
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

An Ettercap Primer
Duane Norton
GIAC Security Essentials Certification
Practical Assignment Version 1.4b
Option 1
April 14, 2004

Abstract
Ettercap is an open-source tool written by Alberto Ornaghi and Marco Valleri
(a.k.a. ALoR and NaGA). Ettercap is described by its authors as “a multipurpose
sniffer/interceptor/logger for switched LANs [1].” Since it incorporates a variety of
features necessary for working in switched environments, ettercap has evolved
into a powerful tool that allows the user to launch several different types of man-
in-the-middle attacks. In addition, ettercap makes available many separate
classic attacks and reconnaissance techniques within its interface.

The versatility of ettercap is a double-edged sword. It is easy to label this utility
as a hacker tool for script kiddies, and it certainly can be used as such. However,
because ettercap includes such a broad spectrum of attack and reconnaissance
functions, it may also be used to teach LAN hacking techniques to students of
network security. As such, the purpose of this paper is to raise awareness of the
flexibility of ettercap’s features, to demonstrate several of its specific capabilities,
and to offer defensive strategies. While there are countermeasures that may be
implemented to prevent successful ettercap attacks, many LANs remain all too
vulnerable.

Introduction
Ettercap is a versatile network manipulation tool. It uses its ability to easily
perform man-in-the-middle (MITM) attacks in a switched LAN environment as the
launch pad for many of its other functions. Once ettercap has inserted itself in the
middle of a switched connection, it can capture and examine all communication
between the two victim hosts, and subsequently take advantage of these other
features:

• Character injection: Insert arbitrary characters into a live connection in
either direction, emulating commands sent from the client or replies sent
by the server

• Packet filtering: Automatically filter the TCP or UDP payload of packets
in a live connection by searching for an arbitrary ASCII or hexadecimal
string, and replacing it with your own string, or simply dropping the filtered
packet.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

• Automatic password collection for many common network protocols:
The Active Dissector component automatically recognizes and extracts
pertinent information from many protocols including TELNET, FTP, POP3,
RLOGIN, SSH1, ICQ, SMB, MySQL, HTTP, NNTP, X11, NAPSTER, IRC,
RIP, BGP, SOCKS 5, IMAP 4, VNC, LDAP, NFS, and SNMP

• SSH1 support: Capture username, password, and the data of an SSH1
connection

• HTTPS support: Insertion into an HTTP SSL session, as long as a false
certificate is accepted by the user

• PPTP suite: Perform man-in-the-middle attacks against PPTP tunnels
• Kill any connection: View and kill arbitrary active connections [1]

It also has many useful reconnaissance tools built in, to ensure that an attacker
can stealthily gain awareness of the LAN topology before launching MITM
attacks:

• Active OS fingerprinting: Directly probe a LAN host to identify i ts
operating system, using the nmap database [2]

• Passive LAN scanning: By listening to and analyzing passing frames,
collect information about LAN hosts such as the operating system, open
ports, running services, and IP and MAC addresses

• IP and MAC-based sniffing: Listen to LAN traffic in promiscuous mode
and capture passing traffic. This feature is similar to common packet
capture utilities, such as tcpdump, and allows filtering by IP or MAC
address.

• Search for other ARP poisoners and promiscuous mode NICs: Detect
other systems that are currently sniffing on the LAN, or performing ARP
cache poisoning attacks.

• Packet forge: Construct and send custom Ethernet frames and IP
packets to test the responses of network devices. This function has
features similar to the tool hping2 [3], and may be used to manually set
header flags and spoof IP and MAC address [1].

Overview of Plugins
Ettercap is also extensible; the developers wrote support for plugins so that
anyone can add new functionality, such as support for a new protocol dissector.
The ettercap distribution includes a library of these plugins. The naming
convention for these plugins (and for ettercap itself) is based on the names of
monsters from the role-playing game Dungeons and Dragons.

There are two types of plugins, which can be differentiated by their names.
Hooking plugins are named with the prefix Hxx_ (e.g. H09_roper). These plugins
are designed to accept sniffed data from a hijacked connection directly from the
ettercap sniffing engine. In this way the plugins are said to be hooked into
ettercap, communicating directly with the engine through a predefined application

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

programming interface (API). External plugins are named simply, e.g. ooze.
These plugins are standalone features that do not expect data directly from the
sniffing engine as input.

• H00_lurker – Search the LAN for other Ettercap poisoners.
• H01_zaratan – Broker/redirector for GRE tunnels
• H02_troll – ARP Reply spoof tool
• H0*_hydra – Suite of plugins to manipulate PPTP tunnels
• H09_roper – Blocks ISAKMP key exchange in IPSEC traffic
• H10_phantom – Sniff/Spoof DNS requests
• H1*_giant – Suite for SMB attacks
• H20_dwarf – Log all mail activity (e.g. POP, SMTP)
• H30_thief – Steal files from an HTTP stream
• arpcop – Report suspicious ARP activity
• banshee – Kill all connections between two hosts
• basilisk – Checks for successful ARP poisoning
• beholder – Find connections on a switched LAN
• confusion – Force a switch to send another host’s data to your port
• golem – Denial of service attack
• hunter – Search for network interface cards that are in promiscuous mode
• imp – Collect Windows NetBIOS names from a host
• lamia – Manipulate Spanning Tree Protocol mappings on a switch
• leech – Isolate a host from the LAN
• ooze – Ping a host
• phantom – Sniff/Spoof DNS requests
• shadow – A simple SYN/TCP port scanner
• spectre – Flood the LAN with random MAC addresses
• triton – Try to discover the default gateway for the LAN [1]

In addition, the developers provide two dummy plugins, which have no function
other than to serve as examples of the framework that programmers must use to
write new ettercap plugins.

Ettercap Installation
Ettercap is freely available for download from http://ettercap.sourceforge.net. The
most recent stable release is v0.6.b. Ettercap has been ported to many major
UNIX variants, including Linux, FreeBSD, Solaris, and Mac OS X. There is also a
version that runs on Windows 2000 and XP, although development definitely
favors the UNIX platform for stability and new functionality.

In order to use the SSH1 and HTTPS sniffing features, ettercap requires that you
install the OpenSSL libraries first, to allow support for Secure Sockets Layer
(SSL) and Transport Layer Security (TLS) [1]. Many UNIX distributions include
OpenSSL with their default installations, but the most recent OpenSSL libraries

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

are available for download from http://www.openssl.org. The latest stable version
as of this writing is OpenSSL 0.9.7d.

Download the latest version of the ettercap source code from
http://ettercap.sourceforge.net/index.php?s=download. After downloading the file
ettercap-0.6.b.tar.gz, uncompress the file to an installation directory.

tar xvzf ettercap-0.6.b.tar.gz

This creates the folder ettercap-0.6.b. Now install ettercap with all its plugins:

cd ettercap-0.6.b
./configure
make complete_install

Red Hat Linux - Kerberos Installation Errors
For my test installations of ettercap, I used Red Hat Linux 9.0 as the base
operating system. I discovered that the installations repeatedly failed during
compilation due to a missing Kerberos include file. The error was as follows:

make complete_install
gcc -O2 -funroll-loops -fomit-frame-pointer -Wall -I. -
[Compilation output truncated]
In file included from /usr/include/openssl/ssl.h:179,
 from src/ec_dissector_ssh.c:40:
/usr/include/openssl/kssl.h:72:18: krb5.h: No such file or
directory

A search of the user forums at http://ettercap.sourceforge.net/forum/index.php
revealed that Red Hat Linux places the Kerberos include files in a different
location than most other Linux distributions [4]. The missing krb5.h include file in
Red Hat Linux 9.0 is located in /usr/kerberos/include, but the default ettercap
installation searches /usr/include/openssl instead. To correct this, one must add
the path /usr/kerberos/include to the Makefile.in file, which configure uses to build
the final Makefile for compilation:

1. Edit the file ettercap-0.6.b/Makefile.in
2. Find the COPTS (compiler options) variable
3. Add –I/usr/kerberos/include to the end of the COPTS line. This will tell

make where to find the Kerberos include files.
4. Save Makefile.in

This change will cause configure to build the Makefile correctly for installation
under Red Hat 9.0, and the compilation will now find the Kerberos files in the
correct directory. We can now cleanly install ettercap, including all its plugins:

./configure
make complete_install

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

[Compilation output truncated]

Example LAN Details
It is important to note that ettercap attacks can be very disruptive to a live
production network, so it is imperative to experiment on an isolated test network.
My network for this primer was configured using VMware Workstation 4.0,
Windows XP, and Red Hat Linux 9.0. The following diagram shows the network
topology:

PC1
192.168.72.101

00-0c-29-55-24-08

Window s XP

Router
192.168.72.250

00-50-56-e7-cf -19

VMw are Router
Default LAN Gatew ay

and DNS Server

Internet

Snif fer
192.168.72.120

00-0c-29-99-54-6d

Red Hat Linux 9.0

Sw itch

IP and MAC Addresses
Applications use the IP protocol to communicate with each other. When a web
browser sends HTTP requests to retrieve a web page from a distant server, it
encodes each IP packet header with a source and destination IP address that
allow the packets to be routed correctly to the web server [5].

However, within an Ethernet LAN segment, all communication between physical
network interface cards (NICs) is sent using MAC addresses. A MAC (Media
Access Control) address is the hardwired physical address of each network
interface card, uniquely assigned by the manufacturer of the NIC. A MAC
address is often represented as a 12-digit hexadecimal number, such as
00-0c-29-99-54-6d [6]. NIC manufacturers encode the MAC address permanently
onto each NIC in a ROM chip.

Individual MAC addresses are also called unicast addresses because they
identify one particular NIC on the LAN. The system of MAC addresses provides
the ability to send a frame to more than one MAC at a time, by sending to the
broadcast address (ff-ff-ff-ff-ff-ff) instead of a unicast address. A broadcast frame

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

is sent to every device on the Ethernet LAN, and each NIC that receives a
broadcast frame will accept and process it.

Each IP packet produced by an application is encapsulated inside an Ethernet
frame, which is then labeled with the physical address of the destination NIC, and
sent onto the wire. Here is a simplified diagram of the structure of an Ethernet
frame encapsulating an IP packet [7].

Source IP
Address

Destination IP
Address Data

IP Header Payload

Destination MAC
Address

Source MAC
Address Data

Ethernet Header Payload Trailer

Error
Checking

Hubs and Switches
Ethernet networks join computers physically together using hubs or switches. A
hub does not examine the Ethernet frames that pass through it. Hubs make no
decisions based upon a frame header’s contents: they simply forward every
incoming frame out all ports, regardless of the destination MAC address. This
makes it trivial to listen to all traffic on a hub-based LAN. Since every frame that
traverses the LAN is sent to all ports on the LAN, sniffing only requires a NIC that
is configured in promiscuous mode, listening for all passing traffic.

If the LAN uses switches instead of hubs, every frame is no longer automatically
sent to every port. A switch increases LAN speed and reduces congestion by
learning which MAC addresses are connected to its individual ports, and storing
these mappings in a forwarding table. A switch extracts the source MAC address
from passing frames, notes the port on which the frame arrived, and adds the
entry to the table.

When an incoming frame arrives, the switch examines the frame’s destination
address and consults its forwarding table. If it hasn’t yet learned which port hosts
that MAC address, the switch will forward the incoming packet out all ports.
However, if the forwarding table already contains a port for the MAC address, the
frame will be sent only out that port. In addition, switches will forward frames with
a destination MAC of broadcast out all ports.

This design makes sniffing a switched LAN more of a challenge, since the switch
limits the frames that are sent out each port. A sniffer plugged into a switch port

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

will only be forwarded traffic that is either sent unicast directly to it, or is
broadcast to the entire LAN. This is the reason for the common belief that
switches offer some protection from sniffers. Since the traffic passing through the
switch is selectively forwarded to only specific ports, a sniffer must use another
method to actively intercept traffic.

The ARP Protocol
When a computer encapsulates an IP packet inside an Ethernet frame, it knows
the source MAC address (its own), but it may not know the destination MAC
address. However, it does know the destination IP address from the packet’s IP
header. The sender needs some method of discovering the MAC address for a
known IP address; it uses the ARP protocol to perform this task.

The Address Resolution Protocol (ARP) is used on Ethernet TCP/IP networks to
associate an IP address with a MAC address [8]. ARP is described in RFC 826.
ARP uses two different types of messages to allow hosts to perform MAC
discovery:

• ARP Request messages are normally sent to the Ethernet broadcast
address, and ask the question “What is the MAC address of the computer
that has IP address w.x.y.z?”

• ARP Reply messages are sent as a unicast response to an ARP Request:
“I have that IP address, and my MAC address is aa-bb-cc-dd-ee-ff.”

Each system maintains a database of previously learned IP to MAC mappings,
known as the ARP cache. If a system needs to send a packet to a particular IP
address, it first checks its ARP cache to determine if it already knows a MAC
address for that IP address. If it finds such an entry, the system uses that MAC to
address the frame.

If the destination address is not in the cache, the system sends an ARP Request
to every host on the Ethernet. If a host on the LAN recognizes that IP address as
its own, then it sends an ARP Reply, containing its IP and MAC address. The
sender adds the ARP Reply data to its ARP cache for future reference, and can
now address and send the frame. Cache entries expire after a period of several
minutes, after which they are deleted from the cache.

The following example shows PC1’s ARP cache, containing the IP and MAC
addresses of Router:

C:\>arp -a

Interface: 192.168.72.101 --- 0x2
 Internet Address Physical Address Type
 192.168.72.250 00-50-56-e7-cf-19 dynamic

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

ARP Cache Poisoning
By manipulating the ARP cache on each victim host, it is possible to change the
normal direction of traffic between two hosts, and redirect it to flow through the
attacker’s machine instead. ARP is a stateless protocol, and updates are not
checked to authenticate the sender or validate the new information. Specially
crafted ARP Reply packets sent to each host will force an update in their
respective ARP caches, and the hosts will then send frames based on the
updated ARP cache entries.

Although ARP Replies are accepted without validation, there are certain
conditions that must be met, as described in Bruschi et al.:

“Some operating systems, e.g. Solaris, will not update an entry in the
cache if such an entry is not already present when an unsolicited ARP
reply is received. Although this might seem an effective precaution against
cache poisoning, the attack is still possible. The attacker needs to trick the
victim into adding a new entry in the cache first, so that a future
(unsolicited) ARP reply can update it. By sending a forged ICMP echo
request as if it was from one of the two victims, the attacker has the other
victim create a new entry in the cache. When the first victim receives the
spoofed ICMP echo request, it replies with an ICMP echo reply, which
requires resolving first the IP address of the original ICMP request into an
Ethernet address, thus creating an entry in the cache. The attacker can
now update it with an unsolicited ARP reply. [9]”

In addition, some operating systems only accept the first received reply to their
ARP Request, forcing a race condition for arrival between the attacker’s reply
and the actual reply. If the attacker sends the poison ARP Reply immediately
after the spoofed ICMP packet, the real ARP reply will likely arrive too late, and
will be discarded as invalid [10].

The ARP poisoning process is shown below:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Broadcast

PC1
192.168.72.101

00-0c-29-55-24-08

Snif fer
192.168.72.120

00-0c-29-99-54-6d

Router
192.168.72.250

00-50-56-e7-cf -19

6 2

57 1
3

Sw itch

48

1. Sniffer spoofs a ping from PC1’s IP address to Router
2. Router broadcasts an ARP Request to find PC1’s MAC address.
3. Sniffer immediately sends a poison ARP Reply to Router, telling it that the

IP of PC1 has the MAC address of Sniffer, and winning the race condition.
Router adds the fake ARP mapping to its ARP cache.

4. Router sends the ICMP ping reply bound for PC1’s IP to Sniffer’s MAC
address.

5. Sniffer spoofs a ping from Router’s IP address to PC1
6. PC1 sends an ARP Request to find Router’s MAC address.
7. Sniffer immediately sends a poison ARP Reply to PC1, telling it that the IP

of Router has the MAC address of Sniffer, and winning the race condition.
PC1 adds the fake ARP mapping to its ARP cache.

8. PC1 sends the ICMP ping reply bound for Router’s IP to Sniffer’s MAC
address.

This exchange can also be seen in the following tcpdump output:

1. 0:c:29:99:54:6d 0:50:56:e7:cf:19 ip 42: pc1 > router: icmp:
echo request [tos 0x7,CE]

2. 0:50:56:e7:cf:19 Broadcast arp 60: arp who-has pc1 tell router
3. 0:c:29:99:54:6d 0:50:56:e7:cf:19 arp 42: arp reply pc1 is-at 0:c:29:99:54:6d
4. 0:50:56:e7:cf:19 0:c:29:99:54:6d ip 60: router > pc1: icmp: echo reply
5. 0:c:29:99:54:6d 0:c:29:55:24:8 ip 42: router > pc1: icmp:

echo request [tos 0x7,CE]
6. 0:c:29:55:24:8 Broadcast arp 60: arp who-has router tell pc1
7. 0:c:29:99:54:6d 0:c:29:55:24:8 arp 42: arp reply router is-at 0:c:29:99:54:6d
8. 0:c:29:55:24:8 0:c:29:99:54:6d ip 60: router > pc1: icmp: echo reply

When this is accomplished, all traffic flowing between PC1 and Router will be
sent to Sniffer instead of directly to its intended destination. Sniffer periodically

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

sends another pair of poisoned ARP Replies to Router and PC1 to prevent the
poisoned ARP cache entries from timing out.

0:c:29:99:54:6d 0:50:56:e7:cf:19 arp 42: arp reply 192.168.72.101 is-at 0:c:29:99:54:6d
0:c:29:99:54:6d 0:c:29:55:24:8 arp 42: arp reply 192.168.72.250 is-at 0:c:29:99:54:6d

PC1 now believes that its default gateway (Router) has the MAC address of
00-0c-29-99-54-6d, and it will send all traffic bound for other networks, including
the Internet, directly to Sniffer, based on the information in its ARP cache:

C:\>arp –a

Interface: 192.168.72.101 --- 0x2
 Internet Address Physical Address Type
 192.168.72.250 00-0c-29-99-54-6d dynamic

Likewise, the reverse is true for Router. It believes that the MAC address of PC1
is also 00-0c-29-99-54-6d, and will now send all traffic bound for PC1 directly to
Sniffer. The users of PC1 never know that their traffic has been rerouted through
a third party, and the attacker on Sniffer now has the ability to examine frames
that were previously unavailable to it when sniffing in the switched LAN.

Limitations of ARP Cache Poisoning Techniques
This attack has several limitations. It is important to note that Sniffer must
forward all intercepted packets to the correct victim hosts, or the result would be
a denial of service, as no frames sent between the two hosts would ever reach
their destination if Sniffer merely discarded them. ARP poisoning attacks will also
degrade network performance, as the attacking system must intercept, analyze,
and forward each frame sent between the two victims. Finally, one cannot poison
the caches of computers on a different subnet or VLAN because ARP broadcasts
only reach systems within a single Ethernet broadcast domain.

Using Ettercap
As long as /usr/local/sbin is in your PATH, you can start ettercap in a terminal
window by simply typing

ettercap

By actively probing with a storm of ARP broadcasts, ettercap can quickly learn all
the MAC addresses present on the LAN. Upon startup, ettercap broadcasts an
ARP Request to every IP address on its subnet. This step can be time-
consuming, based on the network subnet configuration; a Class C network
(netmask 255.255.255.0) has 28-2=254 hosts, and discovery takes only seconds.
However, if ettercap is started on a Class B network, which has a netmask of

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

255.255.0.0 with 216-2=65534 hosts, it may take a significant amount of time to
scan the network.

0:c:29:99:54:6d Broadcast arp 42: arp who-has 192.168.72.1 tell 192.168.72.120
0:50:56:c0:0:8 0:c:29:99:54:6d arp 60: arp reply 192.168.72.1 is-at 0:50:56:c0:0:8
0:c:29:99:54:6d Broadcast arp 42: arp who-has 192.168.72.2 tell 192.168.72.120
0:c:29:99:54:6d Broadcast arp 42: arp who-has 192.168.72.3 tell 192.168.72.120
[Output truncated]
0:c:29:99:54:6d Broadcast arp 42: arp who-has 192.168.72.101 tell 192.168.72.120
0:c:29:55:24:8 0:c:29:99:54:6d arp 60: arp reply 192.168.72.101 is-at 0:c:29:55:24:8
0:c:29:99:54:6d Broadcast arp 42: arp who-has 192.168.72.102 tell 192.168.72.120
0:c:29:99:54:6d Broadcast arp 42: arp who-has 192.168.72.103 tell 192.168.72.120
[Output truncated]
0:c:29:99:54:6d Broadcast arp 42: arp who-has 192.168.72.250 tell 192.168.72.120
0:50:56:e7:cf:19 0:c:29:99:54:6d arp 60: arp reply 192.168.72.250 is-at 0:50:56:e7:cf:19
0:c:29:99:54:6d Broadcast arp 42: arp who-has 192.168.72.251 tell 192.168.72.120
0:c:29:99:54:6d Broadcast arp 42: arp who-has 192.168.72.252 tell 192.168.72.120
0:c:29:99:54:6d Broadcast arp 42: arp who-has 192.168.72.253 tell 192.168.72.120
0:c:29:99:54:6d Broadcast arp 42: arp who-has 192.168.72.254 tell 192.168.72.120
0:50:56:f7:14:ca 0:c:29:99:54:6d arp 60: arp reply 192.168.72.254 is-at 0:50:56:f7:14:ca
0:c:29:99:54:6d Broadcast arp 42: arp who-has 192.168.72.255 tell 192.168.72.120

If ettercap knows its DNS server, it then attempts to resolve the DNS hostnames
of any system that responded to the ARP Request storm. Again, this process
may be time-consuming with a sizable network. After this is done, ettercap has
an accurate map of hosts on the switched network.

Useful Command-line Options
Ettercap allows the user to modify its startup behavior, allowing stealthier probing
of the network. Here are some of the more useful command-line options, which
may be specified in either short or long form (ettercap –z or ettercap --silent) [11]:

Do not perform the ARP Request storm on startup
ettercap –z (–-silent)

Change the interval between ARP storm requests for stealth
ettercap –Z (-–stormdelay) 5000

Send ARP Requests only to specific IP addresses
ettercap –H (--hosts)192.168.72.101,250

Enter passive sniffing mode, and also save the results to a file

ettercap -Ok (--passive --savehosts)

Load the saved host map from a file

ettercap –j (--loadhosts) 192.168.72.0_255.255.255.0.ehl

You can also run ettercap in simple mode (-N or --simple). This option does not
start the user interface, and therefore allows ettercap to be used in scripting. For
example, you can quickly create a map of the network by running ettercap as
follows, which launches an ARP storm, saves the results in a file, and exits:

ettercap –Nk

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The Ettercap Interface
When ettercap is started in interactive mode, the user is presented with two
columns that each list all the IP addresses which the ARP Request storm
detected. The source IP column is on the left, and the destination IP column is on
the right.

Pressing ‘h’ on any screen presents a context-sensitive help menu. All functions
in this interface are launched by pressing single keys:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pre-Poisoning Reconnaissance
Before any ARP poisoning is performed, the user has a list of all hosts that
responded to the ARP Request storm. At this point, there are several features
that are useful for further reconnaissance of the network, including:

c Search for other ARP poisoners on the LAN
f Fingerprint the selected host’s operating system and services
k Manually save the map of discovered hosts to a file
x Packet Forge – craft customized packets
p Run a plugin that does not rely on ARP poisoning

For example, to run the plugin imp, which collects NetBIOS names, against PC1:

1. In the destination IP column, select 192.168.72.101 and press Enter
2. Press p, then select imp and press Enter

 Try to retrieve some Windows names from 192.168.72.101…
 Retrieved 4 names:

1) PC1 (Unique)
2) WORKGROUP (Group)
3) PC1 (Unique)
4) PC1 (Unique)

imp plugin ended. (press ‘q’ to quit…)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

A Simple Attack against an FTP Session
Let’s demonstrate a simple ARP cache poisoning attack. In this example, the
attacker, using ettercap on Sniffer, wants to capture all traffic going from PC1 to
the Internet. To do so, he selects PC1 as the source IP, and PC1’s default
gateway (Router) as the destination. Since all traffic sent by PC1 outside the
local subnet passes through Router, ARP poisoning these two hosts will capture
all Internet traffic as well.

Initializing the ARP poisoning attack is simple:

1. Select a source IP of 192.168.72.101 (PC1)
2. Select a destination IP of 192.168.72.250 (Router)
3. Press ‘a’ to poison the ARP tables on the selected hosts.

Ettercap poisons the ARP cache on each victim as described above, and
resends the poisoned ARP Replies every thirty seconds to ensure that the
poisoning will continue.

Now all Ethernet traffic between the two hosts is being intercepted by Sniffer.
Active Dissector is on by default, and it automatically extracts the usernames and
passwords from any active connection whose protocol it recognizes. Every
stream between the victim hosts is captured and analyzed without the user
having to select any particular connection.

The user on PC1 starts an FTP session to ftp.suse.com, logs in, and downloads
a text file.

C:\>ftp ftp.suse.com
Connected to ftp.suse.com.
220 "Welcome to the SuSE ftp server: Please login as user 'ftp'"
User (ftp.suse.com:(none)): ftp
331 Please send your email address as a password.
Password:
230 Login successful. Have a lot of fun.
ftp> cd pub/
[Output truncated]
250 CWD command successful.
ftp> get README.txt
200 PORT command successful. Consider using PASV.
150 Opening BINARY mode data connection for README.txt (4046
bytes).
226 File send OK.
ftp: 4046 bytes received in 0.20Seconds 19.83Kbytes/sec.
ftp> bye
221 Goodbye.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

We can see both the ftp session (on destination port 21) and the ftp data
connection (on source port 20). Highlighting the first connection reveals the
username and password that were sent in cleartext. Pressing ‘l’ at this point will
log any captured passwords to a file named in the format
“yyyymmdd_Dumped_Password.log”.

Selecting the data connection shows the contents of the downloaded
README.txt file.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Again, pressing ‘l’ will log the contents of this stream to a file, effectively saving
the intercepted text file.

Unpoisoning
To reverse the ARP cache poisoning, ettercap sends ARP Reply packets
containing the correct information to the two victim hosts and gracefully resets
their respective ARP caches back to normal.

[Send correct information to each victim]
0:c:29:99:54:6d 0:50:56:e7:cf:19 arp 42: arp reply pc1 is-at 0:c:29:55:24:8
0:c:29:99:54:6d 0:c:29:55:24:8 arp 42: arp reply router is-at 0:50:56:e7:cf:19

[Send unicast ARP Requests to victims to test unpoisoning]
0:c:29:99:54:6d 0:50:56:e7:cf:19 arp 42: arp who-has router (0:50:56:e7:cf:19) tell pc1
0:c:29:99:54:6d 0:c:29:55:24:8 arp 42: arp who-has pc1 (0:c:29:55:24:8) tell router

[Send correct information once more]
0:c:29:99:54:6d 0:50:56:e7:cf:19 arp 42: arp reply pc1 is-at 0:c:29:55:24:8
0:c:29:99:54:6d 0:c:29:55:24:8 arp 42: arp reply router is-at 0:50:56:e7:cf:19

HTTPS Interception Attack
So far, we have seen how simple it is for ettercap to automatically extract data
from cleartext traffic. However, ettercap can also be used to perform a more
complicated attack on SSL web sites.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

When a client normally accesses a web page using HTTPS, the client and server
create an SSL encrypted tunnel through which all HTTP data passes. If this
traffic were to be captured by a third party, the encrypted data would be
unreadable to the attacker. Here is a simplified version of how an SSL tunnel is
created.

1. The client’s browser requests a secure web page.
2. The web server sends the website’s certificate to the browser.
3. The browser checks the certificate’s validity.
4. If the certificate is valid, the browser generates a session key, encrypts it

with the public key from the server’s certificate, and sends it to the server.
5. The server decrypts the session key.
6. Both sides use the symmetric session key to encrypt the subsequent

HTTP communication.

The validity of the certificate depends on three things. The certificate must be
signed by a trusted certificate authority, such as Verisign or Thawte. The
certificate also must not have passed its expiration date. Finally, the hostname in
the certificate must match the name of the website that the browser is attempting
to display. If any of these three conditions are not met, the browser displays a
dialog box that explains the error, and requests permission to continue
establishing the SSL session using the questionable certificate. Valid certificates
usually pass these tests unnoticed by the casual user, and because of this many
users are unfamiliar with the validity requirements, or even the existence of a
certificate that enables SSL encryption.

Ettercap can be used to establish a MITM attack in an HTTPS session if the
victim ignores the validity warnings and accepts an invalid certificate. It does so
by setting up two separate SSL tunnels:

PC1
192.168.72.101

00-0c-29-55-24-08

Snif fer
192.168.72.120

00-0c-29-99-54-6d

Router
192.168.72.250

00-50-56-e7-cf- 19

Internet
Sw itch

SSL Tunnel

Web Server
w w w .etterbank.test

SSL Tunnel

SSL Client

SSL Server SSL Client SSL Server

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

After ARP poisoning the victim’s computer and gateway, ettercap intercepts the
victim’s SSL request, and presents the victim’s browser with a false certificate. If
the victim accepts the invalid certificate, ettercap establishes an SSL tunnel from
the victim to itself, masquerading as the secure web server. It then establishes a
second SSL tunnel to the real web server, with itself as the SSL client. Since it
can now decrypt HTTPS traffic from the victim, it can easily analyze that traffic
before encrypting and forwarding it to the real web server.

It is easy to imagine a scenario where this attack would work. An attacker may
notice that her coworker regularly accesses his online banking at the Bank of
Ettercap’s secure website. Since the attacker has access to the same office LAN,
and knows which secure website the victim is likely to use, she could use
ettercap to preemptively poison the workstation and lie in wait for the next online
banking session. She could also generate a customized and convincing SSL
certificate, and install it in /usr/local/share/ettercap:

ettercap --newcert

Generating Openssl [etter.ssl.crt] certificate...

Generating RSA private key, 1024 bit long modulus
.....++++++
[Output truncated]
Country Name (2 letter code) [GB]:US
State or Province Name (full name) [Berkshire]:Washington
Locality Name (eg, city) [Newbury]:Redmond
Organization Name (eg, company) [My Company Ltd]:The Bank of

Ettercap
Organizational Unit Name (eg, section) []:Online Banking
Common Name (eg, your name or your server's hostname) []:

www.etterbank.test
Email Address []:admin@etterbank.test
Getting Private key
[Output truncated]
Openssl certificate generated in ./etter.ssl.crt

 # cp etter.ssl.crt /usr/local/share/ettercap

Now the customized fake certificate is available for use. Since the information in
the certificate is targeted to look as much like the real bank’s certificate as
possible, we can view the certificate as a form of social engineering designed to
convince the victim that nothing is wrong.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The certificate appears to be valid, except that it has not been signed by a
trusted certificate authority. The warning message generated by a browser that
has been presented with this false certificate is shown below:

Once the two SSL tunnels have been established, the packets from PC1 are
available in cleartext to Sniffer, and Active Dissector can extract usernames,
passwords, and data as easily as with any normal HTTP traffic before forwarding
the packets to the real web server.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

An HTTPS man-in-the-middle attack of this type relies on the acceptance of an
invalid certificate by a naïve or untrained user. While this method might require
luck or social engineering to get the user to comply, it seems likely that it would
have a good chance of success. If a user gets an error message that he does not
understand, and which appears to be hindering his progress toward getting his
bills paid on time, it is quite reasonable to assume that he might click Yes just to
move forward. One cannot assume that most people will even read the content of
error messages, or will not reflexively click whichever option will make an error
disappear.

It should also be noted that any HTTPS session the poisoned host browses to
would use the same false certificate regardless of the URL, but if the victim
doesn’t actually look at the certificate, this may not matter. In a large office with
many LAN ports, it would only take one impatient victim to make the attack
worthwhile.

Filters and Character Injection
Ettercap’s ability to analyze passing data streams is greatly enhanced by its
filtering capabilities. Filters can be configured to search for and replace arbitrary

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

text or hexadecimal strings in data streams before they are forwarded to the
destination host. For example, a filter can be configured to automatically replace
the text string www.domain1.com with www.domain2.com in all frames sent to a
destination port of 53. If the filter is enabled while the victim hosts are poisoned,
any subsequent DNS traffic would be automatically changed, and the victim will
receive incorrect or malicious data from an otherwise valid DNS request. Passing
data could also be filtered to dynamically change words in emails or to replace
text in a loading web page.

In addition to simple replacement, ettercap also has the ability to inject additional
characters into an active data stream while dynamically recalculating the proper
IP sequence numbers and packet checksums required to keep the connection
alive. This allows, for example, the insertion of malicious code such as
JavaScript into a web page, or viruses into an email. An attacker could also inject
new commands to a server as if they came from the client, or vice versa [12].

Downgrade Attacks
It should be noted that many of the more advanced capabilities of ettercap fit into
the general category of downgrade attacks. The client originally attempts to
connect using a protocol that is secure and not vulnerable to sniffing. However,
since ettercap has inserted itself in the middle of the Ethernet connection, it can
then attempt to block the completion of the secure connection, even if it is not
capable of analyzing that protocol. If the client is configured to use a less secure
fallback choice when the more secure method fails, then ettercap may still be
able to compromise that connection.

For example, an attacker could use filters that force an SSH client to initiate an
SSH1 connection instead of the more secure SSH2 [13]. As long as ettercap
recognizes the beginning of an SSH2 connection, it can manipulate the
exchange before it progresses. When the server replies that it supports both
SSH1 and SSH2, the filter could change the response to say that it only supports
SSH1. The client would then request only an SSH1 connection, from which
Active Dissector can readily extract usernames and passwords [14]. In doing so,
the attacker has worked around the use of a protocol that ettercap cannot crack.

Ettercap Future Development
The next release of ettercap, version 0.7.0 (also known as ettercap NG) is in
alpha testing as of this writing. The new version promises to be a thorough
rewrite of the sniffing engine, providing a more efficient and stable attack
platform. In addition, ettercap NG comes with a redesigned GUI built with the
GIMP toolkit’s GTK+ libraries [15]. The original ncurses interface is still available
as well.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The developers have also dropped the old plugin nomenclature, replacing the
obscure mythological names with more descriptive ones. For example:

• chk_poison
• dns_spoof
• dos_attack

One notable future direction is the expansion of Active Dissector for the SSL
protocol. The NG release will continue to support HTTPS session detection, but
future releases will also allow interception of POP3, IMAP, and FTP over SSL as
well. Also noteworthy is the introduction of a “unified sniffing” method for packet
analysis. The new release separates the sniffing and filtering module from the
MITM functions, so that ettercap can be used to provide a filtered active data
stream to either its own attack modules or those of another third-party tool. [16]

Defenses Against Ettercap
As we have seen, it is quite easy for an attacker using ettercap to launch a man-
in-the-middle attack once he has a LAN connection. How does one defend
against this? First, one should not underestimate the need to educate users.
While the average employee certainly does not need to know the details of
Ethernet addressing and ARP, a user who has been trained not to accept fake
SSL certificates could alert the network administrators that there may be a larger
problem loose on the LAN.

Some defense tools monitor the network for changing ARP data or watch for
ARP attack signatures. One such tool is arpwatch, which maintains a database of
current IP and MAC address mappings, and can report changes to this database
through email. [17]. One can also use ettercap itself to actively search out other
ARP poisoners. As a preventative measure, one could regularly run the
H00_lurker plugin interactively to detect other systems using ettercap on the
LAN. Also, a properly configured and positioned intrusion detection system will
likely notice both the startup ARP storm and the crafted ARP Reply packets,
possibly alerting network security personnel to an ARP poisoning in progress.

Port security is another valuable part of defense in depth. Managed switches let
administrators configure strict limits on which MAC addresses are allowed to
connect to certain switch ports. Limiting and specifying the MAC addresses on
switch ports helps to prevent unauthorized systems from connecting to the LAN,
and can ensure that MAC addresses are not hijacked or spoofed. However,
ettercap does not change its own MAC address to perform ARP cache poisoning,
and therefore port security is not effective against this type of attack [18].

A static ARP table is a list of valid IP to MAC address mappings that is set into
the ARP cache at system boot time. As the name implies, the entries in a static
ARP table do not allow dynamic updates, and do not time out from the cache.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

While this would prevent classic ARP poisoning, these static tables may be
difficult to manage; there is no centralized ARP network information service, so
changes and additions to the list would have to be propagated manually to all
LAN hosts [19].

Secure ARP
These solutions assume a defensive posture against the real problem, which is
the insecurity of the ARP protocol. ARP was conceived in the early 1980s as a
simple method to allow Ethernet communication, but it was never designed to
authenticate or validate its own information [8]. After what we have seen, there is
an obvious need for an updated secure protocol that can perform IP to MAC
address resolution and ensure that dynamically updated MAC information is not
subject to abuse.

Interestingly enough, one of the creators of ettercap has co-authored a paper
that proposes an update to the ARP protocol that protects against ARP
poisoning. In “S-ARP: a Secure Address Resolution Protocol”, Alberto
Ornaghi helped to design a secure extension to ARP called S-ARP, or Secure
ARP. In this system, all hosts on the LAN would replace their use of ARP with S-
ARP, which relies on a lightweight PKI-based authentication scheme to validate
the sender of ARP messages:

“Since S-ARP is built on top of ARP, its specification (as for message
exchange, timeout, cache) follows the original one for ARP. In order to
maintain compatibility with ARP, an additional header is inserted at the
end of the protocol standard messages to carry the authentication
information […] In S-ARP all reply messages are digitally signed by the
sender with the corresponding private key. At the receiving side, the
signature is verified using the host public key. If the public key of the
sender host is not present in the receiving host key ring or the one in the
key ring does not verify the signature, the public key of the sender is
requested from the AKD [Authoritative Key Distributor] [20]. ”

The proposed S-ARP protocol is still in its infancy, but it promises to be a robust
solution to a nagging problem. As long as ARP cache poisoning is easy to
perform and difficult to detect, it is clear that man-in-the-middle attacks will
remain popular and effective.

Summary
Ettercap has developed into a tool that encompasses a wide range of available
LAN attacks. Since it combines many separate attacks into one convenient
interface, ettercap is also a great way for new security practitioners to learn the
technical basis for many LAN attacks; discovering how a hacker would use these
tools is valuable training. As it becomes more popular to extend the LAN through

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

wireless access points in coffee shops and restaurants, it becomes clear that the
security community needs to promote change. The development of secure
replacements for older protocols such as ARP would go a long way towards
eliminating some of the more common attack strategies.

Finally, although the white hat security community can use this tool to further its
own understanding of hacking techniques, remember to take ettercap’s exit
message to heart:

ettercap 0.6.b brought from the dark side of the net by ALoR and
NaGA...

may the packets be with you...

They are safe!! for now...

References

[1] Ornaghi, Alberto, and Marco Valleri. “Ettercap.” http://ettercap.sourceforge.net
(March 31, 2004).

[2] Fyodor. “Remote OS Detection via TCP/IP Fingerprinting.”
http://www.insecure.org/nmap/nmap-fingerprinting-article.html (March 20, 2004).

[3] “Hping home page.” http://www.hping.org (March 20, 2004).

[4] “Ettercap Forum.”
http://ettercap.sourceforge.net/forum/viewtopic.php?t=1193&highlight=redhat
(April 3, 2004).

[5] Hunt, Craig. TCP/IP Network Administration. Sebastopol: O’Reilly &
Associates, Inc., 1992. pp. 8-17.

[6] Odom, Wendell. Cisco CCNA Exam #640-507 Certification Guide.
Indianapolis: Cisco Press, 2000. pp. 96, 138-139.

[7] Ibid, pp. 75-86.

[8] Plummer, David C. “RFC 826: An Ethernet Address Resolution Protocol.”
November 1982. http://www.ietf.org/rfc/rfc0826.txt?number=826 (March 15,
2004).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

[9] Bruschi, D., A. Ornaghi, and E. Rosti. “S-ARP: a Secure Address Resolution
Protocol.” December 2003. http://www.acsac.org/2003/papers/111.pdf : p. 2
(April 10, 2004).

[10] Ornaghi, A. and Marco Valleri. “Man In The Middle Attacks Demos.” Black
Hat Conference USA, 2003. http://www.blackhat.com/presentations/bh-usa-
03/bh-us-03-ornaghi-valleri.pdf : p. 27 (April 5, 2004).

[11] Ornaghi, A. and Marco Valleri. Ettercap 0.6.b man page.

[12] Ornaghi, A. and Marco Valleri. “Man In The Middle Attacks Demos.” pp. 4-5,
13-14 (April 5, 2004).

[13] Krahmer, Sebastian. “SSH for fun and profit.” July 1, 2002.
http://segfault.net/~stealth/ssharp.pdf (April 9, 2004).

[14] Ornaghi, A. and Marco Valleri. “Man In The Middle Attacks Demos.” p. 19
(April 5, 2004).

[15] “GTK+ The GIMP Toolkit.” March 16, 2004. http://www.gtk.org (March 15,
2004).

[16] Ornaghi, A. and Marco Valleri. Ettercap NG man page.

[17] “SecurityFocus HOME Tools: Arpwatch”
http://www.securityfocus.com/tools/142 (April 9, 2004).

[18] Bruschi, D., et al. “S-ARP: a Secure Address Resolution Protocol.” p. 8 (April
10, 2004).

[19] Ornaghi, A. and Marco Valleri. “Man In The Middle Attacks Demos.” p. 28
(April 5, 2004).

[20] Bruschi, D., et al. “S-ARP: a Secure Address Resolution Protocol.” p. 3 (April
10, 2004).

General References

Song, Dug. “dnsiff Frequently Asked Questions.” December 7, 2001.
http://naughty.monkey.org/~dugsong/dsniff/faq.html (March 5, 2004).

Whalen, Sean. “An Introduction to Arp Spoofing.” April 2001.
http://packetstormsecurity.org/papers/protocols/intro_to_arp_spoofing.pdf (March
6, 2004).

