate uses of encryption is to protect the storage of
database backups [6]. Backup files are usually not accessed frequently so the
encryption overhead is not significant. Backups can be stored on the database
host or on other media such as magnetic tape and are very frequently stored
offsite. Backup files can also be used to transport databases from one location
to another – for example from a production system to a test system. In all cases,
encryption of the backup files provides an extra layer of protection for files that
otherwise may not be protected by stringent access controls even though the
data contained in the files is just as valuable as that in the online database.
Oracle does not provide an encryption technology for such files outside the
database, but there are 3rd party products that fill this need.

Availability

Availability is a very important aspect of security and addresses a few different
security risks. Availability can mean protection against denial-of-service type
attacks where database resources are tied up by rogue process and therefore
the database becomes unavailable to legitimate users [2]. It can also mean the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

ability to recover from an attack or debilitating compromise within an acceptable
timeframe.

In order to protect database resources from rogue processes, Oracle provides
both storage and CPU constraints that can be applied to a user account [2].
Storage constraints limit users to defined quotas on specific tablespaces thus
creating a maximum limit to the amount of data any one user can store in the
database. Resource constraints are implemented using profiles. We have
already seen how profiles are used in setting password policies. Profiles also
allow for setting limits on a user account’s use of CPU, logical I/O (i.e. how much
data can be processed), idle time and connect time for a user session [3].
Different profiles can be created for different types of users within the database
based on their need.

The ability to recover from a data corruption, an unauthorized modification of the
database or any security violation that renders the database unusable is provided
by a robust backup and recovery strategy. Oracle provides several tools and
techniques to implement this. Several types of backups are available.

1. Cold Backup. This means that the all database files are backed up to
another location while the database is shut down. The advantage of this
type of backup is that it is fairly easy to manage. However there are
several disadvantages to the cold backup because it requires the
database to be shut down, the entire database must be backed up not a
portion of it and recovery is only until the time that the backup was taken.

2. Hot Backup. This is a backup of database files while the database is open

and available for users. This type of backup requires the database to be
in archive log mode so that all database transactions are preserved in
archived redo log files. The advantages of this type of backup is that the
database is available at all times, there is flexibility to backup up portions
of the database at any one time and there are many more recovery
options. The disadvantage for hot backups is that they require much more
management and expertise for recovery.

3. Export. This is a logical data backup that backs up both the structure and

data within a database. The advantages of export include flexibility to
backup portions of the database and it is relatively simple. The
disadvantages are that it records the database at a particular point in time
and therefore does not have many recovery options.

A good database backup strategy requires elements of all three types of backup.
A true production database should always be running in archive log mode and
should always include hot backups.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

A supplemental tool for backup and recovery provided by Oracle is Data Guard
which allows for one or more standby databases to be configured for a particular
primary database. The basic mechanism used to update these standby
databases is to apply the transaction logs from the primary to the standby
thereby keeping them in sync. It is possible to keep both the primary and
standby in sync in real time, however most installations are usually slightly out of
sync. Data Guard enables a very quick way to recover from the unavailability of
the primary database. It can be configured so that primary and secondary
databases can switch roles with minimum or no loss of data.

Source Code Control

By default all code from packages, stored procedures, functions and triggers is
stored in the Oracle data dictionary as clear text. Normally, access control
should limit access to the data dictionary. However, just as encryption of data
provides an extra layer of security to sensitive data, so can encryption of source
code in the database provide an extra layer of security to the sensitive
programming logic in the database.

Oracle provides a wrap utility that encrypts database source code in byte code.
The wrap utility accepts a simple text file containing the source code as input and
then produces a file with byte code as output that can then be loaded in the
database [4]. There are a couple of issues associated with “wrapping” source
code.

1. The resulting byte code is two or two and a half times the size of the
original code so it has an impact on storage and memory usage.
However, there is no effect on the execution time [4].

2. The wrap utility is very sensitive to the version of the Oracle database. If

the same piece of code is being deployed to multiple versions of Oracle, it
should be wrapped by the wrap utility of each version respectively [4].

Auditing

No security strategy is complete without having some way to detect and log
security violations or violation attempts. Oracle’s default auditing feature is very
comprehensive and full-featured [5]. It is possible to audit statements in the
database (e.g. select, delete), system privileges (e.g. create tablespace), any
activity on any database object or any activity by any user of the database.
Another element of the audit capability is the ability to audit both successful and
unsuccessful activities [2]. There are two possible locations for the storage of
audit trails – the AUD$ table in the SYSTEM tablespace and in the operating
system for selected operating systems only. There are several issues to
consider in auditing.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1. Oracle’s auditing feature is quite efficient in that it executes only once
together with the audited statement [5]. However, depending on the type
of auditing that is configured as well as the general volume of audited
transactions, the audit trail can fill up fast. If the audit trail is implemented
in the database, the risk is that the SYSTEM tablespace will fill up and
render the database unusable. It goes without saying that the audit trail
needs to be monitored very carefully and possibly moved to another area
for reporting purposes regularly [5].

2. The audit options are vast. It is recommended to audit selectively so that

the audit data itself is meaningful in detecting any data access abuses or
security violations. Too much audit data is hard to analyze and defeats
the purpose of auditing in the first place [5].

3. Auditing is the best way to hold database administrators and privileged

users accountable for their actions on the database [6].

4. Ignorance of the auditing capabilities in Oracle very often leads application
developers to develop their own audit functionality. Using the functionality
that is there will provide a quicker development time as well as providing a
more robust and tested auditing facility.

Oracle’s regular auditing feature does not provide auditing at the row level
intrinsically. However, there is a solution if row level auditing is required – i.e. if
there is a requirement to record the actual data content that a particular user
might have modified or even read. For DML operations – insert, update and
delete – row level auditing can be implemented by system triggers. Each DML
operation fires a before and after event which can be associated with a trigger.
The logic of the trigger has to be developed programmatically – nothing is
provided by Oracle [5]. SELECT statement row level auditing is provided by a
database feature called Fine-Grained Auditing (FGA) which allows an
administrator to define an audit policy when a particular column or row is
accessed and read by any user [2].

Penetration Testing

Once the database has been installed and configured for security, it is a good
idea to test the installation for vulnerabilities by performing penetration tests.
This will help to validate the existing database security as well as point out any
security vulnerabilities. It should be part of any security strategy to perform these
penetration tests on a pre-determined schedule that is appropriate for the
organization depending on the rate and amount of change in the database
environment as well as the security environment.

Several “Oracle-aware” tools and scripts are available for penetration testing.
These tools and scripts have several advantages over building your own. First of

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

all they have been prepared by experts in the field and you can leverage this
expertise by using them. They are kept up-to-date to detect the latest
vulnerabilities as they are discovered. Secondly and maybe more importantly,
they provide a different perspective on security from that within the organization.
They are not “locked in” to a particular way of thinking about security and
therefore have more of a chance to discover vulnerabilities than those who have
actually implemented the security on a particular database. This is similar to a
software developer who may not find bugs in software that he wrote as easily as
an independent tester.

A whole list of penetration testing and security scanning tools for databases are
available from http://www.securitywizardry.com/database.htm . Many of these
tools are available freely for download.

Application Interface

The database is not a standalone entity. Data is written to and read from the
database through an application interface. Therefore the discussion on securing
a database is not complete without a discussion of some of the application
elements that interact with the database. There are several application design
decisions that impact the security of the database.

1. Authentication. Many applications implement custom authentication
modules by creating tables and code that implement login functionality
without using the built-in authentication methods provided by Oracle. This
is usually a large security risk since it is more than likely that the custom
authentication functionality is not as robust or secure as Oracle’s which
has been tested and used by a large number of customers. Usually the
password in such applications is stored as clear text since encryption is
not a trivial process. Also, much of the access control functionality in
Oracle is rendered useless because Oracle applies privileges and
implements access controls that are based on users that it “knows” about;
not on users who are defined as records in an application table. When
multiple applications are using the same database, it is easier to provide
single sign-on functionality and a common authentication process across
applications when authentication is implemented in a standard way.

2. Access controls. In today’s reality, databases are accessed by many

different applications and types of application clients. These can include
web servers (ASP, JSP, CGI), application servers (.NET and J2EE), client
applications (Visual Basic, Oracle Forms), reporting tools (Crystal
Reports), administration tools (Oracle Enterprise Manager), OLAP tools,
database to database links and more. In this case it makes sense to
implement the access control logic as close to the data as possible so that
the data security rules are implemented uniformly across all applications.
Consider an application where all access control logic is defined in a J2EE

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

application and then a user requests a reporting tool to on the same
database. Those J2EE application access control rules do not apply to
the reporting tool.

3. Database packages and stored procedures. From a security perspective

as well as a performance perspective it is recommended to hide the
implementation of the database using database packages and stored
procedures. Any interaction with the database – insert, update, delete and
select – can and should be implemented at the database layer. Therefore
an application does not need to know about which tables are in a
database, it needs only to know the appropriate database package or
procedure with the required parameters related to the action that it wants
to perform. From an Oracle perspective, execution privileges can be
given to procedures and packages, not on the underlying tables in the
database. A security breach of the application will not reveal details about
the database. An added benefit is that validation of all inputs can be done
centrally at the database regardless of the application that is accessing
the database even though validation should also take place at the
application layer to minimize the security risk of SQL injection attacks [9].

Human Interface

The human interface is an essential ingredient of the security of any database
whether it is Oracle or any other type of database. By necessity, Database
Administrators (DBAs) are granted administration privileges that are required to
administrator a database. Among other things, these administrative privileges
provide the ability to start and shutdown a database, create, modify, drop
database objects, backup and recover a database, create or modify users and
passwords.

There are several approaches to mitigate the security risk inherent in such
powerful privileges.

1. Screen prospective DBAs before they are hired or given the DBA job.
This is by far the most important step to ensure that a trustworthy
individual is given the “keys” to an organization’s valuable resource.
Screening can include background checks, contacting references and
previous employers.

2. Divide the roles and responsibilities so that all the power is not in hands of

one individual. This division can be along the lines of applications, or DBA
functions. This means that if a database hosts more than one application,
a particular DBA will be responsible to administer the database schema
related to that application. Similarly, DBA functions such as startup and
shutdown, backup and recovery, user management can be divided and
distributed to more than one individual.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3. As discussed before, encryption can provide protection for sensitive data

so that it can be “hidden” even from someone with DBA privileges in the
database.

4. Auditing provides the means to hold even DBAs accountable for their

actions on a database by enabling the recording of DBA actions to an
audit trail in the database or operating system [5]. As in other contexts,
auditing is the best candidate function to be handled by an individual other
than the one who performs regular DBA duties.

Security Plan

One of the more neglected elements in a security strategy for Oracle databases
is a security plan. This consists of a document or set of documents that
formalize all the decisions that a particular organization has taken with respect to
the security elements involved in securing an Oracle database [8]. It can and
should include those elements discussed in this paper as well as other relevant
elements related to Oracle database security.

The security plan plays an important role in communicating to all concerned
personnel, an organizational standard with respect to Oracle database security
[8]. It provides a standard against which all Oracle database installations and
related processes should comply. This relieves individuals from implementing
security as they would see fit but which may not necessarily fit with a particular
organization’s security posture. One of the most important benefits of preparing
a security plan is that it forces all involved personnel in an organization to think
through the security process before implementing it, thereby greatly reducing the
potential security risks that are inherent in an ad-hoc security strategy.

A basic outline of a security plan for Oracle is available at
http://www.oreilly.com/catalog/orasec/chapter/ch07.html. This can be used as a
starting point in creating a plan.

Conclusion

The challenge in securing a database is that data is valuable only if it is accurate
and available to the right people at the right time while at the same time
protecting it from unauthorized access and tampering.

Oracle is a very complex database management software. Each of the elements
discussed in this paper require separate research to explore them in detail.
However, if we understand the elements from a big picture perspective, we can
then implement each one as a piece of the database security puzzle. It is
important to be aware of and address each of these elements. As with any
security strategy, there is no such thing as a bullet-proof database. However,

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

when all these elements are planned and implemented according to the
requirements of an organization the overall security risk is greatly reduced.

References

1. “Secure Configuration Guide for Oracle9iR2.” June 2002. URL:
http://otn.oracle.com/deploy/security/oracle9i/pdf/9ir2_checklist.pdf (9 April
2004).

2. “Oracle9i Security Overview Release 2 (9.2).” Oracle 9iR2 Manuals. URL:

http://download.oracle.com/docs/cds/B10501_01.zip 2(12 January 2004).

3. “Concepts.” Oracle 9iR2 Manuals. URL:
http://download.oracle.com/docs/cds/B10501_01.zip 3(12 January 2004).

4. Burleson, Don. “Best Practices for using Wrap.” 28 October 2003. URL:

http://www.praetoriate.com/oracle_tips_dm_bp_wrap.htm (15 March
2004).

5. Finnigan, Pete. “Introduction to Simple Oracle Auditing.” 29 April 2003.

URL: http://www.securityfocus.com/infocus/1689 (9 March 2004).

6. “Encryption of Data at Rest.”URL:
http://www.appsecinc.com/presentations/Encryption_of_Data_at_Rest.pdf
(9 March 2004)

7. Davidson, Mary Ann, Browder, Kristy, Helmann, John, Needham, Paul.

“Database Encryption in Oracle9iR2.” April 2003. URL:
http://otn.oracle.com/deploy/security/oracle9ir2/pdf/dbcrypt9ir2.pdf (9 April
2004).

8. Theriault, Marlene, Heney, William. “Chapter 7. Developing a Database

Security Plan.” Oracle Security. October 1998. URL:
http://www.oreilly.com/catalog/orasec/chapter/ch07.html (11 April 2004)

9. “Protecting Oracle Databases.” URL:
http://www.appsecinc.com/presentations/Protecting_Oracle_Databases_
White_Paper.pdf (9 March 2004)

2 Requires a free membership at Oracle Technology Network http://otn.oracle.com
3 Requires a free membership at Oracle Technology Network http://otn.oracle.com

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

10. Browder, Kristy, Davidson, Mary Ann, Helmann, John, Needham, Paul.
“The Virtual Private Database in Oracle9iR2.” January 2002. URL:
http://otn.oracle.com/deploy/security/oracle9ir2/pdf/VPD9ir2twp.pdf (10
April 2004).

11. Westervelt, Robert. “Expert offers tips on securing Oracle databases.” 15

July 2003. URL:
http://searchoracle.techtarget.com/originalContent/0,289142,sid41_gci914
696,00.html (11 April 2004).

